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The main objective in this paper is to give transitivity (controllability) 
criteria for a certain class of polysystems which evolve on Lie groups. Since 
this paper will focus only on linear groups, only the superficial knowledge of 
Lie groups is required. The generatizations of these results to the case of 
general Lie groups will appear in [ 2 1. 

The first part of the paper deals with the theoretical basis for transitivity. 
Following the recent point of view we consider generalizations of control 
systems which we call polysystems. A polysystem on a manifold M is simply 
a collection .F of vector fields on M. A trajectory of .F is a continuous 
curve .Y from an interval (0, TI, T > 0 of the real line into M such that for 
some partition of 10, T] the restriction of .Y to any interval of the partition is 
an integral curve of some element from .F. We will call .sT transitive if for 
each pair (p, 4) of points in M there is a trajectory x of .f such that 
.u(O) = p and x(T) = q. The usual terminology in the literature on control 
theory is to call such an .iT controllable. But since the accessibility set of a 
point q in M is the orbit of q of a certain semi-pseudo group, and in our 
cases, semigroup of diffeomorphisms associated to .iT, it seems that such a 
choice of nomenclature is more compatible with the general mathematical 
terminology. 

In general it is difftcult to find simple conditions for a polysystem to be 
transitive since it seems that this question depends on too many parameters. 
Nevertheless, in the first part of the paper we present a general method of 
finding sufticient conditions for the transitivity of polysystems. We outline 
certain simple enlarging operations on polysystems which do not essentially 
alter its accessibility sets. By applying a succession of these operations to a 
given polysystem, we can, in certain cases, enlarge the initial polysystem so 
much that it is easy to see that the final polysystem is transitive. 
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It turns out that this method is successful when applied to polysystems 
which satisfy certain finiteness conditions and hence are rigid. The prototype 
of these polysystems are the so called “bilinear systems”: the manifold M is 
the complement V, of the origin in some finite dimensional real vector space 
I’. The polysystem .-7 is of the form {A + ,uB: P E R }, where A and B are the 
vector fields on I’,, induced by the endomorphisms A, B of V such that 
A(p)=Ap and B(p)=Bp forpE I’,. 

As is customary in the theory of linear differential equations, we can 
associate to such polysystem .Y, a “matrix” polysystem 3’ on the group 
GL +(V) of all automorphisms on V with positive determinant (to make it 
connected) as follows: 5’ = (x,. + uB,: u E R}, where A, and B, are the 
right invariant vector fields on GL( V) associated to A and B: If X E GL( I’), 
A,(X) = A o X, B,(X) = B o X. where o denotes the composition of linear 
mappings. Such systems are particular cases of the following situation: A 
connected real Lie group G acts smoothly on M. Then any element X of 
L(G) the Lie algebra of G induces canonically a vector field 2 on M. Hence 
any subset r of L(G) defines a polysystem 3, = {J?: X E f} on M. We call 
such polysystems subordinated to a group action. In particular, if A, B are 
elements in L(G), and if r= {A + uB: u E R}, then jTr is the generalization 
of the “bilinear systems.” The extension of our results to general Lie groups 
will appear in [ 2 ]. 

The second part of our paper contains the main transitivity results. As we 
mentioned earlier, we study the right invariant polysystems ,ir on GL(V) on 
the form .iT=(x,+uB,:uER} associated to T=(A+uB:uER, 
A E End(V). B E End(V)}. Theorem 1 deals with the case where the 
spectrum of B is real. This Theorem is a substantial generalization of the 
well known case where (e.4’: t E R) is relatively compact [3]. Contrary to 
such a case, our transitivity condition is an open condition. 

When the spectrum of B is purely complex, the situation is very different. 
Theorem 2 deals with that situation. It turns out that the rotations of B 
improve the transitivity conditions. In that situation, the set of all 
A E End(V) such that (2,. + ,&, : u E R } is open and dense in End(V). 

Finally, Theorem 3 deals with the general case where the spectrum of B 
has both real and comples eigenvalues. 

I. NOTATION AND THE BASIC CONCEPTS 

(A) Notation 

Throughout this paper M will denote an n-dimensional real C” manifold 
countable at co. TM will denote the tangent bundle, and T&V will denote the 
tangent space of M at 4. Diffa(M) will be used to denote the group of all C” 
diffeomorphisms on M. 
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F”(M) will denote the set of all Cm vector fields endowed with the C” 
topology of uniform convergence on compact subsets of M; F”(M) is a 
separable Frechet space. If X and Y are elements of Fa(M), we will write 
[X, YJ for their Lie bracket. As is well known with this Lie bracket F”(M) 
becomes a topological infinite-dimensional Lie algebra. 

If I 3 c F”O(M) we will denote by Y’(3) the Lie subalgebra of F”(M) 
generated by the elements of 3. For any point 4 E M, and any 3 c F”(M) 
we will denote by ,J-, the set {X(q): XE.3}. ,3q c T$, and 2&3) is a 
linear subspace of T$ for each 4 E M. 

In view of the nature of the main results it will be convenient to reduce the 
generalities to vector fields on F=(M) which are complete. We will denote 
the set of such vector fields by CFe(M). 

If X E CFm(M), we shall write @,u for the C” mapping on M x R into M 
which satisfies 

(i) @,u(q, s + t) = Qx(Qx(q, s), t) for all q E M, and s, I in R. 

(ii) 2$,x/2t = X 0 @,u. 

We shall denote by erx the mapping t+@,yJM~ (t). As t varies over R, the 
mappings eLY form a one-parameter group of diffeomorphisms on M. 

( B) Polysys ferns: The Accessibilify Mapping 

.3 will denote a subset of CF”O(M). We shall refer to 3 as a polysystem. 
The set of polysystems on M we will denote by Pal(M). S(3) will denote 
the semigroup of Dip(M) generated by u,, F (etx: f > O}, and S(3)(q) 
will denote the orbit of q under S(3). That is, S(3)(q) = 
(#(q): @ E S(3)}. For any q E M, the accessibility set of q with respect fo 
3 is the closure of S(3)(q) in M. We denote by Ad(q) such a set. The 
mapping .Q’~: M+ V(M), the class of all closed subsets of M will be called 
the accessibility mapping of .3. 

Two polysystems 3 and 3’ will be called equivalenf if -G’~ = ZZ’~,. It 
follows directly that the relation just defined is an equivalence relation; its 
equivalence classes are the fibres of XZ’ (Here, J: Pal(M) --t Map(M, g(M)) 
is given by 3 + ,d,.). 

Associated with a polysystem .3 we shall call the polysystem lJ f- F-3 3 
the safurafe of .3. We shall denote by Sat(3) such a polysystem. It follows 
that Sat(3) is the largest (in the sense of inclusion) polysystem on M which 
is equivalent to .3. 

(C) Invariance of the Accessibilify Mapping 

In this section we describe certain types of enlargements of a polysystem 
which do not change the accessibility mapping. 

(C 1) Enlargement to cones. If 3 c Pal(M) we denote by R + the set 
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(1X: 12 0. X E .3}. Since the trajectories of X and those of LX. for 1 > 0. 
are the same. it follows that R +, iT c Pal(M), and that R +3 - ,F. 

(C2) Enlargement under the normalizer. If .F c Pal(M), the normalizer 
of. 7 is the set of all @ E Diffx(M) such that for any q E M the orbit of q 
under (@“: ~2 E Z?) belongs to irsf’T(q). We shall use N”(7) to denote the 
normalizer of .3. It is obvious that @ E N”(.7) if and only if both Q(q) and 
W’(q) belong to .ni,<q) for all q E M. 

If @ E Diffa(hQ and if X E CF^‘(M) we shall write 0*(X) for the vector 
field q -+ d@(X(@-l(q))). where d@ is the differential of @ at @- ‘(4). If 
@ E N”(3). we shall write @*(.3) for the set {Q*(X): X E ,9). 

