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1. INTRODUCTION 

This paper considers the problem of determining when the n equations 
fi(x, y) = 0, i = l,..., n, x E R”, y E Rm have a globally unique solution 
xi = h,(y) and hi is convex. Conditions of this nature have application in a 
number of areas, and in particular, in dynamic programming (see Section 3 
below). 

Gale and NikadB [6] have proved some global univalence theorems that can 
be applied to the problem. These theorems imply that the hi exist and are 
unique Cl functions. Under the assumption that the hi exist and are Cl, 
we present necessary and sufficient conditions on the fi for the convexity 
of the hi . Additionally, sufficient conditions on the fi are given that insure 
that the hi exist, are Cl, and are convex functions. 

The use of these results is illustrated via analyses of a reasonably general 
class of dynamic programming problems and a specialized Leontief produc- 
tion system. 

Let .Q be a convex subset of Rk. A function g : Q -+ R is convex on 52 if for 
all points x0, x1 E J2 and all X E [0, 11, 

g{hO + (1 - 4 x1) < MXO) + (1 - 4 g(x’). 

If g is differentiable on 9, an equivalent definition is that g is convex on B 
iffg(xl) - g(ti) > rg(x”)’ (x1 - x0) V x0, x1 E 9, where V denotes the gradient 
operator. The function g is said to be quasiconvex on Q if (x 1 g(x) < a} is a 
convex set for all LY E R, or equivalently if 

gjhxo + (1 - h) x1) < max{g(fl), g(x’)> VA E [O, 11, x0, X1 E 9. 

* This research was supported in part by the National Research Council under 
constract NRC-A7147. 
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If g is differentiable on Q, then g is quasiconvex on s2 iff 

g(x’) < g(x”) s Cg(x”)’ (xl - 9) < 0 vxo, xl E Q. 

The function g is said to be concave or quasiconcave if - g is convex or 
quasiconvex, respectively. These definitions are standard; for more detail see 
Mangasarian [8]. 

Letf = (fi ,..., f,,) : Sz -+ R". The vector valued function f is defined to be 
convex on Q iff each fi is convex on Q. Similarly, f is defined to be quasi- 
convex on Sz if eachfi is quasiconvex on Q. This definition of quasiconvexity 
implies that iff is quasiconvex, then the set {x / x E Q,j,(x) < ai , i = l,..., nj 
is convex for all (Y = (01~ ,..., a,) E Rn. The converse does not hold, however. 

Hence if f is differentiable it is convex iff fi(xl) - fi(xo) 3 Yf;(Y’)’ (x1 - x0), 
i = l,..., n and V/x0, x1 E 52 and it is quasiconvex iff 

fi(X’) < f&JJ) =a Yfi(XO)’ (xl - x0) < 0, i = l,..., II and VxO, x1 E Q. 

Let f : Rn x Rm --+ Rn : (x, y) -+ f (x, y) be a differentiable function. 
Denote by Jf (x0, y”) the Jacobian matrix 

Dx, fl(XO, yy,..., Dx, fi(XO, yO), 

i . 

QYlfi(xO, YOL ~Yrnfi(XO~ Y") 

Dx, fi(xO, y0) ,...) Dx, fi(xO, y”), : I Dyl f&? y”) . ...9 DY”l fvixO, yO) ’ 

where Dzifj(xO,yO) denotes the partial derivative of fj with respect to zi 
evaluated at (.x0, y”). 

Let Jzf(x”,yO) be the n x n matrix formed by the first n columns, and 
Jyf(xo, y”) the n x m matrix formed by the last m columns, of Jf(ti,yO), 
hence 

Jf (x0, YO) = UJef (x0, YO)! J,f (x0, Y”D 

Using the Jacobian notation, the criterion for quasiconvexity of a vector 
valued function becomes: f = ( fl ,..., fn) : Q + R" is quasiconvex on !2 iff 
.f (yl) < f( y”) =z- If ( y”) ( y1 - y”) < 0 Vy”, y1 E Q. -41~0 f is convex on Q iff 

f (v’) - f (YO) 2 Jf (Y”) (Yl - y”) VYO, Y1 E J-2. 

