View metadata, citation and similar papers at_core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

Structured Theories and Institutions

Francisco Duran and José Meseguer

Computer Science Laboratory, SRI International

Menlo Park, CA 94025, USA

Abstract

Category theory provides an excellent foundation for studying structured specifica-
tions and their composition. For example, theories can be structured together in a
diagram, and their composition can be obtained as a colimit. There is, however, a
growing awareness, both in theory and in practice, that structured theories should
not be viewed just as the “scaffolding” used to build unstructured theories: they
should become first-class citizens in the specification process. Given a logic formal-
ized as an institution Z, we therefore ask whether there is a good definition of the
category of structured Z-theories, and whether they can be naturally regarded as
the ordinary theories of an appropriate institution S(Z) generalizing the original
institution Z. We answer both questions in the affirmative, and study good proper-
ties of the institution Z inherited by S(Z). We show that, under natural conditions,
a number of important properties are indeed inherited, including cocompleteness of
the category of theories, liberality, and extension of the basic framework by free-
ness constraints. The results presented here have been used as a foundation for the
module algebra of the Maude language, and seem promising as a semantic basis
for a generic module algebra that could be both specified and executed within the
logical framework of rewriting logic.

1 Introduction

Structuring mechanisms are vital means for reusing software and for master-
ing the complexity of large systems at all levels, including specifications and
code. Category theory provides an excellent foundation for studying struc-
tured specifications and their composition. A key contribution in the late sev-
enties and early eighties was made by Burstall and Goguen with the Clear [4]
specification language, that proposed taking colimits of theories as a system-
atic way of “putting theories together.” Clear was based on many-sorted
equational logic, but its categorical semantics was in fact logic-independent.
This led Goguen and Burstall to propose the notion of institution as an ax-
iomatization of a general logic, and to generalize the Clear-like operations to
institutions [17,18]. These ideas have had a great theoretical and practical

(©)1999 Published by Elsevier Science B. V. Open accessunder CC BY-NC-ND license.

https://core.ac.uk/display/82230789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

AL LML LN

impact: see the bibliographies [3,16], the survey [26], and the literature on
logic-independent specification building operations, e.g., [29,10,2,27].

Typically, theory composition operations begin with theories structured
in some way—for example, a diagram—and result in an unstructured, or less
structured, specification as their result—for example, a colimit. That is, struc-
tured theories are often “flattened” when being composed. There are however
good reasons for preserving their structure. Besides the obvious understand-
ability and design documentation reasons, it is often very useful to consider
theory-building operations whose results are structured theories. For example,
refining a software design can be best understood as refining structured the-
ories [32]; also, even when we may want to extract a flattened theory, it can
be much more efficient to operate at the level of structured theories [13,12].
There are also more intrinsic reasons, namely, when the semantics associated
to a structured module essentially depends on its structure. For example, we
often want to associate to the inclusion of a parameter theory into the body of
a parameterized specification a freeness constraint, requiring that the models
of the body are free extensions of the models of the parameter; more gener-
ally, one can similarly consider other notions of constraint [28.4,30,18,15]. In
practice, the need for keeping and using structure is both recognized and sup-
ported by a number of languages and systems such as, for example, languages
in the Clear/OBJ tradition [4,19,9,6],SPECWARE [32], and CASL [8].

Although a number of concepts and techniques have been suggested both
at the theoretical and specification language levels to keep and use the ne-
cessary amount of structure for specific purposes, the most satisfactory way
of addressing the need for preserving structure is to make structured theor-
ies first-class citizens. In the categorical spirit, this leads to seeking a good
definition of the category of structured theories, and to investigating whether
structured theories can naturally be regarded as the ordinary theories of an
appropriate institution. The most basic form of structured theory is that of a
hierarchy of theory inclusions, in the sense that more complex forms of struc-
tured theories can often be normalized to hierarchies [13,12], perhaps keeping
some additional information such as freeness constraints. Hierarchies are of
course special kinds of diagrams, and this suggests using categories of diagrams
and categorical constructions on diagrams as the theoretical basis.

The use of diagrams for structuring purposes has also been emphasized by
other authors. In a limited form they were used in Clear to deal with shared
structure in categorical constructions by means of based theories [4]. Diagrams
are first-class citizens in SPECWARE [32], and are used to structure and re-
fine specifications; furthermore, an appropriate diagram category is defined
in such a way that a colimit-like functor yields an operation of horizontal
composition satisfying, by functoriality, the expected laws of compatibility
between horizontal and vertical composition [32]. Based on the SPECWARE
ideas, Dimitrakos has proposed a way of parameterizing specifications by dia-
grams of specifications, and of inducing an instantiation by means of a family

2

AL LML LN

of parallel instantiating morphisms whose sources are the components of the
parameter diagram [11].

In this paper we address a number of issues about structured theories
that, as far as we know, have not been systematically studied before. The
most basic issue is: given an institution Z, can we naturally associate to it
another institution S(Z) whose ordinary theories are the structured theories
of 7 We answer this question in the affirmative, and then proceed to study to
what extent good properties of the institution Z are also inherited by S(Z).
We show that, under natural conditions, a number of important properties
are indeed inherited, including cocompleteness of the category of theories,
liberality, and extension of the basic framework by freeness constraints.