Since &@*(.Y) = @ 0 ef.y 0 Qp-’ it follows that Q*(X) E CFm(M) for each 
x E CF”(M). Thus, Q,(3) c Pal(M). Moreover, we have that 
uu3,E,v’, f, @*(a -.Y-. 

(C3) Enlargement under the closure. If ..;7 E Pal(M), and if cl(x) is the 
topological closure of .F. then it follows from elementary considerations that 
compact portions of the trajectories of elements of cl(F) are in -d,. 
However. the closure of complete vector fields need not be complete. Hence. 
we have that cl( .7) n CFa(M) - 3. 

(C4) Enlargement under convex combinations. If Yc Pal(M), let 
Co(. F) be the convex envelope generated by the elements of F. Since the 
vector sums of complete vector fields need not be complete, 
Co(. ?7 c F”(M), but it need not be a subset of CFcC(M). 

It is reasonalby well known, however, that the positive integral trajectories 
of convex combinations of elements of .3- remain in A r(q). (For instance, 
this can be found in the work of J. Warga on “chattering controls,” or in [ 1, 
Sect. 201.) Yet another proof, more directly related to this setting, will appear 
in (21. Since in this paper we only consider polysystems in CF”O(M), the 
above remarks imply that Co(F) n U%(M) E Pal(M) and that 
Co(. FT) n Cpm(M) is equivalent to ,F. 

(D) Transitivity of Polysystems 

A polysystem .7 is termed transitive if -sff(q) = M for each q E M. As we 
mentioned in the Introduction. the main objective of this paper is to find 
conditions on .ir which will ensure that jT is transitive. Before discussing 
polysystems which are generated by a group action, we recall some well 
known general facts about the accessibility sets. Also, we describe the 
general procedure which will be used to demonstrate transitivity. 

If .F c Pol(A4) is such that L/&Y) = T&f, then S(R)(q) has a non- 
empty interior in M, and moreover, the interior of S(F)(q) is dense in 
S(.~T)(q). Thus, in such a case A f(q) = cl(int S(R)(q)). If in addition, F is 
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a subset of analytic vector fields, then 9Aq) = T$4 is a necessary and 
sufficient condition for the preceding equality to hold ([4]). 

If LPAq) = T$4 for each q E M, then ;ki- r(q) = T&. Hence, 
&f(q) = cl(int(S( -X))(q)). As shown in [3], this easily implies that if 
A r(q) = M and if Yq(,P) = T$4 for each q E M, then S(X)(q) = M for 
each q E M. Since in all the cases we consider Yq(F) = T,M, it thus follows 
that A r(q) = M for each q E M is a sufficient condition for transitivity. 

Our method of proving transitivity will consist of the following procedure. 
Let .YE Pal(M) be given. 

Step 1. Let -7; = (the closed conical envelope of .X) fl CF”(M). By 
(Cl), (C3) and (C4), .< is equivalent to .F. 

Step 2. Suppose that there are vector fields in & such that their entire 
trajectories are contained in .pdF,(q) for all q E M. If X is such a vector field, 
then etX E N”(7) for each t E [P. Let ,q = U e$‘(3), where the union is 
taken over all t E IFi and over elements X of .< whose trajectories are in 
.d s(q) for all q E M. By (CZ), -j7; is equivalent to .&. 

./z; may not be closed under positive linear combinations. In such a case 
repeat Steps 1 and 2. 

A repetitive use of Steps 1 and 2 gives an increasing sequence of 
polysystems .T c .i7; c .& c .. . c.T~ such that they are all equivalent. In 
certain instances, to be described subsequently, .Fn will contain a subset F’, 
F’ c Y(3) such that 

(i) if XEX’, then -XE.T, 

(ii) Y&T’) = T$4 for ail q E M. 

It is well known, from a theorem of W. L. Chow, that in such a case, 
,Q’ 1,(q) = M, and that hence, -T is transitive. 

II. POLYSYSTEMS SUBORDINATED TO A GROUP ACTION 

In this section we shall assume that G is a real connected Lie group which 
acts smoothly on M. Recall that this means that there exists a C” mapping 
8: G x M + M such that for each g E G, the induced mapping g8 : M-r M 
defined by 8,(q) = 8(g, q) satisfies: 

(1) &, 0 BE, = gglgz for any g, and g, in G. 

(2) 8, = Id = identity mapping on M, where e is the identity of G. 

From this it follows immediately that for any g E G, gg E Dip(M), and that 
the mapping G + DifF’(M) given by g -+ gg is a group homomorphism. 

A group action 0 induces canonically a continuous linear mapping A, 
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from L(G), the Lie algebra of G, into U”(M) as follows: If X E L(G), then 
f -+ 8,, is a one-parameter group of diffeomorphisms on M. 

If 2 is its infinitesimal generator, then /iJX) = 8. It is well known that A, 
is continuous and that n&(G)) c CFa(M). 

We will say that a polysystem .F is subordinated to a group action if 
there exists an action 8 from a group G such that /iB(r) =.7 for some 
subset r of L(G). 

In such a case we will say that .F is associated with r. 

(A) Right Invariant Vector Fields 

In the special case where M = G, and 8: G x G is the left (resp. right) 
translation action of G onto itself, then ,4, is the well known bijective 
correspondence between L(G) and the space of right (resp. left) invariant 
vector fields on G. If X E L(G), then n,(X) =x is the unique right 
(resp. left) invariant vector field taking the valueX (resp. -X) at the 
identity of G. Associated with any subset r of L(G), we will denote by pr 
(resp. r,) the set n,(r) generated by the left (resp. right) translations on G. 

If Tc L(G), then S(T) is the semigroup generated by 
U (e’“:tER + , XE r). It follows immediately from the basic definitions 
that S(F,.) is the set of all left translations by the elements of S(T), and that 
S(r,) is the set of all right translations by the elements of S(T)-‘. The orbit 
under rr of g E G is the set S(T) g = {hg: h E S(T)), and the corresponding 
orbit of f, is gS(T)-’ = (gh: h E S(r)-‘}. In particular, the orbit of the 
identity under rr is S(T), and under r, it is S(T)-‘. 

In what follows we will consider only the right invariant polysystems. In 
view of the obvious duality between left and right invariant vector fields, the 
subsequent results can be stated for left invariant polysystems as well. 

(B) Equitlalence of Right Intlariant Vector Fields 

Two subsets r, and r2 of L(G) will be called equivalent if the 
corresponding right invariant vector fields pP, and rr;, are equivalent. Recall 
that this means that A?,(g) = Ap,,( g) for all g E G, or in view of the 
preceding section this means that 

wm = wt~,)). 

Given a subset r of L(G), the union of all subsets of L(G) which are 
equivalent to r will be denoted by Sat(r) and will be called the saturation of 
r. It is the largest subset of L(G) to K 

Sat(r) admits also the following two characterizations: 

(1) Sat(r) is the set of all X E L(G) such that (et*: t > O} c cl S(T). 

(2) Sat(r) is such that STt(r), is the largest right invariant polysystem 
contained in Sat(Fr). 
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These facts will be used subsequently; we assembly them in the following. 

PROPOSITION I. (a) If r, c Tz then Sat(r,) c Sat(r,). 

(b) For an?’ f c L(G), Sat(r) is the closed convex cone. In particular, 
any saturated set is a closed c0nve.y cone. 

(c) Let V be a subset ofL(G) such that ifX E V. then - XE V. If V 
is contained in the saturated set r. then the Lie subalgebra of L(G) 
generated 6.13 the elements of V is contained in IY 

(d) rfX and - A’ belong io Sat(r), the?? ead,‘(Sat(T)) c Sat(r). 