2. GLOBAL INVERSION 

The basic problem is to determine conditions on f: R" x R" -+ R", such 
that the equation f (x, y) = 0 has a globally unique convex solution x = h(y); 
that is wheneverf (x, y) = 0, then x = h(y) with h convex and f {h(y), y> = 0. 
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The following lemma will be useful below: 

LEMMA 1 [4]. Suppose f : Rn x R” + Rn and that f (x0, y”) = 0. If f 
satisfies the conditions of the implicit function theorem, then the solution x = h(y) 
of the equation f (x, y) = 0, unique in a neighborhood of y”, has its Jacobian 
given by 

Jh(y’) = - J;lf(x’> Y') J,f (x0, Y'), 

where the ij-th element of Jh(yO) is Dy,h,(yO), i = l,..., II, j = l,..., m, and 
x0 = h(yO). 

The following lemma provides sufficient conditions for h to be of class Cr. 
A function f : Q + Rn is said to be univalent if x # y => f (x) f f (y) 
Vx, y E Q (and hence f-l exists, where f -‘[ f (x)] = x). 

LEMMA 2. Let f : R” x Rnl + Rn : (x, y) ---f f (x, y) be of class C1 on some 
open subset A x B of Rn x Rm. Let S = {y E B : f (x, y) = 0 for some x E A} 
and suppose S # 6. If the function g, : A -+ R” : x + f (x, y) is univalent for 
each y E S, then for each y E S, there exists a unique h(y) E A such that 
f {h(y), y} = 0, and h is of class Cl on S if 1 Jz f (x0, y”)l f 0 for any 
(x0, y”) E h(S) x S. 

Proof. Let y E S, since g, is univalent, there is exactly one x E A such 
that f (x, y) = g,(x) = 0. Hence a unique function h : S + /I is defined such 
that f (h(y), y) = 0. To show differentiability of h, let y” E S and let 
x0 = h(yO). Then f (x0, y”) = 0 and 1 Jzf (xQ, y”)l f 0. By the implicit 
function theorem, there exists a unique function # defined on a neighborhood 
iV C S of y” such that x = #(y) and f (#( y), y) = 0 for all y E IV. But h also 
has this property. Hence the restriction of h to N is I& Since # is continuously 
differentiable at y”, so is h. 

A necessary and sufficient condition for the convexity of h is contained in 
the following theorem: 

THEOREM 1. Let f : Rn x Rm -+ Rn be of class Cl on a convex subset 
A x B of Rn x Rm. Suppose, that f (x, y) = 0 has a unique solution x = h(y) 
of class Cl on S. Then h is convex on S af 

J;‘f (x0, y”) Jf (x0, y”) (x’ - x0, y1 -y” ) 3 0, 

v(xl, yl), (x0, y”) E h(S) x S. 
(1) 

Proof. Let (x0, y”), (xl, y’) E h(S) x S. Now 

~;lf(xO, y”) Jf (x0, y”) = J;T,-‘f(xO, r”) [Jzf (x0, ~‘1, Juf (x0, Y”% 
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By Lemma 1 

Hence 

13(x03 YO) Jyf(-~o, YO) = - J4Y0). 

JXX”> YO) Jff(xO, YO) = [In , - JKY”)l, 

where I, is the identity matrix of order n. Using this we obtain 

J;tf(xO, yO) Jf(xO, yO) (x’ - x0, y1 - rO) 

($1 - x10) - kgl DY&l(V”) (YPl - YkO) 

( x,1 - .v,“) - kgl DYiJn(YO) (Yk’ - YkO) 

But 9 = h(yl), .rcO = h(ys) if (x0, yo), (9, y’) E h(S) x S. 
Also 

1 Dy,h,(yO) (ykl - yko) = Vh,(y”)’ (yl - y”) 
P=l 

forj = l,..., 72. 

Hence (1) may be written as 

h(Yl) - h(YO) - J4Y0) (Yl - YO). 

By definition, this expression is >, 0 iff h is convex on S. 
Theorem 3 below presents conditions on f that imply that h exists and is 

convex. The result is utilized in the examples in Section 3 below. The proof 
utilizes a global univalence result due to Gale and NikadG [6] and a property 
of Leontief matrices. If A is an II x n nonnegative matrix whose row sums do 
not exceed unity, then I - rZ is said to be Leontief. Additionally, if I - d 
is a P matrix, i.e., a matrix all of whose principal minor determinants are 
positive, then it is well known [5] that (I - A)-l exists and is nonnegative. 

THEOREM 2 (Gale-Nikaido) [6]. Let D be a rectangular subset of R” and 
f : D 4 Rk be a da@rentiable mapping. If Jf ( *) A is a P matrix of Leontief type 
V.V E D then f is univalent. 