We have used the present work as the theoretical foundation for the mod-
ule algebra of the Maude specification language [6]. In this module algebra,
structured theories are first-class citizens, and module operations result in
other structured theories [13,12]. Using the fact that rewriting logic is re-
flective [7,5], the entire module algebra is both specified and executed within
the logic of Maude [12]. As we further explain in the conclusions, using the
logic-independent semantics for structured theory compositions developed in
this paper and the logical framework properties of Maude [21], we plan to
generalize Maude’s module algebra to an executable generic module algebra
that could be instantiated for any logic represented in the framework.

The rest of the paper is organized as follows. Section 2 reviews some basic
definitions about institutions; Section 3 gives basic results about categories of
diagrams; Section 4 presents our main definitions and results about the insti-
tution S(Z) of structured Z-theories and its properties; Section 5 illustrates
the use of the categorical constructions with several examples; and Section 6
offers some concluding remarks.

2 Institutions

The theory of institutions [18] allows us to discuss the relationship between
theories and models without committing ourselves to a particular logical sys-
tem.

Definition 2.1 [17] An institution Z is a 4-tuple (Signg,senz, Modz,)
such that:
o Signy is a category whose objects are called signatures,

o seng: Signy; — Set is a functor associating to each signature ¥ a set of
Y -sentences,

o Modz: Sign; — Cat® is a functor mapping each signature ¥ to a cat-
egory whose objects are called Y-models, and

= is a function associating to each ¥ € |Signgz| a binary relation =5 C
[Modz(X)| x senz(X) called satisfaction, in such a way that the following

3

property holds for any M' € |Modz(X')|, H : ¥ = ¥/, ¢ € seng(X):
M’ |:2/ SGHI(H)(QO) — MOdI(H)(M/) |:2 ©.

Given a signature X, a presentation of a theory is given by a set I' of
Y-sentences. We can therefore denote a theory presentation as a pair (X, 1).
Given a presentation (X,1'), we define the category Modz(X,I") as the full
subcategory of Modz(X) determined by those models M € |Modz(X)| that
satisfy all the sentences in I, i.e., M [Ey ¢ for all ¢ € T.

We can extend the satisfaction relation to sets of sentences as follows.

MEsTiff My ¢ forall p el
Then, the relation between sets of sentences and sentences given by
I'ex ¢ ifft M |=x ¢ for each M € |[Modz (X, 1)

allows us to associate to an institution an entailment system in the sense
of [22]. For any signature X, the closure of a set I' of Y-sentences is I'* = {¢ |
I' s ¢}, The Y-theory presented by (¥, 1) is then given by (X, T'*).

Given presentations of theories (X,I') and (¥',1”), a theory morphism
H: (X, T) — (¥,17) is a signature morphism H: ¥ — ¥ such that if ¢ € T
then senz(H)(p) € I'*, that is, for all p € I', IV =xr seng(H)(y).

Definition 2.2 Given an institution I, ils category Thz of theories! has as
objects presentations of theories (X,1') and as arrows theory morphisms. We
denote by signy : Thz — Signy the forgetful functor sending each theory to
its underlying signature.

For any institution Z, the model functor Modz: Signy — Cat®? extends
to a functor Modz : Thz — Cat’, by mapping a theory (X,I') to the full
subcategory Modz(X,I') of Modz(X). The institution Z is called liberal if for
each theory morphism H: (¥,T") — (¥, ") the functor Modz(H) has a left
adjoint. We call Z ezact if Modz: Thz — Cat® preserves colimits.

3 Diagram Categories

The issue of whether the category Dg(C) of diagrams over a category C has
colimits is important, because for C = Signy this specializes to colimits of
structured signatures, which can then be used to define colimits of structured
theories. We show in this section that, if C is cocomplete, then Dg(C) is also
cocomplete. This is probably a “folklore” result. Since we are not aware of a

1 Note that in the above definition the objects of Thz are presentations of theories. We
follow here the terminology of general logics [22], instead of Goguen and Burstall’s original
definition [18]. In what follows, when we talk about a theory (X,T') we shall mean a theory
presentation.

AL LML LN

suitable textbook exposition to give as a reference, we include it here to make
the paper self-contained.

Given a cocomplete category C and a small category A, the category of
functors from A to C, which we denote by C#, is also a cocomplete cat-
egory [20]. Furthermore, in C* all colimits can be constructed pointwise.

Theorem 3.1 (Left Kan extensions [20,31]) Let B be a small category, let
F: B = D be a functor, and let C be a cocomplete category. Then, the functor
F =CF:CP — CF has a left adjoint Vp : C® — CP, called the left Kan

extension along F'.

Definition 3.2 [31] Let C be a category. The diagram category Dg(C) has
as objects functors T: P — C, where P is a small category. If T: P — C and
T":P"— C are objects, then a morphism (R,0): T — T' consists of a functor
R: P — P and a natural transformation o: T — T" - R.

The composition of morphisms (R, p) and (R', o), as depicted in the figure
below, is given by the morphism (R' - R, o'R - o).

Theorem 3.3 Let C be a cocomplete category. Then, the category Dg(C) is
also cocomplete.

Since a category with pushouts and coproducts has all colimits, we split
the proof of Theorem 3.3 in two separate lemmas?. The proofs summarize
the main constructions; a detailed exposition can be found in [12].