(e) If P: L(G)+ L(G) is a projection, that is, P2 = P, and if 
Ker P c Sat(r), then P(Sat(T)) c Sat(T). 

(f) If X E Sat(r) is such that (erx: t E IR } is relatively compact, then 
RX E Sat(r). 

Proof We start proving (b) since (a) is obvious. 
Call Co(Sat(r)) (resp. Co S%(r),) the convex closed cone generated by 

Sat(r) (resp. S%(f),) in T(G) (resp. in F”(G)). If 8: G x G-+ G denotes the 
left translation action of G. then /iJSat(r)) = S%(r),. Since/i, is linear and 
continuous. n,(Co(Sat(r))) = Co(STt(r),), and thus Co(Sat(r),) is right 
invariant. As it is contained in Sat(f,.), Co(Sat(r)) c Sat(r). Hence, 
Co(Sat(r)) = Sat(r). This proves (b). 

Since V is a symmetric subset of L(G), the semi-group S(V) is a group. 
Being arc-wise connected, it is a Lie subgroup of G. Its Lie algebra L(S(V)) 
contains V, and hence it contains Lie(V). the Lie algebra generated by V. If 
Q is the integral subgroup of G corresponding to Lie(V), then S(V) = Q. 
Hence, Lie(V) = L(S( V)). Since Vc Sat(r), S(V) c S(Sat(r)). Thus, 
S(Lie( V)) c S(Sat(r)). Hence, Lie(V) c Sat(T) = r, as r is saturated. This 
proves (c). 

To prove (d) note that RXc Sat(r) since both X and -X belong to 
Sat(r). This means that {e”: t E R) c S(T). Hence, tierYe-” E S(T) for any 
YE Sat(r) and any t > 0. Thus, ad(exp X)(Y) E Sat(r), and since 
ad(exp X)(Y) = exp ad X(Y). the result follows. (e) follows from the fact that 
for any L E Sat(f), P(L) = L - (L -P(L)). Since -(L - P(L)) E Ker(P) c 
Sat(r), and since Sat(r) is a convex cone, it follows that P(L) E Sat(r). 

Finally, if X is compact. then for each t > 0, emrx E S(T); hence 
- X E Sat(r) whenever X E Sat(r). Therefore, RX E Sat(r). This concludes 

our proof. 

(C) The LS Sets and the Criteria of Transitivit~~ for the Right Invariant 
Systems 

For any subset r of L(G) we define LS(T) by LS(T) = Sat(r) n Lie(r), 
where Lie(T) is the Lie algebra generated by f. It turns out that LS(T), and 
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not just Sat(r), is the relevant set for studying transitivity of right invariant 
systems. To see this, consider the well known case of the torus Tz, where r 
consists of one vector field with the irrational slope. Then, S(T) is a one- 
dimensional submanifold of T, which is dense in TZ. However, r is nor 
transitive. In this case U(T) = RJ. 

The following proposition justifies the preceding definition. 

PROPOSITION 2. A right invariant polysystem rr associated to a subset r 
of the Lie algebra L(G) of a connected real Lie group G is transitive if and 
on(r ifLS(I-) = L(G). 

In view of this proposition it is clear that the LS sets are crucial for tran- 
sitivity. For that reason and for convenience to the reader we quote this 
obvious analogue of Proposition 1. 

PROPOSITION 3. (a) If rl c I-,, then LS(T,) c LS(T&. 

(b) For any Tc L(G), LS(T) is a closed cone. 

(c) Let VcL(G) be such that if XE V, then - XE V. If V is 
conrained in LS(T). then the Lie subalgebra of L(G) generated by the 
elements of V is contained in LS(T). 

(d) rf X and -X belong to LS(T), then e”d.Y(LS(ZJ) c LS(T). 

(e) If P: L + L is a projection and Ker P c LS(T) then P(LS(T)) c 
u(r). 

(f) rfX E I- is compact, then RX c LS(T). 

We end this section with the following: 

PROPOSITION 4. If 8: G x M + M is a transitive action on the manifold 
M, and ifr is a subset of L(G) such that the right invariant polysystem fr is 
transitive on G, then the polysystem 9- on M associated to r and subor- 
dinated to 9. is transitive on M. 

(D) Matrix Groups 

Let V be a finite-dimensional real vector space. We denote by End(V) the 
vector space of all endomorphisms on V, and we will let GL(V) be the group 
of all automorphisms on V. As is well known, End(V) is a Lie algebra with 
the Lie bracket [X, Y] = X o Y - Y o X for X, Y in End(V). We will 
specialize our main results to GL + ( V), the group of all automorphisms on V 
with a positive determinant. Thus, in the context of the preceding formalism, 
G=GL+(V) andL(G)=End(V). 

As is well known, End(V) splits as R Id @ s/(V), where Id denotes the 
identity map, and where sl( V) is the space of all endomorphisms of V having 
zero trace. s/(V) is an ideal of End(V), and R Id is the center of End(V). 
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sl( V) is the Lie algebra of the semi-simple Lie group SL( V) the group of all 
automorphisms on V having determinant equal to 1. 

III. THE MAIN RESULTS 

In order to state and prove our main results we will need the following 
additional ideas. 

(A) Canonocal Splitting of V Corresponding to Elements of End(V). 

Let B be a fixed element of End(V). Since B may have no real eigenvalues, 
it is necessary to complexify V in order to describe the necessary ideas. Let 
Vc be the complexification of V, and let B” be the complexification of B. Let 
1 , ,..., A,, be the eigenvalues of B”. We shall assume that the eigenvalues of Bc 
are distinct. Since B is a real endomorphism, the complex eigenvalues of B” 
occur in conjugate pairs. We shall write aj = Re A,, and pj = Im Aj for 
j = l? 2,..., n. We let or be the set of all eigenvalues ,4 of B such that 
Im ,4# 0, u, be the set of all eigenvalues J of B such that Im A = 0, and we 
write u = cI u ur. If ,4 E u,[, then 1, the complex conjugate of I, also belongs 
to c,r . Thus, the cardinality of uc is even. For eachj = 1, 2,..., n, let Vc(S) be 
the eigenspace of Be corresponding to the eigenvalue lj. fl = @y=, V-(Aj). 
Corresponding to this splitting of p we define the following splitting of V. 

(i) If lj = aj, i.e., if Jj E ur, let ej be any nonzero vector in V’@,). 
Since B is real, ej E V. We denote by Ej the subspace of V generated by ej. 

(ii) If lj E uI , let c be any nonzero vector in V’(lj). Then, 6, the 
conjugate vector of t’, belongs to P((xj). We define ej, = i(v + a), and we 
define ejZ = (1/2i)(u -c). Here, i2 = - 1. It is well known that ej, and ej2 are 
linearly independent vectors in V. We write Ej for the vector subspace of V 
generated by ej, and eiz. It follows that Bej, = ajej, -pjejz, and that 
Bejz = /Ijej, + ujejz. Thus, B(Ej) c E,. 

If card uc = 2k, then V splits as: V= 07:: Ej. Corresponding to this 
splitting of V, End(V) splits as End(V) = @y;:“, End(E,, Ej), where 
End(E,, E,) stands for the vector space of all endomorphisms from Ei into 
Ej. If XE End(V), we shall write X, for the projection of X onto 
End(E,, E,). 

We will let W be the set of basis vectors described in (i) and (ii) above. 
Occasionally, it will be convenient to work with matrices of elements of 
End(V) corresponding to the basis W. If X E End(V) we will write M(X) for 
the matrix of X with respect to W. Mij(X) will stand for the matrix of X, 
with respect to W. 
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In this notation, Mij(B) = 0 if i +j. If Ej is one dimensional, the only 
nonzero entry of M,(B) is aj in the (j, j)th position, and if Ej is two dimen- 
sional, then the nonzero entries of M,,(B) are given by the 2 x 2 matrix 

(B) Strongly Regular Elements of End(V) 
We will say that B E End(V) is strongly regular if 

(B 1) the eigenvalues A, ,..., 1, are all distinct and 
(B2) the real parts a ,,..., anmk of the eigenvalues satisfy a, - aq # 

(I, - a, for all p, q, s, t such that {p, q) # (s, t). 

