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Abstract

We classify all closed non-orientall#?-irreducible 3-manifolds having complexity up to 6 and
we describe some having complexity 7. We show in particular that there is no such manifold with
complexity less than 6, and that those having complexity 6 are precisely the 4 flat non-orientable ones.
The manifolds having complexity 7 we describe are Seifert manifolds oflifoe S1, manifolds of
type Sol, and manifolds with non-trivial JSJ decomposition.
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1. Introduction

In [7] Matveev defined for any compact 3-manifald a non-negative integern(M),
which he called thecomplexityof M. The complexity functionc has the following
remarkable properties: it is additive on connected sums, it does not increase when cutting
along incompressible surfaces, and it is finite-to-one on the most interesting sets of 3-
manifolds. Namely, among the compact 3-manifolds having complextyere is only a
finite number of closed?-irreducible ones, and a finite number of hyperbolic ones (with
cusps and/or with geodesic boundary). At present, hyperbolic manifolds with cusps are
classified in [1] forc < 7, and orientable hyperbolic manifolds with geodesic boundary are
classified in [3] forc < 4. In this paper we concentrate on the clo8drreducible case:
the complexity of such ai is then precisely the minimal number of tetrahedra needed to
triangulate it, except whesiM) = 0, i.e., whenM is §3, RP® or L3 1.
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Table 1
The six Seifert geometries
| Xorb -0 Xorb: 0 Xorb <0

e=0| $2xR E3 H2 xR
e#0 53 Nil SL,R

Table 2
The number of?2-irreducible manifolds of given complexity (up to 9) and geometry

o 1 2 3 4 5 6 7 8 9

lens 3 2 3 6 10 20 36 72 136 272
other elliptic 1 1 4 11 25 45 78 142
flat 6

Nil 7 10 14 15
SLy 39 162 514
Sol 5 9 23
H2 x §1 2
hyperbolic 4
non-trivial JSJ 4 35 185
total orientable 3 2 4 7 14 31 74 175 4361155
flat non-orientable 4

H2 x S1 non-orientable >0 ?

Sol non-orientable >0 ?
non-trivial JSJ non-or >0 ?

Known results on closed manifoldsWe recall that there are 8 important 3-dimensional
geometries, six of them concerning Seifert manifolds. The geometry of a Seifert manifold
is determined by two invariants of any of its fibrations, namely the Euler character?tic
of the base orbifold and the Euler numleasf the fibration, according to Table 1. The two
non-Seifert geometries are the hyperbolic and the Sol ones.

Using computers, closearientableirreducible 3-manifolds having complexity up to
6 [7] and then up to 9 [5] have been classified. The complete list is available from [10],
and we summarize it in the first half of Table 2. In particular, the orientable manifolds with
¢ < 5 are Seifert withy°™ > 0, and those witlr < 6 are Seifert withy°™® > 0, including
all 6 flat ones. Seifert manifolds with°™® < 0 or Sol geometry appear with= 7, and the
first hyperbolic ones have= 9 (this was first proved in [8]). Manifolds with non-trivial
JSJ decomposition appear with= 7: each such manifold with < 9 actually decomposes
into Seifert pieces. We show in Section 2 that the first manifold whose JSJ decomposition
is non-trivial and contains a hyperbolic piece laas 11, and we explain why we think it
should have: = 11.

Remark 1.1. The number of manifolds having complexity 9 is 1155. The wrong number
1156 found in [5] was the result of a list containing the same graph manifold twice.
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Main statement. We prove in this paper that non-orientat#é-irreducible manifolds
follow the same scheme. Taking into account that a non-orientable Seifert manifold has
Euler number zero [9], we mean the following.

Theorem 1.2. There are no non-orientablé?-irreducible manifolds with: < 5 and the
only ones withc = 6 are the 4 flat ones. Moreover, there are some manifolds of type
H? x S1, of typeSol, and with non-trivialdSJdecomposition witle = 7.

These results are summarized in the second half of Table 2. We emphasize that the
proof of Theorem 1.2 is theoretical (i.e., it makes no use of any computer result). We
end this section by defining Matveev's complexity and by describing the main line of the
proof. Some techniques taken from [5] will be briefly summarized in Section 2, and these
techniques will be used in Section 3 to conclude the proof. The proofs of some technical
lemmas are postponed to Section 4.

Definition of complexity. A compact 2-dimensional polyhedrdhis said to besimpleif
the link of every point inP is contained in the 1-skeletoki of the tetrahedron. A point,
a compact graph, a compact surface are thus simple. Three important possible kinds of
neighborhoods of points are shown in Fig. 1. A point having the whol& @fs a link is
called avertex and its regular neighborhood is shown in Fig. 1(3). Thelsg®) of the
vertices ofP consists of isolated points, so it is finite. Points, graphs and surfaces of course
do not contain vertices. A compact polyhedm®iC M is aspineof the closed manifolds
if M\ P is an open ball. Theomplexityc(M) of a closed 3-manifold/ is then defined as
the minimal number of vertices of a simple spineléf

Now a point is a spine af3, the projective plan&P? is a spine ofRP? and the “triple
hat"—a triangle with all edges identified in the same direction—is a simple spihg of
Since these spines do not contain vertices, we h@yé) = c(RP3) = ¢(Lz1) =0.1In
general, to calculate the complexity of a manifold we must look fomisimal spines,
i.e., the simple spines with the lowest number of vertices. It turns out [7,6] thaisfP2-
irreducible and distinct frons3, RIP3, L3 1 then it has a minimal spine which ssandard
A polyhedron is standard when every point has a neighborhood of one of the types (1)—
(3) shown in Fig. 1, and the sets of such points induce a cellularizatia®. athat is,
definingS(P) as the set of points of type (2) or (3), the componentB §fS(P) should be
open discs—théaces—and the components ¢f(P) \ V (P) should be open segments—
the edges A standard spine is dual to a 1-vertex triangulationMf and this partially
explains whyc(M) equals the minimal number of tetrahedra in a triangulation wies
P2-irreducible and distinct frons3, RP3, L3 ;.

;O

( €)

Fig. 1. Neighborhoods of points in a standard polyhedron.
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A naive idea to prove Theorem 1.2Let M be a non-orientabl@2-irreducible closed
manifold M with ¢ = ¢(M) < 6. ThusM has a minimal standard spirfe with at most
6 vertices. Consider the orientable double-cavleof M: the spiner lifts to a standard
polyhedronP c M with 2¢ vertices, andV \ P consists of two balls. If we prove that
there is a face irP separating the two balls and incident to at leadtstinct vertices, we
are done: by removing such a face we get a simple spirfé ufith at mostc vertices, so
c(M) < (M) < 6. Thereforel is Seifert withx°™ > 0, which implies thatV/ is Seifert
with x°™® > 0, hence flat (since = 0 andM is P2-irreducible). The proof of Theorem 1.2
would be completed by constructing some spines with 7 vertices of manifolds of type
H? x $1, of type Sol, and with non-trivial JSJ decomposition, which is not a hard task.