Lemma 3.4 [fC is cocomplete, then Dg(C) has pushouts.
Proof. Given small categories Py, Py, and P,, diagrams Dy in C™°, Dy in C”,
and Dy in C*2, and diagram morphisms (F, a): Dy — Dy and (J, 3): Dy — Ds,

we need to construct a pushout object Dz in C™* (for the appropriate P5) and
corresponding morphisms in Dg(C), as depicted in the following figure:

(F7,9)

Dyt > Ds
5] HE)
Do~ D1

First, we define the small category Ps, with J': P; — Pz and F': Py — Ps,
as the pushout of F' and J in Cat. The intuitive idea in order to build up the
desired diagram Ds is the following: if the D; were all in the same category

? We prefer to use pushouts instead of coequalizers because of their extensive applications
to parameterized theories.

AL LML LN

C”, then the pushout could be constructed pointwise. We obtain the more
general construction by taking the Kan extensions along the corresponding
functors to Ps for each of these diagrams, thus “moving” them all to C”2;
D5 is then the pushout of the Kan-extended diagrams in C%?, which can be
computed pointwise. a

Lemma 3.5 For any category C, Dg(C) has coproducts.

Proof. Let {D;: J; = C}ies be an [-indexed family of diagrams for any set
I. Let [],c;Ji be the coproduct of {Ji}ic; in Cat, and let us denote the

inclusion morphisms by ¢;: J; = [[,c; Ji. 1t is easy to check that the induced

functor D : [[,c;Ji — C, with the induced family of inclusion morphisms
{(tis1p,) : D; — D}ier, is the coproduct of the indexed family {D;};er in
Dg(C). O

4 Structured Theories

In this section we define the institution S(Z) of structured theories over a
given institution Z, and give some results about the cocompleteness of its
categories of signatures and theories, the liberality of S(Z), and the addition
of freeness constraints to structured theories.

4.1 The Institution of Structured Theories

A structured signature can be formalized as a functor D: [— Signyz from a
small category [to the category Signg of signatures and signature morph-
isms in a given institution Z. This is of course a quite general notion. One
can specialize the concept to the more familiar concept of hierarchy of sig-
natures by requiring that [is a finite poset and that all the arrows in the
diagram are inclusions in an appropriate subcategory of inclusion morphisms.
Although it remains to be seen which notion is more useful in practice, we give
the constructions for the more general case. We build an institution S(ZT),
whose theories are called structured I-theories, by defining functors sengz)
and Mods(z) associating to each structured signature D in Signgz, a set
of D-sentences and a category of D-models, respectively. Then, we give a
satisfaction relation for it and show that the satisfaction condition holds.

Definition 4.1 Let us denote by Signg gy the category Dg(Signg) of dia-
grams over the category of signatures in the institution L. We shall call the
objecls of Signg gy structured (Z-)signatures, and will denote each structured
signature by its corresponding diagram D : I — Signy. The morphisms in
Signg gy are called structured signature morphisms.

Definition 4.2 The funclor sens(z) : Signgzy — Set, associaling lo each
structured signature D: [— Signy a set of sentences and to each structured
signature morphism (K, H): D — D’ a corresponding translation at the level

6

of sentences, is defined as follows:

sens(z)(D) = H seng(D(i))

el

seng(z)((K, H)) = H seng(H;)
el
We can see each of the sentences of D as a pair (i,¢), where ¢ is a
sentence in senz(D(7)). Note that, given a structured signature morphism
(K,H): D — D’ and a sentence (i,¢) of D, we have

seng(z) (K, H))((1,¢)) = (K(2), senz(H;)())-

Definition 4.3 Given a structured signature D : I — Signg, its category
of models Modg(zy(D) has as objects families M = {M;}ie; with M; in
Modz(D(z)), such that for each ¢ : i — j in I, Modz(D(¢))(M;) = M,.
A morphism between two such models f: M — M’ is given by a family
{fi: M; = M!}ier with f; in Modz(D(7)) such that for each ¢: i — j in I,
Modz(D(9))(f;) = fi-

Definition 4.4 The functor Mods(z) : Signgzy — Cat®® assigns to each
structured signature D : I — Signg its category of models Modgsz)(D), and
to each structured signature morphism (K, H): D — D' the forgetful functor
Modsz)((K, H)): Modgz)(D') = Modsz)(D), defined as follows:

Mods) (K, H))({M}}jer) = {Modz(Hi)(M;)) }ier

Mods) (K, H))({f}}jer) = {Modz(H;)([) ier
Definition 4.5 Given a structured signature D : I — Signgz, a D-model
M = {M;}ier satisfies a D-sentence (1,9) if and only if M; Epgy @. In this
case, we write M Ep (i,¢).