It is obvious that the set of strongly regular elements of End(V) is open and 
dense in End(V). 

We are now ready to start with the development of the main results. We 
shall, for the remainder of the paper, work with a fixed strongly regular 
element B of End(V), and we shall always adhere to the notation established 
in Part (A) of this section without further explicit mention. In addition, we 
shall always assume that the real parts a,,..., (T,-~ of the eigenvalue of B are 
ordered such that a, < a, < -.a a,, mk. 

(C) Transitivity in the Case Where the Spectrum of B is real 

In this section we will assume that each of the subspaces E, is one dimen- 
sional, i = 1, 2 ,..., n. For simplicity of notation, we shall write E, for the 
transformation X E End(V) such that X(e,) = e,, X(e,) = 0 for k # i. We 
start with the following: 

LEMMA 1. Let p and q be arbitrary integers such that p # q and 1 <p, 
q < n. If r is the positive convex cone generated by aE,, and BE,,, where 
a/3 < 0, then LS(T) = sl(p, q), where sl(p, q) is the Lie algebra generated by 
E,, and E,,. Thus, S(T) = SL(p, q), where SL(p, q) is the Lie group whose 
Lie algebra is sl(p, q). 

Proof If X E r, then X = AE,, + uE,,, where Ap < 0. When 1~ < 0, then 
by direct computation, 

efx = (cos wt) E,, + (Jl~1sinwt)E,,JI~1sin~tE,, 

+ (cos wt) E,, + Id,, , 

where w = m, and where Id,, is the identity element of the space 
Oi@lp,q) Eii* 

In this expression we have without any loss of generality assumed that 
1 > 0 and that p < 0. Thus, (e’*: t E R } is compact, and hence, by 
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Proposition 3(f), RYE M(f). Therefore, for each t > 0, e-‘X E S(T), and 
hence. S(f) is a group. Being arc-wise connected, S(T) is a Lie group. It is 
easy to see that Y(r) = sf(p, 9). For instance, if X, = E,,, X, = E,, then 
[X,.X21 = E,,- E,,. Thus. Y’(r) is a three-dimension subalgebra of sl( p, 4) 
and hence, it must be equal to sf(p, 4). 

By Proposition l(c), sl( p, 4) c Sat(T) n Lie(T). Since r c s/(p, q), 
LS(f) c sl(p. q), and hence sl(p. q) = M(T). Thus. we have proved the 
lemma. 

The following lemma, although very simple, is needed for technical 
reasons, and very likely should be ignored by the reader until its use in the 
main theorem. 

LEMMA 2. Let a,, . a,?. az, and aI2 be any real numbers such that 
lal,l+la221f0. 

If ?‘I = aalZ + ya,, , and if y2 = da,, -pa,,, then there exist numbers a, P, 
11 and 6 with ad - rp = 1 such that J,J’~ < 0. 

Proof If a,, = a,2 = 0. the statement is obvious. 
Assume that a,,#O, and let a=Aa,2a2z, p=+n, y=- l/A and 6=0. 

For such a choice of a, /3, 7 and 6, .Y, y2 = (aal + ya, ,)(da,, - Pazz) = a12a2, 
+ LMa,2a2, - a,,a,,) + $a,,a,, - aPa12a2, = a12a21 - (a12a2L --alla2J - 
A2(a,,az2)‘. y,.rz becomes negative as E, + co. If a?, # 0, let 6 = - Aa, ,a,, , 
p = - l/l, y = ,I and a = 0. For such a choice of a, p, y and 6, an argument 
analogous to the preceding one shows that y,y2 becomes negative for 
sufftciently large values of 1. Thus, the proof is finished. 

We now state and prove 

THEOREM 1. Let A and B be any elements of sf(V), such that B is 
strongly regular, and such that A satisfies: 

(Al) A,,#Ofor alf 1 <i,j<n such that Ii-j\= 1. 

(AZ) A,,, . An1 < 0. 

Then, the right invariant polysystem F = (x, + uB, : u E R ) is transitive 
on SL(V). 

ProoJ: Let I-= {A + uB: u E R}. Our proof will follow if we show that 
LS(T) = sl( V). As before, let sf(i, j) be the Lie subalgebra of s/(V) generated 
by End(E, . Ei) and End(Ej, Ei). Since Iy(u sl(i, j)) = si(V), in view of 
Proposition 3(c), it would suffice to show that each i # j, 1 < i, j < n, 
sl(i, j) c Sat(r). 

For each pair of integers (i, j), 1 < i, j < n, let A, = ai - aj. We write 
A = (Aij: 1 < i, j < n 1. A is a symmetric set, - A, = Aji. Also, by the strong 
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regularity property of B the correspondence (i, j) -+ A, is one-one from the 
set Z, = ((i, j), 1 < i, j < n, i #j} onto A. For each (p, 4) E Z,, we will write 

v(Pd7’ = @ End@, , Ej). 
ldijl > ldpql 

Our basic aim is to show that for each (p, 9) E Z,, v(p*q’ c U(T). For, 
then by Proposition 3(c), rP( k’(p,q’) c LS(T), and since sl(p, q) c P( V’/lpaq’) 
our proof would follow. 

We proceed to prove that v(pqq’ CL.!?(T) by induction on the set of 
positive elements of A. We will start with the largest element of A and 
proceed in descending order. We first show that IJ’(~.” cLS(T). 
Lim,_,( l/n)@ f nB) = f B. Hence, f B E U(T). If u E R, then by 
Proposition 3(d), A,. = emBpAflb E LS(T). Since L,!?(T) is a closed convex 
cone, lim,.,,, e m’ntL’Ar E U(f). In view of the equality A,. = @zj=, emJUI‘Aij, 
it is easy to see that the above limit is equal to A,,. A similar reasoning 
applied to the limit lim,.,-, ~?~‘Ljl~ shows that A,,, E U(r). Thus, C the 
positive convex cone spanned by A,, and A,,, is contained in U(T). Our 
assumption (A2) implies that A,,, = a,$,,, and A,,,a,,E,, , where ~l,,,a,,’ < 0. 
Lemma 1 shows that U(C) = sf( 1, n), and by Proposition 3(a) it follows 
that sl( 1. n) c U(T). Since I’(“,” c s/(1, n) we have proved that our 
induction hypothesis holds for the maximal element of A. 

Assume now that for our induction hypothesis holds for all pairs 
(i, j) E Z, such that 1 A,1 > 1 A,J Let A,,,, = Max(Aii : A, < 1 A,,l}. Obviously, 
I > tn. We want to show that Vern’ c LS(T). 

Case I. I < n. Then A ,I+,‘m > IA,,/, and hence V”‘t’.m’~U(Z). 
Since y(pi+ ‘3m’ ) =I s/(1+ 1, m), it follows that sl(l + 1, m) c U(T). 