In order to find such a face, we first note that the faces separating the balls form an
orientable surface with genys 1, contained inP, so there are many of them. ¢f< 4,
such a face is easily found.df> 4, an Euler characteristic argument shows that the average
number of vertices met by a face ihis a number between 5 and 6, so it seems reasonable
that such a face exists. The technique just described could maybe lead to a classification
of all non-orientable manifolds with < 6, but is certainly useless for higher complexities.
We therefore use a different approach.

Sketch of the rigorous proof.A closed non-orientable 3-manifold has a non-trivial first
Stiefel-Whitney classv; € HX(M:; Z>). A surfaceX ¢ M which is Poincaré dual ta;
is usually called &Stiefel-Whitney surfaci]. It has odd intersection with a loop if
and only if y is orientation-reversing. It follows thai \ X' is connected and orientable,
i.e.,, M = N UTR(XY) is obtained by gluing a regular neighborho®dX) of X to an
orientable connected compa¥talong their boundaries.

We can now list the main steps of the proof. IMtbe a non-orientablB?-irreducible
closed 3-manifoldvf with ¢(M) < 6.

(1) We prove that, without loss of generality, C M can be assumed to lie in a minimal
skeletonP of M so thatR(X) N P (whenceR (X)) has some definite shape;

(2) using the shape oR(X) N P we prove thatV, with a suitable extra structure (a
marking ond N) has a very low (suitably defined) complexity;

(3) manifolds with marked boundary of low complexity are classified in [5], so we list the
possible shapes fay;

(4) we examine by hand hoR(X') andN can be glued alongR(X) = d N, proving that
precisely the four flat non-orientable manifolds can arise;

(5) we exhibit some spines of manifolds of tyfié x S, of type Sol, and with non-trivial
JSJ decomposition with 7 vertices.

Our results orR (X)) N P are stated in the rest of this section and proved in Section 4.
The theory of complexity for manifolds with marked boundary is reviewed in Section 2,
and is used in Section 3 to prove théthas low complexity, and hence a definite shape.
The possible gluings a¥ andR(X') are then analysed at the end of Section 3, to conclude
the proof.

First part of the proof. Let us start with a general result on Stiefel-Whitney surfaces.
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Proposition 1.3. Let X ¢ M be a Stiefel-Whitney surface of a closed non-orientable
The surfaces and9R(X) are orientable. IfM is P2-irreducible then

e N =CI(M\ R(X)) is P?-irreducible
e no component oF or 9R(X) is a sphere
e ifacomponent o’ or 9R(X) is a torus then it is incompressible.

Proof. We first prove tha®” is orientable. SupposecC X is an orientation-reversing loop
(in X). If y is orientation-preserving iM it can be perturbed to a loop intersectiagin
one point, and if it is orientation-reversingM it can be isotoped away fro: both cases
being in contrast to the definition &f. Obviously,0R (X)) is orientable becausk is.

Suppose now is P?-irreducible. SinceN is connected, each component Bbf is
non-separating, thus it cannot be a sphere or a compressible torus. So no component of
dR(X) is a sphere. Suppose a componend®f(X) is a compressible torus. Then the
corresponding component &(X) is the non-orientable interval bundfex I over the
torus. It follows quite easily tha¥ is a Dehn filling onT X I, hences? X $* or P? x 1,
a contradiction.

Let S C N be a sphere. Thefi bounds inM a ball, which cannot contain components
of X because they are non-separating. Hence the ball is contaidédaind the orientable
N is P?-irreducible. O

Let P be a standard spine of a non-orientalble The embedding® ¢ M induces an
isomorphismH>(P; Zp) = Ho(M; Z3). Using cellular homology, a representative for a
cycle in Ho(P; Zp) is a subpolyhedron consisting of some faces, an even number of them
incident to each edge df. Such a subpolyhedron is a surface near the edges it contains,
and it is also a surface near the vertices (in fact, the link of a vertex does not contain two
disjoint circles). Thus every homology class is represented by a (unique) surf&cénn
particular there is a unique Stiefel-Whitney surfacénside P.

Let us now suppos#/ is P2-irreducible withc(M) < 6, andP is a minimal standard
spine ofM. The Stiefel-Whitney surfacE C P is not necessarily connected but, sirte
has at most 6 vertices, it contains a few components of low genus. Namely, we have the
following result which will be proved in Section 4.

Lemma 1.4. Let M beP2-irreducible withe(M) < 6 and P be a minimal standard spine
of M. The Stiefel-Whitney surfacE C P contains at mosR connected components.
MoreoverM has a minimal standard spin@hich we denote again bg) with a Stiefel—

Whitney surfacgwhich we denote again hy) having Euler characteristic equal to zero.

So X consists of one or two tori. We fix a sufficiently small regular neighborhood
R(X) of X in M, such that the intersection &(X) and P is a regular neighborhood
Rp(X) of ¥ in P. Using the fact thatP has 6 vertices at most, we will prove in
Section 4 the following results. Recall that there are two interval bundles on the torus
up to homeomorphism, namelyx I andT X I.
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Lemma 1.5. Let M beP2-irreducible withc(M) < 6 and P be a minimal standard spine
of M. If ¥ c P consists of two toriR(X) consists of two copies @f x I and each of the
components oR p (X)) is as shown in Fig2.

Lemma 1.6. Let M beP2-irreducible withe(M) < 6 and P be a minimal standard spine
of M. If ¥ c PisonetorusandR(X) =T x I, thenRp(X) is one of the two polyhedra
shown in Fig.3.

Lemma 1.7. Let M beP2-irreducible withc(M) < 6 and P be a minimal standard spine
of M. If ¥ C P is one torus andR(X) = T X I, then M has a minimal standard spine
(which we denote again bg) with a Stiefel-Whitney surfacE such thatR(X) =T X I
andRp(X) is as shown in Fig2.

We now know thaR p (X) has 3 possible shapes. In order to complete our classification,
we need to know the possible shapes of the resPpihamely the polyhedro =
Cl(P\Rp(X)). Moreover, we know that the two polyhedra are glued along a very special
graph contained iIA7R(X): it consists of either one or tw@-graphs. Here, 4-graph is a
trivalent graphv contained in a torug such thafr" \ 6 is an open disc. Decompositions of

Fig. 2. The regular neighborhood (i) of a componentg of X, such thatR(Zg) = T X I (similar arrows must
be identified).