Proposition 4.6 (Satisfaction Condition) Let D: I — Signg and D': I' —
Signy be structured signatures, and let (K, H) : D — D" be a structured
signature morphism. Given a D-sentence (i,¢) and a D'-model M', then

Modsz) (K, H))(M") Ep (i,) <= M Epr sens(z) (K, 1))((1,).
Proof. Mods(z)((K, H))(M') is a D-model, namely, the family of models
Mods(z) (K, H))(M') = {Modz(H;)(M ;) tier-
Since ¢ is a sentence in D(i), we have

Mods(z) (K, H))(M") [=p (i, ¢) = Modz(H:)(M(;)) Fp) ¢
7

On the other hand, since seng(z)((K, H))((7,¢)) = (K(z),senz(H;)(v)), and
thus senz(H;)(p) is a sentence in D'(K (7)), we have

M’ Eprsenszy (K, H))((i,9)) <= M) Epixe) senz(H)(9).
By the satisfaction condition for the institution Z, we also have
Modz(H;)(My) Epei) ¢ == My Epi) senz(H;)(p),
and therefore,

Mods(z) (K, H))(M") [=p (i,) <= M" |pr sens(z) (K, H))((1,¢)).

Definition 4.7 Let S(I) be the institution with:

. Signs(l) as category of signatures,

* the sentence funclor sens(z): Signg(zy — Set, of Definition 4.2,

* the model functor Mods(z): Signg(zy — Cat®, of Definition .4, and

* the satisfaction relation given in Definition 4.5, for which the satisfaction
condition holds as shown in Proposition 4.6.

Note that the notion of structured Z-theory, that is, of a theory present-
ation in S(Z), captures well the intuitive notion of structured theory found
in actual specifications. Indeed, when a subtheory is imported, its axioms
typically are not repeated again; they are implicitly inherited from the subthe-
ory. This means that axioms are presented locally, for a specific local signature
D(2), corresponding to our formal notion of a pair (7, ¢). It also means that at
each stage in the specification only the incremental information of additional
axioms has to be made explicit.

Since Signgzy = Dg(Signz), there should be a close and systematic re-
lationship between the category Thg(z) of structured Z-theories in the in-
stitution S(Z) and the diagram category Dg(Thz). We can express this
relationship as an adjunction with particularly good properties.

Let J: Thszy — Dg(Thz) be the functor defined on objects by the
equality

J(D,T') = Dr-,
where if D: [— Signg is a structured signature, then Dp«: [— Thz has
Dr«(1) = (D(i),I'%) and Dp«(¢:i — j) = D(¢), where

Fr = {99 - SGHI(D(i)) | \V/M - MOds(I)(D, F), Mz |:D(z) g@}

Note that then D(¢) : Dr«(i) — Dr«(j) is indeed a theory morphism
because

8

& (by satisfaction, with Modz(¢)(M;) = M;)
VM € Modsz)(D,T'), M; [Ep(;) senz(D(8))(¢)
&senz(D(9))(¢) € 7]

Therefore, senz(D(¢))(I'7) C I'; and D(¢) is a theory morphism.

The definition of J on morphisms assigns to each theory morphism (K,H):
(D,I') = (D',1") in Thg(z) the diagram morphism (K, H): Dr» — Df,. with
H; = H; for each i € I, which is well-defined by observing that I"* = Hje[' I,
and using the fact that (K, H) is a theory morphism, so that for each (i,¢) € I
we have (K (7),senz(H;)(p)) € T".

Let R: Dg(Thz) — Thgz) be the functor defined on objects by the
equality

R(D) = (signz - D, [[ax(D(2))),
el
where, for (3,I') a theory, we use the notation ax(X,[') = I.
Note that for any theory (D,I') in Thg(z) we have a natural isomorphism

¢(D.0)

RJ(D,I') =~ (D,I'). Indeed, by construction we have RJ(D,I') = (D, I'*).
Therefore, both theories are isomorphic, with the identity signature morphism
as the isomorphism. We do not need to define R on morphisms, since such a
definition follows automatically from the adjunction result below.

Proposition 4.8 The functor J: Thsizy — Dg(Thz) is full and faithful,
with R left adjoint to J and ¢ as the counit.

Proof. By Theorem 1 of Section IV.3 in [20], if £ is a counit and is an iso-
morphism, J is full and faithful. So we just have to check the adjunction.
A detailed proof showing that ¢: RJ — 1pg(rnz) is indeed the counit of the
adjunction can be found in [12]. 0

4.2 Cocompleteness and Liberality

Given the institution S(Z), we now present some results on the cocomplete-
ness of its categories of signatures and theories, and on the liberality of S(Z).

Theorem 4.9 If Signz is cocomplete then Signgz) is cocomplete.
Proof. Since Signgz) = Dg(Signz), this follows from Theorem 3.3. O

By the following well-known result from [18], it follows that, for any insti-
tution I, its category of theories is cocomplete if its category of signatures is
cocomplete.

Theorem 4.10 [18] If T is an institution such that Signg is cocomplete,
then Thz is also cocomplete and the forgetful functor signy: Thz — Signg
preserves colimits.

Corollary 4.11 If Signg is cocomplete then Thgz) is cocomplete, and the
Junctor signgzy: Ths(z) — Signgz) preserves colimils.

9

The above result by Goguen and Burstall gives a simple criterion to show
when all colimits in the category of theories exist. However, it may not be
sufficient. We can have institutions with cocomplete categories of theories
whose categories of signatures lack some colimits. For example, if we consider
signature morphisms in many-sorted equational logic that can map operations
to terms (as it is allowed for views in OBJ [19] and in Maude [6], for example),
the category of signatures fails to be cocomplete. The following shows that,
independently of the cocompleteness of Signg(z), if Thz is cocomplete then
Ths(z) is also cocomplete.