Either A (I+ ,)I 2 l~,,l or 4, ,)i < Ppql. 
Assume that A ([+ ,‘! > 1 A,, /. In such a case, our induction hypothesis, 

along with an argument similar to the above, shows that sZ(l + 1, Z) c U(T). 
If X E s/(1+ 1, r), and if g E SL(1+ 1, m), then by Proposition 3(d), Y = 
g-‘Xg E U(T). We want to choose X and g such that Y,, o Y,m < 0. If 

X=-%+I’.F (/+ 1)1 + xitI+ A,+ lb9 and if g = aEmm +PEmcI+ ,) + YE,,+ I)m + 
%,t ,,(I+ 1) + *d,i+ ,,rn, with a6 - /3y = 1 and, where Id,,, “,,’ is the identity 

On @lieI/+ I.mll End(E,, E,), then we have that 

Yh = YX/t/+ “Eh and that ymi=-Pxu+l’~m,~ 

Choose any X and g such that - Y-x~,~+” . /?xc,+ ,‘, < 0. Let Pfpsq’ be the 
projection of End(V) onto v(p*q), and let Acrn*‘) = Y - P(p~q)(Y). 
A (m,l, E U(T), and additionally: 

(i) A::.” = A;:.” = 0 for all (i, j) E Z, such that IA,/ > IApql. 

(ii) Al:.” o AL:.” < 0. 
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We show that the positive closed cone generated by A$*‘) and Aj;*‘) 
belongs to U(T). But this follows from the following limits: 

An application of Lemma 1 to the preceding cone shows that 
sl(l, m) c LS(f). Hence, V(‘*m’ c U(T). 

Consider now the case where do+ ,,, < Id,,). As before, let Pp.*’ be the 
projection map onto V’pqs). Let X = A - P(p94)(A), Xc M(T). Additionally, 
x /(1+1) f0, and *,,,+u # 0. We next want to choose an element 
g E SL(I + 1, m) such that U = g-‘Xg satisfies Y,, o Y,, < 0. As in the 
preceding computation we let g be given by a, /I, y and 6 such that 
ad - /?y = 1. If M(X) = (xii) and M(Y) = (yij), then: y,,,, = ax,,,, + 7x,(,+ ,) , 
and ~~~=Gx~~-/?x(,+,,~. Since Ix,(,+,,l + /x(,+,),(#O, we have by Lemma 
2 that there exist (x, p, y and 6 with a6 -by = 1 such that ymr . J’,,,, < 0. For 
such a choice of g, let A(‘“*‘) =X - Pp.@(X). Since both X and - P’p*q’(X) 
belong to M(T) so does A(“‘*!). A(msl) satisfies: 

(i) Ajy*‘) = 0 if ldijl > Id,,/. 

(ii) AL;*‘) 0 Al;,” < 0. 

By an argument similar to that of the preceding paragraph we show that 
the convex cone generated by Aky,‘) and Al:*‘) belongs to M(f). Hence, in 
this case as well, V(m7” c U(T). 

Case II. I= n. Then m > 1 (since our induction hypothesis is already 
verified for m = 1). In view of the ordering used, A!(,,- ,) > 1 A,,/. Thus, 
V(‘,m-‘) c M(T), and hence sl(l, m - 1) c M(T). 

We will omit the remaining part of the arguments, since they are 
completely analogous to those of Case I except with the roles of I+ 1 and 
m - 1 reversed. Thus, our induction hypothesis is true for (m, I), and hence, 
it must be true for all elements of Z,. This proves the theorem. 

COROLLARY 1. Let A and B be elements of End(V), where B is strongly 
regular, and where A satisfies (Al) and (A2) of the previous theorem. If the 
trace of B is not equal to zero, then F = (A,. + us, : u E R } is transitive on 
GL ( V). 
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Proof. We use the splitting End(V) = R Id @ s/(V). In this splitting 
B =B Id @ B,, where p = tr(B), and where B, E s/(V). From Theorem 1, 
sl( V) c LS(T), where r = (A + uB: u E IF? }. Thus, fB, E LS(T). Since 
fB E LS(T), it follows that k/I Id E LS(T). Hence, R Id E P?(T). Thus, 
LS(T) = End(V), and therefore, S(T) = GL + (V). Our proof is now finished. 

COROLLARY 2. Let 8: GL+( V) x V-, V be given by 8(G, v) = G . v. ff 
F is a polysystem on V associated with r = {A + uB: u E I? }, where A and 
B satisfy the conditions of Theorem 1, then 7 is transitive on V,, = V - (0 }. 

Proof. SL( V) acts transitively on V,. 

It is not difficult to show [3 ] that condition (A2) of Theorem 1 is also a 
necessary condition in the case where dim V = 2. In higher dimensions, the 
situation is not so clear. For instance, when A and B are symmetric 
endomorphisms on V then condition (A2) is never satisfied. We have 
managed to show that in a case when dim V < 3, no polysystem on V, 
associated with {A + uB: u E R} is transitive. Although, the method of proof 
braks down in higher dimensions, it seems that polysystems of the form 
{A + uB: u tS R}, where A and B are symmetric, never give rise to transitive 
polysystems on V,. 

(D) Transitivity in the Case Where the Spectrum of B is Complex 

In this section we will assume that all the eigenvalues of B are complex. 
This implies that dim Ei = 2 for i = 1, 2,..., k, dim V = 2k, and that 
dim End(E,, Ej) = 4 for all 1 < i,j < n. As before we will write sl(i, j) for the 
Lie subalgebra of sf(v) generated by End@,, Ej) @ End(Ei, Ei). If B is a 
strongly regular element, then there is a bijective correspondence 
(i. j) --) A, = ai - aj between the sets Z, = ((i, j), 1 < i #j < k) and 
A = (Aij: (i, j) E Z,}. 

LEMMA 3. si(V) is generated by the vector space 

@ (End(Ei, El) @ End(Ej, Bi)). 
I<itj<k 

We will omit the proof. 
If X= XPq for some 1 <p # q < k, then we will say that X is exceptional 

provided that X,, belongs to the union WAqU W& of the following linear 
subspaces of End@,, E4). Let L,, L,, L, and L, be elements of End@,, E,) 
defined as follows: L,@,,) = eql, Ll(ep2)=-eq2; L2(epl)=eq2, 
L(e,,) = eql ; L&J = eq17 L&,,) = eqz; and L4(epl) = eq2, L(ep2) = - eql. 
Then WAQ is the linear space generated by L , and L 2. while W& is the linear 
space generated by L, and L,. 
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LEMMA 4. Let X = X,, for some pair of integers (p, q) E Z,. 
If B is strongly regular element of End(V), and if X is not exceptional, 

then C. the closed contlex cone generated by (e-BL’XeB” : v E IR}, is equal to 
End@‘,, EJ. 

Proof: For each pair of integers (p, q), I <p, q < k, the space 
End(E,, Eg) is isomorphic with M,(lR), the space of all 2 x 2 matrices. If 
W,,) = aeql + 3)eq2, and if L(e,,) =Pe4, + 6e,, , then we represent L by the 
matrix 

In this representation: 

and 

In this representation the exceptional spaces are 

and 

Thus. if X,,, is represented by 

we require that the closed convex cone C generated by 

e-Am” cos p,v 
-sin p,tl 

= e-A,~ Xl,(V) x*2(0) 

-Q,(C) x22(v) ’ 
v E R, 
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be equal to M&R). By expanding the preceding expression we get: 

,~,,(~)=acos~g~co~~g~-~cos~~~sin~,~~-~sin~,vcos~,c 

+ S sin /3, L’ sin /I, ~1. 