Fig. 3. Two possibilities for the regular neighborhood fipof X, if X consists of one torus aml(X) =T x I
(similar arrows must be identified).
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minimal spines (and manifolds) alodggraphs (and tori) have been studied in [5,6]. The
basic result is a decomposition theorem8rirreducible manifolds. Since we will use it

on N, which is orientable, we describe in Section 2 the orientable version of the theory.
(We only note here that non-orientable manifolds could be cut along Klein bottles also,
and the graph »—<) should be taken into account in this case.) We will then conclude the
proof of Theorem 1.2 in Section 3.

2. Manifoldswith marked boundary

6-graphs in the torus. A 6-graphin the torusT is a trivalent grapt® C T such that

T \ 6 is an open disc. The embedding ®fin T is unique up to homeomorphism of

T, but not up to isotopy. There is a nice description, taken from [2], oféaljraphs

(up to isotopy) which we now describe. After fixing a ba&isb) for H1(T; Z), every

slopeon T (i.e., isotopy class of simple closed essential curves) is determined by its

unsigned homology clas&(pa + ¢b), thus by the numbep/q € Q U {oco}. Consider

Q U {00} sitting insideR U {oco}, the boundary of the upper half-plane ©f with its

standard hyperbolic metric. For each pajy, r/s of slopes having algebraic intersection

+1 (i.e., such thaps — gr = 1) draw a geodesic connectipgqg andr/s. The resultis a

tesselation of the half-plane into ideal triangles, shown in Fig. 4 (left) (in the disc model).
Itis easily seen that@-graph is determined by the three slopes it contains, and that such

slopes have pairwise intersection 1. Thug;eurve corresponds to a triangle of the ideal

tesselation, i.e., to a vertex of the dual trivalent tree. Moreovergtgoaphs are connected

by a segment in this tree when they share two slopes, i.e., when we can pass from one

6-graph to the other via #ip, shown in Fig. 4 (right).

Manifolds with marked boundary.Let M be a connected compact 3-manifold with
(possibly empty) boundary consisting of tori. By associating to each torus component of

172

Fig. 4. A tesselation of the Poincaré disc into ideal triangles (left) and a flip (right).
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dM a 6-graph, we get ananifold with marked boundanAs we have seen, the same
manifold can be marked in infinitely many distinct ways.

Now we describe two fundamental operations on the set of manifolds with marked
boundary. The first one is binary: i#/ and M’ are two such objects, take two tori
T COM,T' C dM’ marked withe c T,6’ c T’ and a homeomorphism: T —> T’
such thaty (9) = 6’. By gluing M andM’ alongy we get a new 3-manifold with marked
boundary. We call this operation @assemblingNote that, although there are infinitely
many non-isotopic maps between two tori, only finitely many of them send one marking to
the other, so there is a finite number of non-equivalent assemblingsasfd M’.

We describe the second operation. Métbe a manifold with marked boundary, and
T, T’ be two distinct boundary components of it, marked witlt 7 and®’ c T'. Let
v :T —> T’ be a homeomorphism such thatf) equals eithe¢’ or ad-graph obtained
from 0’ via a flip. The manifold obtained identifyin§f and T’ via v is a new manifold
with marked boundary. (There is a technical reason for not asking onlytt=0’,
which will be clear later.) We call this operatiorsalf-assemblingAgain, there is only a
finite number of non-equivalent self-assemblings.

Spines and skeleta.The notion of spine extends to the class of manifolds with marked
boundary. A sub-polyhedro® of a 3-manifold with marked boundary/ is called a
skeletonof M if M\ (P UadM) is an open ball and® N dM is a graph contained in
the marking ofo M. We have not used the word “spine” because maglis not a spine

of M in the usual sense wheéxM # ()—i.e., M does not retract ont®. On the other side
note that, ifM is closed, a skeleton @ is just a spine of\/. Recall that a polyhedron is
simplewhen the link of every point is contained in the 1-skeleton of a tetrahekirdhis
easy to prove that each 3-manifold with marked boundary has a simple skeleton.

Complexity. The complexityof a 3-manifold with marked boundary/ is of course
defined as the minimal number of vertices of a simple skeletoM oft depends on the
topology of M and on the marking. In particular, if = 9M is one torus then every
(isotopy class of ap-graph onT gives a distinct complexity fons. Three properties
extend from the closed case to the case with marked boundary: complexity is still additive
under connected sums, it is finite-to-one on orientable irreducible manifolds with marked
boundary, and iM is orientable irreducible wita(M) > 0, then it has a minimal standard
skeleton [5]. A skeletor? C M is called standard wheR U 9 M is.

Examples. Let T be the torus. Conside = T x I, the boundary being marked with a
6o C T x0andad1 C T x 1. If 6g andb; are isotopic, the resulting manifold with marked
boundary is calledy. If 6p andd; are related by a flip, we call the resulting manifold with
marked boundarys. A skeleton forBg is 6 x [0, 1], while a skeleton foB3 is shown in
Fig. 5. The skeleton oBg has no vertices, sa(Bg) = 0. The skeleton oB3 has 1 vertex,
and it can be shown [5] that there is no skeletonBgmwithout vertices, s@(B3) = 1.

Two distinct marked solid tori are shown in Fig. 6 (left and centre) and denoted by
B1 and B». A skeleton forB; is a meridinal disc with boundary contained in the
graph. A skeleton foB; is shown in Fig. 6 (right). Since they have no vertices, we have
c(B1) =c(B2) =0.
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Fig. 5. A skeleton forB3.

Fig. 6. The manifolds with marked boundaBy (left) and B, (centre), and a skeleton f@> (right).

e =Y

Fig. 7. The manifold with marked boundaBy (left) and a skeleton for it (right).

The first irreducible orientable manifold with more than two marked boundary
components has = 3. Let D, be a disc with two holes. Se = D, x S1. For each
torusT in M, a basis(a, b) for H1(T'; Z) is given by takingz to bed D, x {pt} (with
orientation induced from that db,) andb to be{pt} x S, oriented ass™. With respect to
this basis, on each boundary component a triple of sl¢pes, i + 1} defines &-graph
0; for any integer (note that?_1 andfg are thed-graphs containing 0 ansb). Now let
B4 be M with markingsto, 6p and6_1, see Fig. 7 (left). It has a skeleton with 3 vertices,
shown in Fig. 7 (right). It can be proved [5] th8% has no skeleton with less vertices, so
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c¢(B4) = 3, and that a distinct choice for the markings—for instance, the ggnoa all
boundary components—would give- 3.