Theorem 4.12 If Thz is cocomplete then Ths(zy is cocomplete.

Proof. If Thz is cocomplete, then Dg(Thz) is cocomplete by Theorem 3.3.
Then, since ¢ is a natural isomorphism, any diagram € in Thgz) is isomorphic
to the diagram RJS). But, since R is a left adjoint to J, and therefore pre-
serves colimits, and since Dg(Thz) has colimits by Theorem 3.3, we have

R(colim J) = colim(RJQ) = colim(Q). 0

The following theorem shows that liberality of an institution Z is inherited
by S(Z) under natural conditions.

Theorem 4.13 If an institution I is liberal and exact and Thz is cocomplete,

then S(I) is liberal.

Proof. First of all we observe that, for any (D,I') € |Thg(z)| we have the
isomorphism

Mods(z)(D,T) ~ lim(Modz - Dr+). (1)
Indeed, since I'* = [, I'f, (D,I') and (D, I'*) are isomorphic theories. There-

([

fore, for each M € |Modg(z)(D)| we have M |=p I iff M |=p I'* iff for each
i € I, M; |=pg) I';. Therefore, M € |[Modgz)(D,I')] iff

(i) Ve e I, M; € [Modz(D(2),I'7)|, and

(ii) Vo: 1 — 7 in I, Modz(D(¢))(M;) = M,
and similarly, f: M — M’ is a morphism in Modgsz)(D,T') iff

(i) Ve e I, fi: M; — M/ is a morphism in Modz(D(z),I'7), and

(i) Yo i = in 1. Modz(D(6))(f;) = /i

The above isomorphism (1) then follows either by an explicit limit con-

struction in Cat, or, more easily, by observing that Cat is monadic [1] over
Graph = Set* ™" (therefore the forgetful functor creates limits [20])
which reduces such a limit construction to a construction of limits in Set.

But since Thz is cocomplete, the colimit of Dp« exists, and by exactness
of Z we have the isomorphism

lim(Modz - Dr+) ~ Modz(colim Dr»),
10

AL LML LN

which combined with the isomorphism () gives us the isomorphism

Modsz)(D,I') >~ Modz(colim Dr+).

Notice also that, by cocompleteness of Thz, there is a functor
colim: Dg(Thz) — Thz

such that for any morphism (K, H): (D,I') — (D',1") in Ths) we have,

thanks to the above isomorphism, the following commutative diagram.

MOds (I)((IXV,H))

MOds(I)(D, F) MOds(I)(D/, F/)
12 12
Modz(colim D+) Modz(colim Df,«)

Modz (colim J(K,H))

By liberality of the institution Z there is a left adjoint to Modz(colim J(K, H)),
which, composed with the vertical isomorphisms, gives rise to a left adjoint to

MOds(I)((I(, H)) O

4.3 Freeness Constraints

One of the key motivations for making structured theories a direct object of
study is dealing with freeness constraints, called constraints or data constraints
in [18]. They are crucial for the notion of parameterized module, in which
the model of the parameterized module’s body should be a free extension
of the model of the parameter theory. In many specification languages (e.g.,
[19,14,9,6,8]) this leads to a distinction between theories, with loose semantics,
and modules, with initial or, more generally, free extension semantics. Both
theories and modules can be parameterized, but in the case of parameterized
modules, a freeness constraint between models of the parameter and models
of the body is enforced.

Intuitively, freeness constraints are associated to particular theory maps
appearing in the diagram of a structured theory. Suppose that Z is liberal
and that (D, ') is a structured theory with D: I — Signgz, and consider a
morphism ¢: ¢ — j in . Then, we can associate a freeness constraint to the
theory map D(¢): Dr«(¢) — Dr«(j) by requiring that the models M of (D, '),

in addition to satisfying the axioms I, satisfy the constraint
M]‘ ~ FD(¢)(Mi)

for Fpg : Modz(Dr«(1)) — Modz(Dr+(j)) the left adjoint to the forgetful
functor Modz(D(¢)): Modz(Dr«(j)) — Modz(Dr«(7)). For example, Dpx(z)
may be the theory TRIV, specifying just one sort Elt, and Dr«(j) may be
the theory LIST with a sort List, specifying lists formed with data elements

11

AL LML LN

from the E1t parameter sort. Then, the freeness constraint requires that the
models of LIST are really lists, freely generated from the data elements.

The above notion of freeness constraint should in fact be generalized some-
what, to allow an extra signature map bringing the model to the context in
which the constraint is applied. This leads us to the following definition, due
to Goguen and Burstall.

Definition 4.14 [18] Let T be an institution. Then a freeness constraint on
a signature X s a pair

c=(H:T"—=T' G:sign(T") = %)

with H a theory morphism and G a signature morphism. A Y-model M satis-
fies ¢ if and only if Modz(G)(M) satisfies T' and Modz(H)(Modz(G)(M)) has
a free extension along H such that the corresponding component of the counit
of the adjunction enoaz(cyry: Fr(Modz(H)(Modz(G)(M))) — Modz(G)(M)

is an isomorphism; in this case we write M [y c.