Xlz(tl) = a cosp,u sinp,u +p cosp,c cos/3,0 - )‘sin/3,u sin/I,p 

- 8 sin p, LJ cos p, ~1. 

~~~,(t~)=asin~,ccos~,t~-~sin~,vsin~,o+ycos~,~~cos~,~~ 

- 6 cos P, LY sin /I, c. 

x22(L’) = a sinp,tl sinj3,v +/I sinj3,v cosp,tl + ycosp,tl sin/I,c 

+ 6 cos p, 1’ cos p, L’. 

If f(t) is any positive function, then ( ~/LJ) jS f(t) e-Bpp’X@qq’ dt E C for 
each c E R +. Furthermore, since C is closed, lim,,+, (l/v) ibf(t) 
e-Bpp’X@++ dr E C whenever such a limit exists. 

Making use of the elementary trigonometric identities we get, after a 
simple computation that 

E 
a+P -Y+P. 

-p+y a+6 1 

=&I., = lim 
I 

(‘em At( 1 + 4~ cos(p, + P,)f) e - bJ@‘d dt. 
t1-x o 

Since for 1 E ( < 4. e-‘r( 1 + 4s co@, + pp)v) > 0 for all c, EL, E C, and 
hence RL, E C. 

Similarly, 

=& a-6 P+7 =EL 
Y+P -a + 6 

29 

!iE $ j” emJ’( 1 + 4~ sin@, + /?,)t) e-Bpp’XeBq~f dt 
0 

=& -P-r a-6 =EL 
a-6 /?+y ’ 
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and finally, 

Since in each of the above cases (E( ,< 4 it follows that C includes the 
vector space spanned by L , , L,, L,, and L,. 

We denote by 

M, = f(L, + L,) = cf P 
( 1 Y 6 

M,=f(L, -L2)= 
( 

6 
-p iy ’ 1 

M,=f(L3+L4)= 1 -,” 7 / and M4=f(L3-La)= 

The vector space generated by M,, M,, M, and M, 
dimensional, and hence equal to M,(R) whenever 

-P a 
I I -6 y . 

will be four- 

det 

= - [(a’ - a*)* + @* - y’) + 2(a* + S’)tJ’ + y’) + 8aj3y~J # 0. 

It is easy to check that the minimum value of the above expression in 
parentheses is equal to zero, and that it occurs when a = 6 and p = - y, or 
a=--6andp=y. 

In the first case 

and in the second case, 

But, by our assumption X is excluded from these possibilities, and hence we 
have proved the lemma. 

Using the notations of the previous lemma we get: 



CONTROL SYSTEMS ACCESSIBILITY 203 

LEMMA 5. If X = Xp, # 0 is exceptional, then Wi, c C when X E WLyr 
and Wi, c C when Xiq. 

Proof. We shall use the same notations as those developed in the proof 
of the previous lemma. Let X = (; -,“). Then, 

If either a # 0 or /I = 0, then it is easy to see that the above matrices span 
W,&. In the remaining case, 

a P 
x= P --u =M1. I I 

Then. 

Hence, when either a f 0, or /3# 0, Wi4 c C. Thus we have proved the 
lemma. 

Before stating the next lemma it will be convenient to introduce the 
following additional terminology. If XP4 E End@,, E,) and if 
X,, E End(E,, E,), then we will say that X,, and X,, do not belong to the 
same exceptional type if either X,, & Wi, and X,, $ W&, or XPq 65 W& and 

X,* @ w;D. 

LEMMA 6. Let X,, E End(E,, E,), and let XqP E End(E,, Ep) for some 
pair of integers (p, q), p # q, 1 <p, q < k. Zf B is strongly regular, then 
Sl(p, q) = LS({X,,,X,,, B)) = LSV) P rovided that (i) neither X,, nor X,, 
are equal to zero, and (ii) Xp9 and X,, do not belong to the same exceptional 
type. 

Proof The Lie algebra sl(p, q) is isomorphic with sl(R4) via the matrix 
representation with respect to the basis {eP,, ePz, e,,, eq2}. For the sake of 
convenience but at the risk of notational abuse, we will regard the elements 
of End(E,, E4) @ End(E,, EP) as elements of sl(R’). By Lemma 4 it follows 
that Sat(f) includes End(E,, EP) @ End@,, E,) provided that neither X,, 
nor X,, is exceptional. Obviously, the statement of the lemma will follow if 
we prove it for the exceptional case. Without any loss of generality assume 
that Xp,E WA4 and that X,, E W&. By Lemma 5, Wi,c LS(T), and 
w& c LS(f). 
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If L, E W,& then we will identity L, with 

0 0 a p 
0 o-p a 
0 0 0 0’ 
0 0 0 0 

and if L, E W&, then we write 

0 0 0 0 

L=O 0 0 0 2 )’ 6 0 0’ 
6-y 0 0 

By varying a, /?, y and 6 we will show that [L,, L, ] includes all the matrices 
of the form 

a p 0 0 

(1) Y -a 0 0 0 0 0 0 and (2) 

0 0 0 0 

where a, p, y, and 6 are arbitrary. 

0 0 0 0 
0 0 0 0 
0 0 a /I 
0 0 y -a 

where 

1 0 0 0 0 I 0 0 
D=o-l 0 0 1 0 0 0 

I 0 0 0 0’ D2= 0 0 0 0’ 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

DC0 0 0 0 D=O 0 0 0 
3 0 0 10’ 4 0 0 0 1’ 

0 0 o-1 0 0 1 0 

(i) ay=l,and/I=6=Oimpliesthat [L,,L,]=D,-D,, 

(ii) /3S= 1, and a=y=O implies that [L,,L,]=D, +D,, 

(iii) ad= 1, andp=y=O implies that [L,,L?]=D,-D,, 

(iv) /I,)= 1, and a=6=0 implies that [L,,L*]=-D?-D1. 

It is now easy to see that the vector space of [L, , L,] as a, /3, y and 6 vary 
includes the vector space containing D,, Dz, D, and D,. [D,, Dz] is linearly 
independent from D, and Dz, and thus the vector space generated by D, , Dz 
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and (D,,D,j produces matrices of type (I), while D,, D, and [D,,D,] 
generate matrices of type (2). 

It is easy to check that the commutators of matrices of type (1) with those 
of I+‘,& generate matrices of the form 

IO 0 a P 
(3) 0 0 y 6 

0 0 0 0 
0 0 0 0 

. 

while commutators of matrices type (2) with those of Wi, generate matrices 
of the form 

10 0 0 01 0 0 0 0 
(4) (4) 0 0 0 0 0 0 0 0 

a a p p 0 0 0 0 
y y 6 6 0 0 0 0 

(cx, 6. y and 6 are arbitrary). 
It is now easy to check that the Lie algebra generated by the matrices of 

types (3) and (4) is equal to sl(lR’), and hence its verification will be 
omitted. The proof of the lemma is now complete. 

We are now ready to state and prove the following. 

THEOREM 2. Let B be a strongly regular element such that its spectrum 
contains no real eigenvalues, and let A E End(V) be such that A both: 

(i) A,, # 0 for all pairs of integers (p, q), p # q, 1 <p, q < k, and 

(ii) there exists at least one pair of integers (p, q),p # q, 1 <p, q < k, 

such that Xp4 and X,, do not both belong to the same exceptional type. 
Then, if both A and B belong to sl( V), LS((A + uB: u E R }) = sl( V). Thus 

X = (A; + uL?~ : u E R } is transitive on SL( V). 

Proof: In the course of the proof we will show that T= @,SitiCk 
End(Ei , Ej) c LS(T), where f = {A + uB:u E R }. For then, by Proper- 
ty 2(c), the Lie algebra L(T), generated by T, is contained in IS(T), and 
hence by Lemma 4, L(T) = sl(V). Thus. we would have s/(V) = LS(T), and 
that implies the theorem. 

As before let, v’p,y’ = t9,J,jra ,d,, End@?, , Ei). The proof will basically 
consist of two parts. In the first part we will show that for each pair of 
integers (p, q) E Z,, *A,, E D(T), while in the second part we will show 
that End(E,, E,) c LS(P). 

Part 1. We make the inductive hypothesis that for each (p, q) E Z,, 