Assemblings and skeletalet M, M’ be two manifolds with marked boundary, aRd P’
be two corresponding standard skeleta. An assemblirdg ahd M’ is given by a map)
that matches the-graphs, s&® Uy, P’ is a simple polyhedron inside Uy, M'. Moreover, it
is not difficult to see thaP Uy, P’ is a skeleton of the new manifold with marked boundary
M Uy M'. (This is true because the complement of-graph is a single disc, so the
complement ofP Uy, P’ consists of two balls glued together along a single disc, hence
another ball.)
If P, P’ haven,n’ vertices, thenP Uy, P’ hasn + n’ vertices. Suppos® and P’ are
minimal skeleta of\f andM’, i.e.,n andn’ are the complexities a¥f andM’. Itis not true
in general thatP Uy, P’ is minimal. SinceM Uy, M’ has a skeleton with + n’ vertices,
its complexity is at most + »’, and it equals: + »n’ precisely whenP Uy, P’ is minimal.
We will be interested in the case wheéruy, P’ is minimal: in other words, complexity is
sub-additive under assemblings, and we will be interested in the case when it is additive.
An analogous construction works for self-assemblings. Mt be obtained self-

assembling, alongamap: T 5 T’ such thaty (9) either equal®’ or is obtained from

0’ via a flip. In any case, it is possible to isotogeto ¥’ so thaty’(9) andé’ intersect
each other transversely in 2 points, and to use the #fafp constructM’. Let P be a
standard skeleton favf. Take P’ = P U T inside M’: again,P’ is a skeleton foiM’. The
polyhedronP’ is the result of adding one of the two polyhedra shown in Fig. B t{Note
that a construction analogous to the one made for assemblings does not wdk: # 6’,
then P alone insideM’ is not a skeleton oM’, because its complement is a solid torus:
this is why it is necessary to add MoreoverP U T is a skeleton but is not standard, so we
need to isotope@ to recover standardness.) This operation creates 6 new verticehzai$

n vertices, thenP’ hasn + 6 vertices. So the complexity @f’ is at most the complexity
of M plus 6.

Bricks. The theory ends with a decomposition theorem. An assemblisbaspif the
complexity is additive and both manifolds with marked boundary are irreducible and
distinct from Bg, and a self-assembling gharpif the complexity of the new manifold

is the complexity of the old one plus 6. An irreducible orientable manifold with marked
boundary is drick if it is not the result of a sharp assembling or self-assembling of other
irreducible manifolds with marked boundary. The proof of the following result is clear: if
an irreducible manifold with marked boundary is not a brick, then it can be de-assembled.
Then we repeat the analysis on each new piece. Since the sum of the complexities of all
pieces does not increase (and since the only possible pieces with complexity O are known
to be B1 and By), this iteration must stop after finite time.

Proposition 2.1. Every irreducible orientable manifold with marked boundary can be
obtained from some bricks via a combination of sharp assemblings and sharp self-
assemblings.
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This result can be restated at the level of skeleta: every orientable manifold with marked
boundary has a minimal skeleton which splits alghgraphs into minimal skeleta of
bricks. Here, bricks are defined to be orientable. (Non-orientable bricks are analogously
defined in [6], but we do not need them here.)

Itis proved in [5] that the only bricks with boundary having complexity at most 3 are the
Bo, ..., B4 introduced above. Using a computer, all bridks . . ., B1g having complexity
up to 9 and with non-empty boundary have been classifiedPLbt a minimal skeleton
of B;: Proposition 2.1 implies that every orientable manifold having complexity at most 9
is either a closed brick or has a minimal spine which splits aldmggaphs into copies of
P1, ..., P1o. Bricks Bs, ..., B1g have complexity 8 or 9, moreover they are all hyperbolic
exceptBs.

Assembling small bricks.Let M be a manifold with marked boundary. Let us examine the
effect of assembling/ with someB; along a torug” ¢ dM, marked with & c 7. Choose

a basis forH1(T'; Z) so thatd corresponds to the tripl®, 1, oo}, see Fig. 4 (left). If =0,

the assembling leavag unaffected. I = 1, a Dehnfilling is performed oM, killing one

of the three slopes,@, co. If i =2, a Dehn filling is performed oM, killing one of the
slopes 21/2, —1. If i = 3, the graph¥ is changed by a flip. It follows that by assembling
M with some copies oB1, B2, and Bz we can arbitrarily change some markings or do
arbitrary Dehn fillings onv.

We can use Proposition 2.1 and the known list of bricks to classify manifolds with non-
empty marked boundary of low complexity. Every such manifold is obtainedlivéap
assemblings and self-assemblings from the known bricks. For instance, if a mérkad
complexity at most 2, no self-assembling is involved since it adds 6 to the complexity, and
only assemblings oBg, B1, B2, and B3 are involved. Thereford/ is a (marked) solid
torus, or a (marked) produ@t x I. We are here interested in the first case whgrdas
one boundary component and is not a (marked) solid torus(Rgtx S1)22¢ , be the
Seifert manifold with base space a disc and two fibers of t@p&), marked withd_1 in
the boundary. (Recall that 1 is thed-graph containing the slopes, —1, and 0, where
coordinates are taken with respect to the obvious basit 6P, x S1; 7).)

Proposition 2.2. Every irreducible manifold with a single marked boundary component
havingc < 2 is a marked solid torus. Every such manifold having 3 is a marked solid
torus or (D2 x $H224_,.

Proof. SupposeM is not a marked solid torus, witth< 3. It decomposes into copies of

B1, B2, B3, and B4, and at least on®4 must be present. Moreover, sinceBs) = 3, the

other bricks in the assembling have complexity 0, so they mu#tseand B,'s. Despite

the apparent lack of symmetry of the markings, for each pair of boundary components
there is an automorphism d#, interchanging them (and their markings), so it is not
important to which boundary components tBgs and Bo’s are assembled. Suppose then
the assemblings are performed on the first two components. It follows from the discussion
above that we can realize Dehn fillings on slopes0, 1 with B; and on slopes-1,1/2, 2

with Bz. The only such filling that creates a singular fiber is 2, whence the result.
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A manifold with non-trivial JSJ decomposition containing hyperbolic piecéisis now
easy to use the known bricks to build manifolds. UsiBg B2, B3, and B4 any graph
manifold can be built. The briclBg is the first hyperbolic brick, having = 8 (whereas
B7, ..., B1gp havec = 9, see [9]). It is the figure-eight knot sister, denotedMiQ% in [1],
marked with the most natur@lgraph: it is thed-graph containing the 3 shortest slopes
in the cusp, or equivalently the unigéegraph fixed by any isometry df/IZ%. Note that
any other marked hyperbolic manifold has- 8: the manifoIdMZ% is then in some sense
‘smaller’ (or ‘simpler’) than the figure-8 knot complememtt2}, although they have the
same volume—note that the smallest known closed hyperbolic manifold is obtained via
Dehn filling from M 2% but not from 21

If we assembleBs with By or By, we always get a non-hyperbolic manifold: in order
to get a hyperbolic one, we must us&8gand aB,, which is coherent with the fact that
the first closed hyperbolic manifolds have= 9 =8 + 1 = ¢(Bs) + ¢(B3). It is easier
to construct a closed manifold whose JSJ decomposition is non-trivial and contains a
hyperbolic piece: simply take any assemblingggfand(D2 x 51)2,2,9_1. The complexities
of the pieces are 8 and 3, so we get a manifold witd 11, but we cannot be sure that
equality holds—in other words, by gluing minimal spines & and (D2 x $Y)224_,
we get a spine of the closed manifold, which is possibly not minimal. Nevertheless, we
know from [5] that every brick withc < 9 is atoroidal. If this were true for any, every
sharp decomposition of a closed irreducible manifold into bricks would be a refinement
of its JSJ decomposition. In other words, there would be a minimal spine of the closed
manifold which decomposes into minimal skeleta of the pieces of the JSJ decomposition
(which might further decompose), with appropriate markings. Therefore, the complexity
of a closed manifold would be the sum of the complexities of the (appropriately marked)
pieces of its JSJ decomposition: in particular, a hyperbolic piece would give a contribution
> 8, and a Seifert one a contributign3, giving 84+ 3= 11 at least.