THEOREM 3. Suppose f : D x B + R” is quasiconcave and of class Cl on 
D x B, where D is a rectangular subset of R” and B is an open convex subset of 
Rnl. Suppose further that Jz f (x, y) is a P matrix of Leontief type on D x S, 
then h exists, is convex, and of class Cl on S, if S f z . 
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Proof. As in Lemma 2, consider the function g, : D -+ Rn defined by 
g,(x) =f(~, y). Clearly Jg.Uo(xo) = JXf(~O, ~0). Now JJ(xO, y”) is a P matrix 
of Leontief type V# E D, ys E S. Hence by Theorem 2, gy is univalent 
Vy E S. By Lemma 2, h exists and is of class Cr on S since 1 Jzf(.zo, y”)l is 
nonzero on h(S) x S. Now f is identically zero on h(S) x S, hence by the 
quasiconcavity property /f(xO, y”) (x1 - fl, Y1 - Y”) b 0, V($, y”), 
(xl,yl) E h(S) x S. Since Jzf(zco, ys) is a P matrix of Leontief type on 
h(S) x S, it has a positive inverse there. Hence, 

J,-‘f(x”, Y”) Jf(xO, yO) (x1 - x0, y1 - Y”) 2 0 

and h is convex by Theorem 1. 

3. EXAMPLES 

The results of Section 2 may be used to demonstrate the concavity of the 
return functions in certain dynamic programming problems. Consider the 
T-period economic planning problem 

subject to 

G-(x1 ,**-, XT 9 Yl ,.**, Yr) = 0, 

where ut is the (additive) utility that accrues from policy decision vector xt 
and state vector occurence yt . The Ht represent the structural equations of 
the model used to describe the economic system and the K, represent the 
sets of allowable policy decisions. 

A function v : Rn -+ A1 is said to be nondecreasing if 

xi1 < x,*vi =s v(xll ,..., x,‘) < “(Xl2 ,...) x,“). 

THEOREM 4. Suppose that the K, are convex sets, the yt are defined on the 
rectangular sets Q2, C R mt, and that the ut are concave and nondecreasing. The 
H, are assumed to be continuously dijjferentiable, quasiconvex and nonincreasing 
in (x )..., xt , y1 ,..., yl) and JVtH,(.) isLeontief andis a Pmatrix on 52, x Mt, 
where 

Aft = {(xl ,...,q ,yl ,..-,yt-d I H&Q ,-.., xt ,yl ,...,Y~) = O,forsomeyt~W 
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Then (2) is equivalent to the problem 

pGy vlW L 1 

where v1 is concave and nondecreasing. 

The proof of Theorem 4 will utilize the following three lemmas: 
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(3) 

LEMMA 3. Let v(x) = u[q(x) ,..., z,(x)], where v : C -+ R, u : Rk -+ R, 
zi : C - R, i = l,..., k, CC R”. If C is a convex set, u and the zi are concave 
and nondecreasing, then v is concave and nondecreasing in C. 

Proof. Concavity was proved in Ref. [l]. Let x1, 2 E C, x2 2 9. Since Zi 
is nondecreasing zi(x2) > zi(xl) Vd , and since II is nondecreasing 

v(x’) Es u[z,(x2),..., &(X2)] 3 u[z,(xl),..., Zk(Xl)] 3 v(x’). 

Hence v is nondecreasing. 

LEMMA 4. Let v(x) G maXyoK{w(x, y)}, where w : C x K + R, v : C + R 
and C C Rn, K C Rm are convex sets. Suppose that for each x E C the maximum 
is obtained for some yO(x) E K. If w is a concave function and is nondecreasing in 
x for each fixed y, then v is concave and nondecreasing. 

Proof. Concavity was proved in [7]. Let x1, x2 E C, x2 3 x1. Since w is 
nondecreasing in x for each fixed y E K, w{x2, y} > w{x’, y}. Hence 

v(x”) Es $a$ w(x2, y) > lnE~ w(x1, y) = v(x’), 

thus v is nondecreasing. 

LEMMA 5. The assumptions of Theorem 3 coupled with the additional 
assumption that f is nondecreasing in y, imply that h is a nonincreasing function. 

Proof. By Lemma 1, the Jacobian of h is given by 

Jh(y’) = - J;lf(.~“, Y') Jz,f (x0, y’). 

Since f is nondecreasing in y, J, f (9, y”) > 0. Also J;‘f(x”, y”) 2 0. Hence 
]h(yO) < 0, i.e., h is nonincreasing. 