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+A,,, E LS(T). We proceed in the descending order on the element of A. Let 
A,, = Max(Aij: A, E A}. Then, A,, = Min A. For each u E R, 

where O,(u) =e-arc8Ji” for each integer I = 1, 2,..., k. Each O,(v) is 
compact; in fact 01(27r/j3J = Id. 

If f(t) is any positive and bounded function then for each u > 0, 
(I/v) .I” eAm’f(t) eeBtA8’dt E U(T), and (l/v) It; e’qdf(t) eeB’ A@’ dt E 
LS(I-). 

In view of the maximality of Ap9, lim,,,, (l/v) JO” eADq’f(t) ecatAij 
8’ dt = 0 for each (i, j) # (p, q), and similarly lim,,, (l/u) jt; e’“qp’J(t) 
e-BtA,j @‘dt = 0 for (i, j) # (q, p). Hence, for each function f which is 
positive and bounded on [0, co), lim,.,, (l/v) j;“f(t) emErA,, 8’ dt E LS(T), 
and lim,.,,= (l/tl) jgf(t) emBtAg,, 8’ dt E LS(T) whenever the above limits 
exist. 

But, by Lemmas 4 and 5, the set of above limits for various choices of S 
always include *A,,, and *Apq . 

Assume now that our inductive hypothesis is true for all pairs (i,j) E Z, 
such that 1 A,1 > IA,,,), where (II, q) is a fixed element of Zk. 

Let A@@ = A - @,;l,, > ,A , AiJ. We have that A$‘,@ = 0 for /A,1 > lA,,l. 
Let A,, = Max(A - (Ati: la,jl > IA,,\\). 
An argument similar to the preceding one shows that for each function f 

such that f(t) > 0 for t > 0. lim,,, (l/v) ji eeAlmtf(f) e-stA@*4’ @ dt E 
LS(T). and that lim,,, (l/v) joL’ eAfmtf( - t) e-B’A’Pv4’ 8’ dt E LS(T). 
Again, by Lemmas 4 and 5, the above limits include *A,, and *A,,. Thus, 
our inductive hypothesis must be true for all pairs (p, q) E Z,. This proves 
the first part. 

Part 2. Let now (p, q) E Z, be the pair which satisfies condition (ii) of 
the theorem. By Lemma 6, we have that sl(p, q) c LS(T). Let s 4 {p, q}. If 
g E SL(p, q), then X= g-‘A,, g belongs to LS(T) (Proposition 3(d)). We 
shall now choose such a g such that X,, is not exceptional. If g = 
@,Gi,jCkgij, then X=X,,+X,,, where Xsp=AspgP4 and where 
X,, = Asp gp4 . . Since gpu can be any element of End@,, E,), it follows that 
there exists g E SL(p, q) such that XSq is not exceptional. Lemmas 5 and 6 
now imply that sl(s, q) c LS(T). It is clear now that this precedure extends 
to all pairs (i, j) E Z,. Thus, we have proved the theorem. 

It is clear that the obvious analogues of the corollaries of Theorem 1 hold 
true as corollaries of Theorem 2, and therefore, we will not state them. 

Contrary to the case where B has only real eigenvalues, the set of 
endomorphisms A such that LS((A + uB: 1.4 E R}) = s/(v), where B is 
strongly regular having no real eigenvalues, is open and dense in End(V). 
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(E) The General Case 

207 

In this section we will assume that B has 2k complex eigenvalues. As we 
described before, corresponding to these eigenvalues there are E, ,..., E, -k 
linear subspaces which split V. In this section we shall assume that 
E En-, , r..., are numbered such that a, < a2 < ... a, -k. Here, a, ,..., a, -k are 
the real parts of the eigenvalue of B. Thus, if ai belongs to us the spectrum 
of B, then Ei is one dimensional. Otherwise, Ei is two dimensional. Recall 
from Section (A) that in such a case e,, and e,, are the distinguished basis 
vectors in Ei. As before, we will use the splitting End(V) = 
0, G i.jCn -k End(E,, Ej). If X E End(V), then X, will be its projection on 
End(Ei, Ej). As we mentioned earlier, B will always denote the fixed element 
End(V). In this case, it will be convenient to write Z,-, = ((i, j): i #j, 1 < i, 
j < n - k}. When B is strongly regular, the correspondence (i, j) + ai - aj = 
d, is one-one from Z,-, onto A. 

We start with the following lemma. 

LEMMA 7. Let (i, j) E Z,-, be such that exactly one element of (Ei, Ej} 
is two dimensional. Let X E End(V) be such that X = X, + X,!, where 
neither X, = 0, nor Xi, = 0. Then, LS((X, fB)) includes sl(i, j), the nine- 
dimensional Lie subalgebra of sl(V) spanned by End(E,, Ej) @ End(Ej , Ei). 

proof Let r = (X, B, - B}. For each V E R, let 

X(U) = eeB~XtFL’ = e-B~i”Xij.$jjL’ @ e-Bll”xji@iit’ = x,(v) @ xji(~7). 

For each L’ E IR, X(v) E LS(T). 
Without any loss of generality assume that Ei is two dimensional. Let e,, 

and e,, be the basis vectors for Ei, as described previously, and let ej be a 
basis vector for Ej. If X,(ei,) = a,3ej, Xij(eiz) = a,,ej, and if Xji(ej) = 
a3keil fa32ei2, then by our assumptions la,,1 + la,,] ~0, and 1a3,) + 
la,*1 + 0. 

After a simple computation we get that 

Xij(u)(ei,) = e(aj-ai)c (u,~ cospiu + q3 sinp,u) ej, 

and that 

Xij(v)(eiz) = e(aj-ai)r’( - aI3 sinp,c + aI3 COs~,u)ej. 

Similarly, 

xii(u)(ej) = e(ai-aj)c’ ((a31 COS PjL’ + U32 Sin /ljU) ei, 

+ (aJz cospjU -a,, sinpju) eiz}. 
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Let f(t) = edJr( 1 + E cos pjt) for t E R, and JE] < l/2, thenf(t) > 0. Hence, 
by Property 3(b). for each t’ E R, t’ # 0, 1 I/u1 jif(t)X(t) dt E LS(T). If 
d, > 0, then limcr+oo (l/l ~1) (if(t) X(t) dt E M(T). If X, denotes such a 
limit, then it is easy to verify that X, E End(Ej, Ei) and that X,(ej) = 
&(Q3,ei, + Q32eiz). By computing the similar limit when f(t) = 
tiji’( 1 + F sin p,t), t E R, we get that Xz = lim( l/v) Jif(t) .X(t) dt E U(T), 
where X,(ej) = E(aJZei, - aj2eiz). 

Since L.S(T) is a closed convex cone, it follows that KS(T) includes the 
vector space generated by (I/E) X, and (I/E) X,. Such a space is two dimen- 
sional. and is hence equal to End(Ej, Ei). To show that End(Ei, Ej) c D(T) 
consider the limits.of the type Cm,,_, ( l/t!) 1; L‘ f(t) X(t) dt, where./(r) varies 
over the functions of the formf(t) = e”ij’g(t) for g bounded and positive. The 
details of these arguments are quite analogous to those of the preceding 
paragraph and therefore will be omitted. 

Finally. if d, < 0. then all the preceding arguments are the same except 
that the limits where c + 00 become the limits as I’ + - co, and conversely. 
Thus, in either case, End(E,, Ej) @ End(Ej, Ei) cLS(T), and hence by 
Proposition 3(c), sl(i,j), the Lie algebra generated by it, also belongs to 
LS(f). Hence, we have proved the lemma. 

We now state and prove the main theorem of this paper. 

THEOREM 3. Let A and B be elements of sl(V) such that B is strong11 
regular. Assume that A satisfies: 

(A 1) A,, # 0 for all (p. q) E Z, -k such that E, and E, are both one 
dimensional, and such that 1 p - q ) = 1. 

(A2) If E, and E,-, are one dimensional, then we require that 
A L(n-k) .A (n-k)1 ( ‘* 