3. End of the proof

At the end of Section 1, we have listed the possible shapes for the regular neighborhood
Rp(X) of the Stiefel-Whitney surfacZ in P. In all cases, the polyhedra can be cut
into a (possibly disconnecte® p(X) and a connected = CI(P \ Rp(X)). The two
subpolyhedra are glued alomiggraphs. At the level of manifold$y p (X) is contained
in R(X) and Q is contained inN, which is orientable and irreducible. The origir-
irreducible M is decomposed along one or two tori ik X) and N. Both R(X) and
N are equipped with a marking on each boundary component, given bg-tliaphs
separating the polyhedra. It is easy to check that (0 N U Q) is an open ball in any
case, sq is a skeleton ofV. Concerning the 3 possible shapes®¥(X), two of them
are skeleta of the correspondifit '), and the other one is not. We now study this in
detail.

If X consists of two tori. Each component oRp(X) is a skeleton (with 3 vertices)
of the corresponding marketl X 1. ThereforeM is obtained assembling a copy of the
markedT X I on each boundary component®f SinceR p(X) has 6 vertices an# has
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6 vertices at most, there is no vertexd) soN has complexity zero (and it is orientable),
henceN = By is the trivial brick. ThusV is obtained assembling two copies of the marked
Tx1I.

We now prove that the result of this assembling must be a flat manifold. Not& that
has two distinct fibrations: the first one is the prodsck S, where S is the Mdbius
strip. The second one is a Seifert fibration over the orbifold whose underlying topological
space is an annulus, with one mirror circle (so the orbifold has only one true boundary
component, see [9]). A basis, b) for H1(3(S x S1); Z) is given by taking: = 85 x {pt}
andb = {pt} x ST, with some orientations. With respect to this basis, slopes are numbers
in QU {oo}, and 0 is a fiber of the first fibration, white is a fiber of the second fibration.
The6-graph in the boundary is the one containing the slage$, 1. An assembling of
two copies ofS x St is given by a maps which matches the markings, i.e., sends the set
of slopes{oo, 0, 1} of the first one to the sdtx, 0, 1} of the other one.

If ¥(0) =0, we get a fibration over the Klein bottle. #(0) = co or ¥/ (c0) = 0, we
get a fibration over a Mdbius strip with one mirror circleyifoo) = oo, we get a fibration
over an annulus with two mirror circles. In all cases the base orbifolgyR%s= 0, so the
manifold is flat.

If ¥ isonetorusan®(X) =7 X I. The polyhedromRp(X) is a skeleton of the marked
T X I. ThereforeM is obtained by assembling with 7 X 1. SinceR p (X) has 3 vertices,
there are three vertices at most@n Proposition 1.3 implies tha¥ is not a (marked) solid
torus, henceV = (D7 x Sl)z,g,g_l by Proposition 2.2.

As above, we prove that the result of this assembling must be a flat manifold. Note
first that (D2 x 51)2,2,971 fibers over a disc with two singular fibers of ty(a 1), or as
a twisted products X ST over the Mébius stripS. The #-curved_; contains the slopes
00, —1,0, and 0 is a fiber of the first fibration, whilel is a fiber of the second fibration.
Now, an assembling is given by a mgpthat sends the triple of slopéso, —1, 0} of N to
the triple of slopegoo, 0,1} of T X I. If ¥ (0) = 0, we get a fibration oveRP? with two
singular fibers of typ&2, 1). If 1(0) = 1 we get a fibration over a disc with two singular
fibers of type(2, 1) and a mirror circle. Ifyy(—1) = 0 we get a fibration over a Klein bottle,
and if v (—1) = 1 we get a fibration over a Mdbius strip with one mirror circle. In all cases
the base orbifold hag®® = 0, so the manifold is flat.

If X isonetorusandR(X) =T x I. The polyhedroriR p (%) is nota skeleton of the
markedT x I, since(T x I)\ (3(T x I) URp (X)) consists of two balls instead of one.
The polyhedroR p(X) is one involved in self-assemblings, so duris the result of a
self-assembling ofV, which has two boundary components and complexity O (because 6
vertices are iR p(X)). ThereforeM is a self-assembling oBy, i.e., it is the mapping
torus of a map) : T — T that sends &-graph6 C T to af-graphy (@) sharing at least
two slopes withd. Let a, b € H1(T; Z) represent these two slopes. With respect to the
basis(a, b), we havey (0), ¥ (o0) € {—1,0, 1, oo}, thereforey is read as a matrix with
trace between-2 and 2. Such a matrix is not hyperbolic, therefdfds flat.

Conclusion. We have proved that every non-orientable manifold witk{ 6 is flat.
Moreover, each of the 4 flat non-orientable manifolds fibers in a few distinct ways over
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1 or 2-dimensional orbifolds, and it follows from [9] that all 4 can be realized with some
of the fibrations described above.

Using T x I, B4, B, and two By’s, it is now easy to construct closed manifolds of
complexity 7. We have seen that a Dehn filling killing a slopgan, 0,1, —1,1/2, 2} on
the first component o B4 can be realized assemblir®y or B>. We can Kill the slope 3
as follows: we first assemblBs, so thatdg is replaced by (the 6-graph corresponding
to {1, 2, o0}), and then we assembig. Therefore the manifold with marked boundary
(D2 x 51)3,2,9_1, obtained fromBy by filling the first two boundary components along the
slopes 3 and 2, can be realized witBg a B3, and twoBa's, thus it has complexity at most
4. Now we can assemble it with the markgdk I considered above, along a mép The
manifold (D> x Sl)3’2,971 has one fibration only, with fiber 0, whereBis< I has two, with
fibers 0 ando. If ¥(0) = 0 we get a Seifert fibration ové? with singular fibers(2, 1)
and(3, 1), if ¥(0) =1 we get a fibration over the disc with one mirror circle and singular
fibers(2, 1), (3,1), if ¥(0) = co we get a manifold with non-trivial JSJ decomposition.
In the first two cases we get°™ < 0, hence a manifold of typE2 x S1. In all cases,
complexity is 4+ 3= 7 at most, hence itis 7.