Our intuitive notion of freeness constraint in a structured theory can then
be recovered by two special cases of the above definition. The case of a para-
meterized module, illustrated by the theory inclusion TRIV — LIST in our
previous example, corresponds to freeness constraints of the form

(D(#): Dr«(1) = Dr«(3), 1pgy: D(7) — D(3)),

whereas the case of an unparameterized module, like NAT or BOOL, for which
we want an initial model semantics, corresponds to a freeness constraint of
the form

(@DF*(]‘) :0 — Dr» (1), Lpy: D(3) = D(37)),
where () is the initial object in the category of signatures of an exact liberal
institution Z (so that Modz(() has only one model, let us call it also {}) because
then the initial model of Dr«(j) coincides with F(DDF*(J) (0).

The need for the more general notion of freeness constraint in Defini-
tion 4.14 has to do with translation of constraints by composition with signa-
ture morphisms. We think of a constraint ¢ = (H: 7" — T, G: sign(T") — X))
on X as a sentence associated to the signature 3. Then, if Q: ¥ — is a sig-
nature morphism, we can associate to the constraint ¢ the following constraint

on €
senz(Q)(c)=(H:T"—=T', Q-G:sign(T') — Q).

The key point is that, as shown by Goguen and Burstall in [18], the satisfaction
condition holds for freeness constraints translated along signature morphisms.
Goguen and Burstall exploit this satisfaction condition to give a general con-
struction associating to an institution Z another institution C(Z) (Cf. [18,
Proposition 23]) with the same category of signatures and the same model
functor as Z, and with sene(z)(X) the disjoint union of the sets senz(X) and

12

AL LML LN

of the set? of all freeness constraints on X. Then, by the general result in
Theorem 4.10, if Signz is cocomplete, then The(z) is a cocomplete category.

Although the construction of C(Z) is given by Goguen and Burstall for
an institution Z whose signatures and theories are unstructured, we have
pointed out above how the notion of freeness constraint finds its natural home
as additional constraints added to specific components of a structured theory.
The way of explicitly combining freeness constraints and structured theories
is then straightforward.

Definition 4.15 Given an institution I, the institution of structured Z-
theories with freeness constraints is by definition the institution S(C(ZI)).

Theories in S(C(Z)) are pairs (D, '), with D: I — Signy a diagram, and
with ' sentences of the form (i,¢), with ¢ either a sentence in senz(D(7)) or
a freeness constraint on the signature D(i). Therefore, structured Z-theories
with freeness constraints capture the distinction between theories (with loose
semantics) and modules (with initial or free extension semantics) present, as
already mentioned, in many algebraic specification languages. Furthermore,
they also capture the fact that such theories and modules can be combined
into more general structured specifications with freeness constraints, whose
semantics explicitly depends on their structure.

Notice that, although they are of course related constructions, the institu-
tion S(C(Z)) defined above is different from the institution C(S(Z)), that,
by the general construction of C(Z) of Goguen and Burstall, can also be
defined for any institution Z. Intuitively speaking, in S(C(Z)) the freeness
constraints are local to specific components of structured theories, whereas
in C(S(Z)) the freeness constraints are global, in the sense of involving pairs
of structured theories. S(C(Z)) seems more useful in practice, but the rela-
tionship between these institutions and other combinations of the C and &
constructions should be further studied. Notice also that, by Theorems 4.9
and 4.10, if Signy is cocomplete, then both Thgc(z)) and Thes(z)) are also
cocomplete.

5 Structured Theories in Practice

In this section we illustrate the use of the categorical constructions presented
in the previous sections by giving several examples of structured theories.
We use for that the Maude language [6], and in particular its membership
equational logic institution [23,25].

Specifically, we present the equational theory of (left) actions of a semiring
over a commutative monoid as a structured theory, which is parameterized
by the theory of semirings and the theory of commutative monoids. This

3 There are foundational questions about the size of the closure of a constraint theory that
we will ignore here; as pointed out in [18], they can be solved, for example, by limiting the
size of the category of signatures used in the original institution.

13

AL LML LN

ACTION

N

M ::MONOID X ::TRIV

|

M:: TRIV

Fig. 1. Structure of the parameterized theory ACTION.

structured theory is obtained by the instantiation of the theory of (left) actions
of a monoid over a set with the appropiate views. This example is a building
block for a more extensive example specifying the theories of semimodules over
a commutative semiring and modules over a commutative ring in a structured
and parameterized way [12].

Let us begin by introducing the functional theory TRIV, which requires just
a sort.

fth TRIV is
sort El1t .
endfth

The theory of monoids, with an associative binary operator with identity
element 1, can be expressed as follows.

fth MONOID is

including TRIV .

op 1 : ->Elt .

op __ : Elt Elt -> Elt [assoc id: 1]
endfth

Next, we define the theory of (left) actions of a monoid on a set. We define
it as a functional theory parameterized by the theories MONOID and TRIV, as
indicated below *.

fth ACTION[M :: MONOID, X :: TRIV] is
op __ : E1t.M E1t.X -> E1t.X .
vars A B : El1t.M .
var Y : E1t.X .

eq 1 Y=Y.
eq (AB)Y=4(BY)
endfth

Representing by < the inclusion relations between theories, we can depict
the structure of the parameterized theory ACTION as in Figure 1.