(A3) A,, # 0 for all pairs (p, q) E Z,-, such that at least one of E, 
or E, is two dimensional. 

(A4) If n = 2k, then we require that there exist an element (p, q) E 
Z n-k such that Xpq and X9r do not both belong to the same exceptional type. 

Then, the right invariant polysystem jr = {A;. + uL?, : u E Fi } associated 
n?th f = {A + uB: u E R} is transitive on SL(V). 

Proof: If k = 0, then our theorem reduces to Theorem 1, and if k = 2n, 
then it reduces to Theorem 2. Hence, we will assume that 0 < 2k < 2n. Our 
method of the proof will be to show that for each pair of integers 
(6 j) E Zn-k5 sf(i, j) c M(T). 

We shall prove this by induction on the set of positive elements of A. Our 
inductive hypothesis is that for each Apq > 0 in A s&i, j) c LS(T) for all 
(i,j) E z,-k with lAij/ > Apq. We first verify that our induction hypothesis is 
true for A,n-k,, the largest element of A. 
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Case 1. If both (r, and cznmk are the eigenvalues of B, then E, and En-, 
are one dimensional. In such a case, an argument completely analogous to 
that in Theorem 1 shows that sI( 1, n - k) c M(T). 

Case 2. Suppose that one (but not both) of 01, and (x,-~ is an eigenvalue 
of B. This corresponds to the case where one of E, and En-, is one dimen- 
sional and the other is two dimensional. As we have seen before, e-“‘APr = 
CDo;;;;;; 2 RiiL’A if” b e ongs 1 to U(T) for each L’ E R. Since r is a 

q ,tn-k, = lim,-, e -J~,~kllL'rne~B1‘mAeB*'rn E LS(r), where 

2nm L’ =- 
m P, 

if E, is two dimensional 

27tm =- 
Pn-!i 

if En-, is two dimensional. 

Similarly, A,n-k,l = lim,_, e~;rI~~-~~~me-B*‘mA~L’m E M(T), where v, in this 
case is the negative of the previous one. Now, Lemma 7 applied to 

X=A,n-k,l @ Alcnmk, shows that s/(1, n - k) c U(T). 

Case 3. Suppose that neither of a, and unPk is an eigenvalue of B. This 
means that E, and En-, are two dimensional. 

Let (p, q) E Z,-, be such that: 

(i) Either aP or (r9 (but not both) is an eigenvalue of B, and 

(ii) if A, > lA,,(, h t en neither ai nor aj is an eigenvalue of B; 
dim Ei = dim Ej = 2 for all such (i, j). By Step 1 of the proof of Theorem 2, 
+A,, fAji are elements of U(T) for all (i, j) E Z,-, such that Aij < JA,,(. 
Consider. A@.q’ = A - (eAij> ,AD,9, (Aij + Aji). A$‘.@ = 0 for 1 A,1 > IA,,1 and 
neither AFq.@ nor Az4’ is equal to zero by condition (A3). AtPyq’ E U(T). 

An argument analogous to that in Case 2, with A,n-kb, replaced by A,, 
shows that A,, and A,, belong to M(T). Lemma 7 then implies that 
sl(p. q) c M(T). Without any loss of generality assume ap is an eigenvalue 
of B. Then, E, is two dimensional. Since End(E,, E4) c sZ(p, q), we get that 
End(E,, E4) c M(T), or that sl(q, q), the Lie algebra generated by 
End(E,, E,), is contained in M(T). Assume that A,, < 0. Either p < n - k 
or q > 1. When p < n - k, then A(,+,,, > Apq. Hence, by our assumption 
dim E,, , = 2. This means that fAti+ ,,q and that *A,(,+,, belong to M(T) 
(by Step 1 of Theorem 2). If XE sf(q, q), then [A,p+ ,jqr X] = A(,+l,$E 
LW). Hence Sk, q)At,+,,, c M(T). It is an easy computation to show 
that there exists an element XE sf(q, q) such that Y@+,,, of Y =XAtP+,,9 is 
not exceptional. (Definition of exceptional precedes Lemma 5.) An argument 
identical to that of Step 2 in Theorem 2 shows that sl( p + 1. q) c M(T), and 
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hence by the same argument, we show that s&i, j) c C?(T) for all 
(i, j) E Z,_, such that Idi, > Id,,). In particular, sl(1, n - 1) c M(T). 

Thus, our induction hypothesis is true for the pair (n - k, I). Assume now 
that it holds true for all pairs (i,j) E Z,,, such that ldijl > A,, for some 

‘pq < ‘,n-k,l. We want to prove that it holds true for A,, ; i.e., we want to 
show that sl(p, q) c LS(T). Again we need to examine separate cases 
according to whether up and uq are eigenvalues of B or not. 

Case 1. aP and u, are eigenvalues of B. Assume that p < n - k. 
Otherwise, q < 1 and the subsequent argument is symmetrical. A,,, ,lq > A,,, 
and hence by our hypothesis, sl(p + 1, q) c LS(f). If czP+, is an eigenvalue 
of Bl then A,,,+,, +01 At,+,,, # 0 (condition (Al)). Hence, an argument 
analogous to that of Theorem 1 shows that sl( p, q) c LS(T). If up+, is not 
an eigenvalue of B, then dim E,, , =2. IfgESL(p+ l,q), let X=g-‘Ag. 
X E LS(T), and after a simple computation we get that X,,4 = A,, 0 gpg 0 
A p~P+l~~g~p+l~q and thatXqp=g,‘Og~l,+I)~A,p+I)p. 

By condition (A3), A,(,+ ,) # 0, and Acp+ ,)p # 0. It is an easy verification 
that there exists g E SL( p + 1, q) such that X,, 0 X,, < 0. For such X, let 
A’p.q’ =X - Oldij, >,‘, , (Xii + X,,)). Since *(X, t Xii) E sl(i, j) c M(T) for 
all (i, j) such that / d,$> 1 APO\, A (p*q’ E LS(f). An argument identical to that 
of Theorem 1 shows that sl(p, q) c LS(T). 

Case 2. Either aP or uq (but not both) is an eigenvalue of B. In such a 
case let, A(p.q’ = A - (@,,,, ,,+ (Aij 0 Aji)). By taking the limits 
lim,--, edwL’me -81’mA(P,q)#Om and llm,,, e-~p&n e-nprn A(PA” @L’m where 

2nm 
L' - m= 

BP 

if dim E,= 2 

2nm =- 
8, 

if dim E, = 2, 

we show that A,, and A, belong to LS(T). Hence, Lemma 7 shows that 
sl( PI 9) = LW). 

Case 3. Neither (xp nor a, is an eigenvalue of B. Let 

A’P.9’ = A - ( O (A,@ A,,)). 
lAoI >lAwI 

Arguments similar to those of Theorem 2 show that *A,,, and &A,, belong 
LS(T). It is an easy computation to verify that there exist elements g and h 
in SL(p + 1, q) such that Ypq and Z,, corresponding to Y = g- ‘Apqg and 
Z = h-‘A,h are not exceptional. Lemma 6 then implies that 
sl( P, (I) = LW). 
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Hence, our induction hypothesis holds for (p, q), and it therefore holds 
true for all elements of Z,-,. 

Thus, the proof of this theorem is finished. 

COROLLARY 3. If A E End(V) satisf!es (Al) through (A4), and if B is a 
strongly regular element of End(V) such that its trace is not equal to zero, 
therz the right invariant polysystem (A, + uB,: u E R) associated to 
f = (A + uB: u E W) is transitire on GL+(V). 

COROLLARY 4. Let 13: GL + (V) x V+ V be gioen by 0(G, V) = G . L’. Zf 
P is the polysystem on V0 = V - (O), associated with r= {A t uB:u E p }, 
where A and B satisfy the conditions of Theorem 3. then ,S is transitice on 
V 0' 

The proofs of these corollaries are identical to those of Corollaries 1 and 
2, and will therefore be omitted. 
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