A manifold of type Sol can be obtained similarly. Takex I, Bz, and(D2 x $1)2.24_,.
By assemblingl’ X I with Bz we change the&-graph of T X I from 6 to 61, which
contains the slopes, 2, and co. Then we assemble the new manifold with marked
boundaryT X I to (D7 x 51)2,2,971 via a mapy such thaty (oco) = co. The resulting
manifold is not Seifert, since it is not possible to choose fibrations of the two piece
matching on the central torus. It fibers over a one-dimensional orbifold, thus it is of type
Sol. Its complexity is 33+ 1=7.

4. Proofsof thelemmas

We conclude with the proofs of the four lemmas of Section 1. First, we state (and
prove) some easy properties of a minimal standard spine of a non-orientable manifold
with arbitrary number of vertices. Then, we prove the lemmas.

The following criteria for non-minimality are proved in [5,6]. L€tbe a standard spine
of a closedP?-irreducible manifold. Then:

(1) If aface ofP is embedded and incident to 3 or fewer verticRgs not minimal.
(2) If a loop, embedded i, intersects transversely the singularity ®fin 1 point and
bounds a disc in the complement®f then P is not minimal.

Throughout this section we suppogeto be a minimal standard spine of a non-
orientable manifoldV. In the first part of this section we do not ask th&d/) < 6, so
we allow P to have an arbitrary number of vertices. Later, when we will prove the four
lemmas, we will come back to the case whrhas at most 6 vertices. As above we call
X the Stiefel-Whitney surface @ff contained inP. We fix a small regular neighborhood
R(X) of X in M, such that the intersection &(X) and P is a regular neighborhood of
X in P.We denote by : 9R(X) — X the projection. TheiR(X)\ X)NP =G x [0, 1),
whereG = P N 9R(X) is a trivalent graph. The grapt(G) has vertices with valence 3
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Fig. 8. An example of map.

and 4, and it is the intersection &f and the singular se¥(P) of P. Themapp:G — X

is a transverse immersion, i.e., it is injective except in some pairs of poiuts thiat have
the same image, creating the 4-valent verticeg(@f). See an important example in Fig. 8
with ¥ atorus andk(X) = T X I. The graphss andp(G) fulfill some requirements, due
to the minimality ofP.

Lemma 4.1. No component of; is contained in a disc afR(X).

Proof. Suppose a compone@y is contained in a disc. If is injective onGg, thenp(Go)

is connected and contained in a discXf but X \ p(G) consists of discs (becaugeis
standard), a contradiction. }f is not injective onGg, thenp(G) intersects some edges of
p(G \ Gp). But we can shrink and isotog&p, and consequentlgo x [0, 1) and p(Go),
so thatp(Gop) does not intersect any edge ofG \ Go). The result is another spine of the
same manifold, but with fewer vertices: a contradictiom

SinceP is standardX \ p(G) consists of discs. Concernid@ (X'), we can only prove
thataR(X) \ G can be embedded in the 2-sphere and that it consists of discs inside the
torus components GfR(X).

Lemma4.2. The seBR(X) \ G can be embedded in ti&esphere.

Proof. The setdR(X) \ G can be seen as a subset of the regular neighborRg®J of
P in M which is a sphere (becausé\ P isaball). O

Lemma4.3. Let T be a torus component 8fR(X). ThenT \ G consists of discs.
Proof. Suppose a component of 7 \ G contains a loopx essential inC. Thena is
essential in the whole &fR (X)) by Lemma 4.1. The loop is unknotted in the bali/ \ P,

thus it bounds a disc. Therefofeis compressible iV, in contrast to Proposition 1.3.0

Since X \ p(G) consists of discs, connected componentp@f) correspond to con-
nected components & .

Lemma 4.4. Every connected component@fG) contains at least ong-valent vertex.

Proof. Let Xp be a connected component &f. The graphp(G) N Xy is a connected
component ofp(G) and Xo \ (p(G) N Xp) is made of discs. These two facts easily imply
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that if p(G) N X contains only 3-valent vertices théhlays on a well-defined side dfp,
so we can choose a transverse orientationgr Hence,0R(X) \ G contains a surface
homeomorphic tap, contradicting Lemma 4.2.0

Lemma 4.5. If X' is not connected, then every componenp@f) contains at least one
3-valent vertex.

Proof. Suppose a component p{G) contained in a componetly of X' contains only
4-valent vertices. Thep(G) N Xp is a connected component 8{P). Since S(P) is
connected, thep(G) N X = S(P). Obviously, each component af different from Xy
also contains some singular points$ifP). A contradiction. O

Lemma 4.6. If a connected component pfG) (corresponding to a connected component
o of ) contains a3-valent vertex, thertg \ p(G) is made of at least two discs.

Proof. We prove that the 3 germs of discs incident to a 3-valent varteannot belong

to the same disc. Suppose by contradiction that they do, andctiis disc. Then there
exist three simple loops contained in the closurd®adnd dual to the three edges incident
tov. Up to a little isotopy, these loops can be seen as loops(®p, v). Up to orientation,

each of them is the composition of the other two, so at least one of them is orientation
preserving inM. This loop is orientation-preserving iB and in M, and intersect§(P)

once: it easily follows that it bounds a disc in the b#ll\ P, which is absurd (sinc® is
minimal). O

Lemma 4.7. Each edge irp(G) has different endpoints.

Proof. Suppose that there exists an edgef p(G) which joins a vertex to itself. We
have two cases depending on whethes 3-valent or 4-valent. Suppose first thats 3-
valent. SinceX is orientable, the regular neighborhoBg: (e) of e in X' is an annulus.
Now there are two boundary componentsdé (e¢) in X; one of these two loops does not
intersectS(P), so it is contained in a face @f. Then there exists a face &fincident to
one vertex only: this contradicts the minimality Bf

We are left to deal with the case wharés 4-valent. We have two cases depending on
whether the two germs @&f nearv lay on opposite sides with respectdar not. If they
do, the edge is the boundary of a face (not containedl) incident to one vertex only:
this contradicts the minimality oP. In the second case, we cannot choose a transverse
orientation forR 5 (¢), becauseP nearv lays (locally) on both sides 6% 5 (¢). Now, since
X is orientable, the regular neighborhoRBg; (¢) of e in X is an annulus. Hence there are
two boundary components & 5 (¢) in X'; one of these two loops does not intersg&cp),
so it is contained in a face a?. This loop is orientation reversing and bounds a disc: a
contradiction. O

Lemma 4.8. If a connected component &\ X' is a disc(so it is a face ofP incident
to 4-valent vertices op(G) only), then it is incident to at leat vertices ofp(G) (with
multiplicity).