The instantiation of a parameterized theory requires the definition of a
view, that is, a theory morphism for each of the formal parameters.

Given a theory T which is included in another theory 7", let us adopt the
convention of naming the view from 7" to 7" defined by the inclusion T" — T"

4 Note the use of the labels associated to the parameters to qualify the sorts coming from
the parameter theories.

14

AL LML LN

by the name of the ‘supertheory’ 1".

The theory of commutative monoids can be defined just as the theory of
monoids, but the _+_ operator is now declared associative, commutative, and
has 0 as its identity element.

fth +MONOID is

including TRIV .

op 0 : =-> Elt .

op _+_ : Elt Elt -> Elt [assoc comm id: O]
endfth

The theory of semirings can be expressed as follows.

fth SEMIRING is
including MONOID .
including +MONOID .
vars X Y Z : Elt .

eq X (Y+2)=@XY)+ X 2D
eq (X +Y)Z= (X2 + Y 2
eq 1 X =X.

endfth

Given the theory ACTION above, the result of instantiating it with views
SEMIRING and +MONOID is a theory with name ACTION [SEMIRING, +MONOID]
and interface [M :: SEMIRING, X :: +MONOID].

The semantics of the instantiation of theories is given by the pushouts
in the category of structured theories discussed in Section 4.2, which can be
obtained, using the functor J, from pushouts in Dg(Thz) thanks to The-
orem 4.12. We can depict the instantiation of the theory ACTION by views
SEMIRING and +MONOID by the diagram in Figure 2. The structured paramet-
erized theory ACTION[M :: MONOID, X :: TRIV] is understood as the in-
clusion of its interface [M :: MONOID, X :: TRIV]—corresponding in the
figure to the structured theory with topsM :: MONOIDand X :: TRIV—into
the structured theory with top ACTION. We then perform the pushout of this
inclusion along a structured theory map from the interface [M :: MONOID,
X :: TRIV] to the structured theory with tops M :: SEMIRING and X ::
+MONOID defined by the views SEMIRING and +MONOID.

6 Concluding Remarks

We have shown that the addition of structured theories to an institution Z
results in an institution S(Z), and that if the category of signatures Signz
has colimits, then the categories of signatures and theories of S(Z) both have
colimits. We have also shown other basic results about the category of theories
of 8(ZI), and about the liberality of the institution S(Z). Finally, we have
presented a very simple way of adding freeness constraints to our setting,

resulting in institutions S(C(Z)) and C(S(Z)).
15

AL LML LN

ACTION- -~ =~~~ ~~=—= =~ =+ >ACTION[SEMIRING, +MONOID]

-

=M :: SEMIRING

M::MONOID

>X :: +MONOID

M:: +MONOID X :: TRIV

Fig. 2. Instantiation of the parameterized theory ACTION.

The notion of structured theory is useful not only for institutions, but also
for other components of a logic such as entailment systems or proof calculi
[22], and could be naturally extended to those contexts. As already men-
tioned, the notions presented in this paper can be specialized to the more
familiar case of finite hierarchies of theory inclusions by considering diagrams
whose diagram schemes are finite posets, and assuming a subcategory of the-
ory inclusions stable under pushouts along the lines of [10]. We think that it
is also quite promising to study heterogeneous structured theories, involving
several institutions, following the heterogenous specification ideas of Tarlecki
[33].

We plan to study further the institution S(C(Z)) (and other combinations
of the C and S constructions) which can serve as a semantic basis for an execut-
able generic module algebra that could be specified and executed in Maude,
and could be instantiated for one’s logic of choice, generalizing Maude’s mod-
ule algebra, which manipulates structured rewrite theories and is expressed
and executed within the reflective logical framework of rewriting logic [13,12].
This would allow endowing a specification language of choice with structured
theories and with a module algebra for free. Regarding S(C(Z)), two im-
portant questions are: (1) finding appropriate “normal forms” for freeness
constraints under suitable assumptions such as persistence; and (2) finding
suitable inductive inference systems that, in spite of their intrinsic incom-
pleteness, can approximate the logic of S(C(Z)) for a given Z.

Acknowledgement

We are grateful to Narciso Marti-Oliet, Peter Mosses, and the anonymous
referees for their careful reading of a previous version and for many useful
suggestions to improve the exposition.

16

AL LML LN

References

[1] M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.

[2] H. Baumeister. Unifying initial and loose semantics of parameterized
specifications in an arbitrary institution. In S. Abramsky and T. Maibaum,
editors, Proc. Int. Conf. on Theory and Practice of Software Development,
TAPSOFT’91, Brighton, UK, April 1991, volume 493 of Lecture Notes in
Computer Science, pages 103—-120. Springer-Verlag, 1991.

[3] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella, editors.
Algebraic System Specification and Development. A Survey and Annotated

Bibliography, volume 501 of Lecture Notes in Computer Science. Springer-
Verlag, 1991.

[4] R. Burstall and J. Goguen. The semantics of Clear, a specification language.
In D. Bjrner, editor, Proceedings of the 1979 Copenhagen Winter School
on Abstract Software Specification, volume 86 of Lecture Notes in Computer
Science, pages 292-332. Springer-Verlag, 1980.