Proof of Theorem 4. In period T under the assumptions the problem is 

max uT[xr , Ir(xl ,..., XT , y1 ,..., YT-dl 
X,EKT 

= =ag wr(xl , . . . . XT , y1 ,..., y~-d 

= 7+-1(x1 ,**-, XT-1 ,Yl >**-, 3'r-11, 



64 WARBURTON AND ZIEMBA 

where I, exists and is concave and nondecreasing (by Theorem 3 and Lem- 
ma 5). 

Now wr is concave and nondecreasing by Lemma 3 and ZI~-~ is concave and 
nondecreasing by Lemma 4. 

Suppose 4x1 ,..., xt ,yl ,...,yt) is concave and nondecreasing. Then the 
problem in period t is 

$$; [%(Xt ,Yt) + %(X1 >***, xt aY1 ,.**,Yt)l t t 
= FE? h{xt , It& ,...I xt , y1 ,..., rt-Al 

; d,i% ,.*a, Xt ,y1 ,..vyt-1 , I*(-% ,-.*> xt ,Yl ,...,Yt-&I 
= Fey %(X1 ,.**, xt ,y1 ,-,Yt-1) = V&l ,-.-, xt-1 ,Yl ,**vYt-I), 

t t 

where I, exists and is concave and nondecreasing (by Theorem 3 and Lem- 
ma 5), and w, is concave and nondecreasing by Lemma 3, and vt-r is concave 
and nondecreasing by Lemma 4, and the fact that nonnegative sums of 
concave nondecreasing functions are concave and nondecreasing. 

A more specialized example in which the hypotheses of Theorem 3 are 
satisfied is the following simple linear input-output production system. 
Consider an economy in which each of n goods GI ,..., G,, is produced by a 
single activity. Let x = (x1 ,..., x,) and p = (pr ,...,p,) be output and price 
vectors, respectively, and u,~ be the amount of Gj which it is necessary to 
consume in order to produce one unit of Gi . The demand for Gj is 
gj(pi) = bj - djpi (di > 0). The optimization problem is to determine non- 
negative (normalized) prices p and output levels x to maximize the utility u 
of revenuep’g(p) minus production costs C(X). Since net production is x - Ax, 
output levels of {g&),..., g&J} require that (4) x - Ax = g(p). Let 
a(~, p) = x - Ax - g(p), which is quasiconcave in x and p by linearity, and 
assume that J&x, p) = I - A is a P matrix. Thus (4) has the solution 
x = b(p) = (I - A)-l g(p), where b is convex (since it is linear) in p. Suppose 
that u is concave and nondecreasing, that is the economy is risk averse and 
that c is convex meaning that marginal production costs are nondecreasing. 
The problem is to maximize 

4P’dP) - CP(P)lh (5) 
subject to 

P 20, ilPi = 1, g(P) 3 0. 

Since b(p) is convex, - c[b(p)] is concave and since @g(p) is concave, (5) is a 
concave program in p. 
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4. REMARKS 

Theorem 3 generalizes for functions of class Cl an earlier l-dimensional 
result of Pier&alla [9] to the n-dimensional case. 

Several results, e.g., Refs. [2] [6], other than Theorem 2, imply that f 
satisfies the conditions of Lemma 2; hence that h exists and is Cl. Moreover, 
in some of the above cases restrictions of the domain off may be relaxed. 
For instance, if it is assumed that the symmetric part of JX f (x, y) is every- 
where positive in D x S, then h exists, is Cl, and D need only be convex, 
rather than rectangular. 

In these cases, however, h may fail to be convex. 
When the variables are separable in f (x, y) 10 and a solution s = h(y) 

exists then this solution has a simple form. Thus, if 

then 

f CT Y) =fJ4 + fm = 0, 

.Y! = f -YfdvN and h(Y) = f -‘[fdu)l. 

In the linear case we have dx + By = 0, hence x = - A-lBy. 
A similar result to that in Theorem 4 may be obtained if the H, are func- 

tions of random vectors, say, E1 ,..., tt and ut depends upon f6 . Assume that 
the objective in each period t is to maximize the expected utility of state 
vector realizations, random vectors, and decisions made in 7 = t,..., T. 
Replace u&, , yJ and H,(x, ,..., xt , y1 ,..., yt) by &(s, , yt , tt) and 

f&(X, ,..., .rt ,yl ,..., yt , 5, ,..., St), where V(tl ,..., 5J E El x ... x S, , S, 
and A, satisfy the assumptions imposed upon ut and H, , respectively. Using 
a similar proof one may reduce this problem to (3). When the H, are linear 
this is similar to a result of Dantzig [3]. Note, however, that if any maxima 
or conditional expectations are unbounded from above, then so will v1 . 
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