G. Amendola, B. Martelli / Topology and its Applications 133 (2003) 157-178 173

Proof. If the disc is incident to 3 vertices at most (with multiplicity), it is embedded by
Lemma 4.7, contradicting the minimality &f. O

Now we are able to prove the four lemmas of Section 1. From now on, we suppose that
P has at most 6 vertices.

4.1. Proof of Lemma 1.4

Recall that we want to prove that the Stiefel-Whitney surfateontains at most 2
connected components and thidthas a minimal standard spine with a Stiefel-Whitney
surface having Euler characteristic equal to zero. We will first suppose3thist not
connected, proving that there are at most 2 components, and then we will prove that, up to
changingP, the Euler characteristic of is zero.

So let us suppose that is not connected. Note that each componeni@) contains
an even number of 3-valent vertices. Hence, by Lemmas 4.4 and 4.5, each component of
p(G) contained in a componeiy of X' contains at least one 4-valent vertex and a pair of
3-valent vertices; sy contains at least 3 vertices &f. SinceP has 6 vertices at most,

X has two connected components, each containing exactly 3 verti¢es of

Now, let us consider the Euler characteristicof

If X has two components.Let us concentrate on a connected compongndf . The

Euler characteristig (X0) can be computed using the cellularization inducedirby P.

The number of vertices is 3; so, since there are one 4-valent and two 3-valent vertices, then
the number of edges &f( P) N Xg is equal to 5. Now, 3- 5= —2 and there is at least one

disc, sox (Xp) > —1. We have already noted that each componerX af different from

the sphere; so, sincEy is orientable, therky is a torus.

If X is connected. Let g be the genus of the connected surfatéNe have already noted
that X is different from the sphere. Let us suppose thas not atorus (i.eg > 2). We will

first prove thatg < 4, and then we will prove that the two remaining cases-(2, 3) are
forbidden. Letvz be the number of pairs of 3-valent vertices andhe number of 4-valent
vertices ofp(G). As above,x (X) can be computed using the cellularization induced on
X by P. The number of vertices isug + v4, thus we have

2v3 + v4 < 6, 1)
where equality holds when all vertices Bflie in X'. Since there are4 four-valentand 23
tri-valent vertices, the number of edges&ifP) N X' is equal '[03(2”37;“‘”4 = 3v3 + 2v4.

Thus we have (X) = (2uz+v4) — (Buz+2v4) + f = f — v3 — vg, Wheref is the number
of discsinX' \ S(P), so
v3tva=2g -1+ f. (2)

The number of vertices of is greater than or equal ta + v4, and if g > 4, then
v3+v4 = 6+ f > 6, a contradiction. So we are left to deal with a surfacef genus 2
or 3.
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If X has genus 3. If there is at least a 3-valent vertexg(> 0), thenf > 2 by Lemma 4.6,
SO w3 + v4 = 6 by (2). Hence 23 + v4 > v3 4 v4 > 6, contradicting (1). Therefore there
are only 4-valent vertices{ = 0), which implies that(P) = p(G) and P \ X' consists of
faces. Since (P) =1 andy (X)) = —4, there are 5 faces iR \ X. Each (4-valent) vertex
(of p(G)) is adjacent to exactly 2 germs of facesf, X'. By Lemma 4.8, there should
be at least 54 = 20 germs of such faces; but there are at most 6 verticeé@h, so there
are at most 12 germs of faces Bf\ X'. A contradiction.

If X has genus 2. By Lemma 4.4 we have, > 0, sovz may be equalto 0, 1, or 2 by (1).

Casevsz = 2. We havef > 2 by Lemma 4.6 ands = f by (2). Then (1) implies that
v4 = 2. ThusP has 244 = 6 vertices and 7 faces (singé P) = 1), two of them inX’ and
5in P\ X. These 5 faces aP \ X may be incident three times to each 3-valent vertex of
p(G) and twice to each 4-valent vertex pfG). Summing up, we obtain 16 vertices (with
multiplicity) to which the 5 faces are incident; so, among them, there exists a face incident
to at most 3 vertices. Such a face is embedded by Lemma 4.7, in contrast to the minimality
of P.

Casevz = 1. We havef > 2 by Lemma 4.6, s@3 + v4 > 4 by (2). Now there are two
cases, depending an.

If v4 =4, thenf =3 and all 6 vertices of belongs toX'. Sincey (P) =1, there are
7 faces inP, four of them inP \ X. These 4 faces are incident to 14 verticep0f)

(with multiplicity), so there exists a face incident to at most 3 (which is embedded by
Lemma 4.7), a contradiction.

If v4=3,thenf =2 andP has 5 or 6 vertices. If it has 5 vertices (all containedi)
it has 6 faces, 4 of them lying outside. These 4 faces are incidentto® + 3- 2v3 = 12
vertices (with multiplicity), thus there exists a face incident to at most 3 vertices, a
contradiction. IfP has 6 vertices (one of them outsidg, it has 7 faces, 5 of them lying
outsideX'. These 5 faces are incident to 24 + 3 - 2v3 + 6 = 18 vertices ofP (with
multiplicity, the vertex outsideZ' being counted 6 times), so there is a face incident to at
most 3, a contradiction.

Casevz = 0. We havef = vq — 2. There are only 4-valent vertices, th&(P) = p(G)
and P \ X consists of 3 disjoint discs (singg(P) =1 andx (X) = —2). By Lemma 4.8,
these discs are incident to at least43= 12 vertices (with multiplicity), saws = 6. Now,
let us consider the surfaddR (), which is a double covering af'. There are two cases
depending on whethéxR (X) is connected or not.

Suppose first thabR(X) is not connected, so it has two components which have
genus 2. Note now tha is the disjoint union of three circles. This fact contradicts
Lemma 4.2, because two surfaces of genus 2 minus three circles cannot be embedded
in a sphere.

Suppose now thadR(X) is connected, so it has genus 3. By Lemma 4.8, each face
which is not contained it must be incident to at least four vertices. Since each of the six
vertices is adjacent to two faces (possibly the same) not containEd inen each of the
three faces not contained i is incident to four vertices. Let us suppose first that there
exists a face not contained X which is embedded. In such a case, by applying the move
shown in Fig. 9, we obtain a spin& of M, with the same number of vertices Bf with
a new surfacex’ which is a torus, and we are done. So we are left to deal with the last
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Fig. 9. If a faceF not contained inZ is embedded, we can modify to a P’ with x (X/) = x(X) + 2.

LX) £ X0

Fig. 10. The two cases for the boundary of each face not containEd(ihe dots are vertices at).