[6] M. Clavel. Reflection in General Logics and in Rewriting Logic with
Applications to the Maude Language. PhD thesis, University of Navarre, 1998.

[6] M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and programming in rewriting logic. SRI
International, January 1999. Available at http://maude.csl.sri.com.

[7] M. Clavel and J. Meseguer. Reflection and strategies in rewriting logic.
In Meseguer [24]. Available at http://www.elsevier.nl/locate/entcs/
volume4.html.

[8] CoF1 Task Group on Language Design. CASL—The common algebraic
specification language, version 1.0. Available at http://www.brics.dk/
Projects/CoFI, October 1998.

[9] R. Diaconescu and K. Futatsugi. CafeOBJ Report. AMAST Series. World
Scientific, 1998.

[10] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for
modularisation. In G. Huet, G. Plotkin, and C. Jones, editors, Proceedings
of Workshop on Logical Frameworks (Edinburgh, United Kingdom, May 1991),
pages 83-130. Cambridge University Press, 1991.

[11] T. Dimitrakos. Parameterising (algebraic) specifications on diagrams.
In Automated Software FEngineering-ASE’98, 15th IEFE International
Conference, 1998.

[12] F. Durdan. A Reflective Module Algebra with Applications to the Maude
Language. PhD thesis, University of Madlaga, 1999. Available at http:
//www.csl.sri.com/“duran/thesis.

17

AL LML LN

[13] F. Duran and J. Meseguer. An extensible module algebra for Maude. volume 15
of Electronic Notes in Theoretical Computer Science. Elsevier, 1998. Available
at http://www.elsevier.nl/locate/entcs/volumel5.html.

[14] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations
and Initial Semantics. Springer-Verlag, 1985.

[15] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2. Module
Specifications and Constraints. Springer-Verlag, 1990.

[16] M. Gogolla and M. Cerioli. What is an Abstract Data Type after all? (A
bibliography on the workshops on abstract data types). In E. Astesiano,
G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type Specification,

volume 906 of Lecture Notes in Computer Science, pages 499-523. Springer
Verlag, 1995.

[17] J. Goguen and R. Burstall. Introducing institutions. In E. Clarke and D. Kozen,
editors, Proc. Logics of Programming Workshop, volume 164 of Lecture Notes
in Computer Science, pages 221-256. Springer-Verlag, 1984.

[18] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification

and programming. Journal of the Association for Computing Machinery,
39(1):95-146, 1992.

[19] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. Technical Report SRI-CSL-92-03, Computer Science
Laboratory, SRI International, March 1992. To appear in Joseph Goguen
and Grant Malcolm, editors, Applications of Algebraic Specification Using OBJ,
Academic Press.

[20] S. M. Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.

[21] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic
framework. In Meseguer [24]. Available at http://www.elsevier.nl/locate/
entcs/volume4.html.

[22] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Logic
Colloquium’87, pages 275-329. North-Holland, 1989.

[23] J. Meseguer. Membership algebra. Lecture at the Dagstuhl Seminar on
“Specification and Semantics”, July 1996.

[24] J. Meseguer, editor. Proc. 1st Intl. Workshop on Rewriting Logic and its
Applications, Asilomar, California, U.S.A, volume 4 of FElectronic Notes in
Theoretical Computer Science. Elsevier, September 1996. Available at http:
//www.elsevier.nl/locate/entcs/volume4.html.

[25] J. Meseguer. Membership algebra as a semantic framework for equational
specification. In F. Parisi-Presicce, editor, Recent Trends in Algebraic
Development Techniques. WADT’97, volume 1376 of Lecture Notes in Computer
Science, pages 18-61. Springer-Verlag, 1998.

18

L3 LN

[26] J. Meseguer and N. Marti-Oliet. From abstract data types to logical
frameworks. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent Trends
in Data Type Specification, volume 906 of Lecture Notes in Computer Science,
pages 499-523. Springer Verlag, 1995.

[27] F. Orejas, E. Pino, and H. Ehrig. Institutions for logic programming.
Theoretical Computer Science, 173:485-511, 1997.

[28] H. Reichel. Initially - restricting algebraic theories. In P. Dembinski, editor,
Proceedings of the 9th Symposium on Mathematical Foundations of Computer
Science, volume 88 of Lecture Notes in Computer Science, pages 504-514.
Springer-Verlag, 1980.

[29] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76(2/3):165-210, 1988.

[30] D. Sannella and M. Wirsing. A kernel language for algebraic specification and
implementation. In M. Karpinski, editor, Proceedings of the 1983 International
Conference on Foundations of Computation Theory. Borgholm, Sweden, August
21-27, 1983, volume 158 of Lecture Notes in Computer Science, pages 415-427.
Springer-Verlag, 1983.

[31] H. Schubert. Categories. Springer-Verlag, 1972.

[32] Y. Srinivas and R. Jiillig. SPECWARE: Formal support for composing software.
In B. Moeller, editor, Proceedings of the Conference on Mathematics of Program
Construction, volume 947 of Lecture Notes in Computer Science, pages 399-422.
Springer-Verlag, 1995.

[33] A. Tarlecki. Towards heterogeneous specifications. In Proc. Workshop on
Frontiers of Combining Systems FroCoS5°98, Applied Logic Series. Kluwer
Academic Publishers, 1998.

19