£
=<

Fig. 11. The singular set @? if X contains only 4-valent vertices (left). Sinégis orientable, we can fix some
matchings along the edges (right).

case: namely, we suppose that all faces not containgtiane not embedded. Lemma 4.7
easily implies that, for the boundary of each face not containex,ime have one of the
two cases shown in Fig. 10. Sing€G) = S(P) is connected, the first case is not possible,
so we are left to deal with the second one ani@) = S(P) appears as in Fig. 11 (left) (we
have shown also the neighborhood of the verticeS)n

Since P is standard, then, to defin® uniquely, it is enough to say how the
neighborhoods of the vertices match to each other along the edges.JSisamientable,
we can suppose (up to symmetry) that, along the edges incident to the vertiex
matchings are those shown in Fig. 11 (right). Now, note that all four faces contained in



176 G. Amendola, B. Martelli / Topology and its Applications 133 (2003) 157-178

X are incident to 24 vertices (with multiplicity). For the two fadesandR», indicated in
Fig. 11 (right), we have two cases.

If Ry = R>. The faceR1 = R» is incident to at least 14 vertices, then the other 3 faces
contained inX’ are incident to at most 24 14 = 10 vertices: a contradiction.

If R1+# Ry. Each of the face®1 andR» are incident to at least 10 vertices, so the other 2
faces contained iX’ are incident to at most 24 20= 4 vertices: a contradiction.

4.2. Proof of Lemma 1.5

Recall that we want to prove that, ¥ consists of two tori,R(X) consists of two
copies of 7 X I and each of the components &fp () appears as shown in Fig. 2. It
has been shown at the beginning of the proof of Lemma 1.4 that each component of
X’ contains 3 vertices oP. As said above, there are two interval bundles on the torus
up to homeomorphism, namely the orientalflex 7 and the non-orientabl& X 7. If a
component¥y of X has an orientable neighborho@dz (Xg) consists of two tori, each
containing a component @ N dR(Xp) with at least two vertices by Lemma 4.3: thus
there are at least 4 vertices Ky, a contradiction. Therefore each componentohas a
non-orientable neighborhood.

Let Yo be a component of'. Since X contains 3 vertices, Lemma 4.3 implies that
G is a6-graph in the toru®R(Xp), and thatp maps thed-graph in X producing one
4-valent vertex. It is now easy to show tHat (Xo) appears as shown in Fig. 2, so we
leave it to the reader.

4.3. Proof of Lemma 1.6

Recall that we are analyzing the case wiiis one torus an@R (X)) is the orientable
T x I, and we want to prove th&® p(X') appears as in Fig 3. Lemma 4.4 implies that
G contains at most 6 1 vertices, hence it contains 0, 2 or 4 vertices (being 3-valent).
Now, sinceR(X) is orientableG has two components. It follows from Lemma 4.3 tigat
consists of twa@-graphs, each mapped injectively inté-araph inX. Two 9-graphsin a
torus intersect transversely in at least two points, and they intersect in exactly two only if
they share two slopes, i.e., if they are either isotopic or related by a flip. Thefeja(E)
is one of the polyhedra shown in Fig. 3.

4.4. Proof of Lemma 1.7

Recall that we are analyzing the case whenis one torus andk(X) is the non-
orientableT X I, and we want to prove thaZ has a minimal standard spine with a
Stiefel-Whitney surface such thatR(X) = T X I andRp(X) is as shown in Fig. 2.
As above, Lemma 4.4 implies thét contains at most 6 1 vertices, hence it contains
0, 2 or 4 vertices (being 3-valent). It follows from Lemma 4.3 tiéatontains 2 or 4
vertices. IfG contains 2 vertices, then it istagraph in the toru9R(X'). ThereforeM is
obtained assembling.(X) andN = M \ R(X'), each manifold having one torus boundary
component marked witky. Moreover,Rp(X) andQ = CI(P \ Rp (X)) are skeleta for
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R(X) and N. SinceN is not a solid torus, Proposition 2.2 shows thav) > 3, thus
Q contains at least 3 vertices, henEecontains at most 3 vertices. As in the proof of
Lemma 1.5, we deduce th&(X") appears as shown in Fig. 2.

If G contains 4 vertices. To conclude the proof, we show thatdf contains 4 vertices,
then we can modifyP to another spine®’ of M with the same number of vertices &%
with X’ c P’ being a torus again, such tHR{(X’) = T X I andG’ contains two vertices.
Then the conclusion follows from the discussion above.

By applying Lemma 4.3 we get thatR(X') \ G is made of two open discs (say
and D). Let us denote by, respectivel(D) ande(D’) the number of their edges (with
multiplicity). We havee(D) + e(D") = 12, and we suppos€ D) < e(D’), soe(D) < 6.
Consider the polyhedroR U D. ThenM \ (P U D) consists of two balls, one of them
lying insideR(X). For each edge of 9 D, definef; to be the face oP U D incident tos
and contained iR (X). If s has distinct endpointg, g1, then f; is incident to 4 distinct
verticesqo, g1, p(qo), p(gq1) of P U D. Now (P U D) \ f; is another spine oM with
4 — ¢(D) vertices less tha®, hencez(D) > 4 (using thatD is embedded ié(D) < 4). If
e(D) = 4, the sping P U D)\ f; is standard and minimal, and the né#has two vertices
only.

There is only one case wit( D) > 4, shown in Fig. 12 (left) (we hawg D) = e(D’) =
6). Setf1 = f,, f2 = fs,. Eachf; separates the two balls given By \ (P U D) and is
incident to at least two vertices & If each f; is incident only twice, themp(s1 U s2)
does not contain any 4-valent vertex. The laog dR(X) shown in Fig. 12 (centre) then
projects to a simple loop(«) in X'\ p(G) which bounds a disc in the balf \ P and meets
p(G) in one point, which is absurd (sindeis minimal). Therefore somg is incident to
at least 3 vertices 0p(G), fori = 1 or 2. The discD is not embedded, so we perturb it
into an embedded,.. We can do it so that 3 vertices 6D, are adjacent tqg; (with a
perturbation depending an see Fig. 12 (right)), thug; is incident to at least 6 distinct
vertices ofP U D,.

If f; is incident to more than 6 vertices, théA U D,) \ f; is a standard spine o/
with less vertices tha®. Thereforef; is incident to exactly 6 vertices an@® U D,.) \ f;

. - el
¢ ¢ ¢ ¢ A b =l
S2 S2 /l e d 7 b
' p i=2
///a f/ //fz \ D
1 % }

[
p P
p
\/
P
S ’
/

Fig. 12. The only possibility folG with e(D) > 4 (left), the loopa bounding a disc inM \ P (centre), and a
perturbation ofD into Dy so that 3 vertices af D, are adjacent tgfe; (right).
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is the required minimal standard spineMf(with the same number of vertices B, with
a newG’ having 2 vertices.
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