
Jj&l& 
. . -- 
__ 

@ 
ELSEYIER 

TOPOLOGY 
AND ITS 

Topology and its Applications 69 (1996) 205-209 

APPLICATIONS 

A note on the homotopy invariance of Pontrjagin classes 

Neeta Singh 
Dqwrmenr of Murhemuticx University of All~kubrrd, Allthabad, 211002. Indict 

Received 16 September 1994; revised 10 August 1995, 21 September 1995 

Abstract 

We prove that the classical result of Wu that, for every n 2 I, the integral Pontrjagin class 7jn 
module 3 is homotopy invariant is the only and best possible result, ‘only’ in the sense that no 
other Pontrjagin classes of stable vector bundles-rational, integral, multiple of integral or integral 
modp, p # 3, are homotopy invariant and ‘best’ in the sense that I)*~ mod 3” is not homotopy 
invariant if T > 1. 

Kcywnxh: Integral Pontrjagin classes; Rational Pontrjagin classes; Pontrjagin classes modulo p”; 
Homotopy invariance; Adams operations 

AMS cLass@icutinn: 55R40; 55325; 57R20 

1. Introduction 

A classical result of Wu [ 141 states that integral Pontrjagin classes p,, mod 3, 77, = 

I, 2> 3,. are homotopy invariant. Singh [ 121 proved that this is the best possible result 

in the sense that for every n, 2 1, plL mod 3” is homotopy invariant only if T = 1. One 

of the aims of this paper is to show that Wu’s result is the best possible in another sense, 

namely, p, mod p, where p is an odd prime, is homotopy invariant only if p = 3. In 

other words, integral Pontrjagin classes module an odd prime p, p # 3, are not homotopy 

invariant. In fact, we prove the following: 

Theorem. Let p be an odd prime. For eve? n 3 1, p,, mod p’ is homotopy invariant 

#p = 3 and r = 1. 

The above result is the only positive result on the homotopy invariance of Pontrjagin 

classes. In contrast to results on topological invariance [8,6,10,11], we shall see that 

integral or multiples of integral Pontrjagin classes are not homotopy invariant. Rational 

Pontrjagin classes of stable bundles are not homotopy invariant [ 121, in fact, Kahn [3] 
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proved that up to rational multiple the only polynomial in rational Pontrjagin classes of 

a manifold whose value on the fundamental class of the manifold is homotopy invariant 

is the Hirzebruch polynomial Lk. We show that Lk itself is not homotopy invariant. 

2. Proof of the theorem 

Let BO and BG denotc the stable classifyin g spaces for real vector bundles and 

spherical fibrations respectively. Let .J: BO + BG denote the canonical map, G/O 

the homotopy fibre of J and c : G/O + BO the inclusion of the fibre. Since J o C 

is homotopic to a constant map, < may be thought of as a vector bundle which is 

homotopically trivial with a given trivialization. 

We recall from [12] that a universal characteristic class x E H*(BO; A), where il 

is any coefficient ring, is homotopy invariant if for every pair of homotopy equivalent 

bundles <O and Et over X, x(&j) = “:(<I), i.e., t;(x) = <F(x). We say that two vector 

bundles <O and Et over the base X with total spaces EC), Et and projections “0, 7rt 

respectively are homotopy equivalent if there is a fibre homotopy equivalence h, : I30 + 

El such that ~1 o h = 7~. 

Let u be the composite map: BO x G/O 3 BO x BO 3 BO where 1 represents 

the universal stable vector bundle m/ and m is the Hopf space multiplication. We assume 

that in the ring A, 2 is invertible, so that H* (BO; A) has no torsion. 

Proposition 2.1. A characteristic class 2 E H* (BO; A) is homotopy invariant i#u* 5 = 

II: Cg 1. 

The proof is same as in the case of topological invariance [lo]. 

Consider the fibration 

G/O[p] c[pl BO[p] .I BG[p] 

where the spaces and maps are localized at an odd prime p. Let k be a positive integer 

which reduces to a generator of the group of units in Z/p2. From May [5, p. 1241 we 

deduce from the splitting of G/O[p] that calculation of {[p] is the same as calculation of 

pk - I, where p” is the Adams operation and the calculation of (9” - 1)’ is standard; 

see, e.g., [9] or [2]. Thus the necessary and sufficient condition for homotopy invariance 

can now be stated in the following form: 

Proposition 2.2. A characteristic class x is hornotopy invariant iff x 3 1 = U*Z = 

(1 @ (9” - I)*) om*x. 

We require the following lemmas for the proof of the theorem. 

Lemma 2.3. 
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where the summation runs over il, i2,. . . , ‘Lr such that ij # i2 # .. . # i, and iltl + 
. . . + i,t,. = n. All i’s and t S are positive integers and (Y’S are nonzero integers. 

Proof, We recall from [4, p. 1111 that (!&’ - 1)“L = (!+@)*L/L and from [4, p. 1031 

that (Ik”)* : H4’“(BO; Q) + N4”(BO;Q) is multiplication by k2”. The lemma follows 

by comparing terms of degree 412 on both the sides. 0 

Lemma 2.4. Let p be an odd prime. If (p - 1) /2 divides n then p divides (k2pL - 1 ), and 

if (P - O/2 d oes not divide n then p will not divide (k2n - 1). 

Proof. Let r~ = (p - 1) . q/2 where q is an integer. Since k is a generator of (Z/p2)*, 

(k,p2) = 1 which implies (k,p) = 1. By Fermat’s theorem, kp-’ z l(modp). It fol- 

lows that k(J+‘)‘” E l(modp) or k27L z l(modp), thus p divides (kzn - I). Since k 

generates (Z/p’)* which is a group of order p(p - l), IcP(P-‘) E 1 (modp2). To show 

that k also generates (Z/p)*, let km s 1 (modp) for m < (p - 1). It follows that 

kTnp = 1 mod p*) which is a contradiction. Hence kp-’ E 1 (mod p) implies that k is a - ( 
generator of (Z/p)*. N ow if (p - 1)/2 does not divide n then 2n is not a multiple of 

(p - 1). Hence k2” +z? l(mody) or p does not divide (k27L - 1). 0 

Proof of the theorem. (Sufficient part) By [ 141, if p = 3 and T = 1, p,, mod p7’ is 

homotopy invariant. An alternative proof is given in [ 12, Theorem B]. 

(Necessary part) It is sufficient to prove that p, mod p is not homotopy invariant if 

p is an odd prime different from 3. In fact, we shall see that it suffices to prove that 

pl mod p, p # 3 is not homotopy invariant. 

Applying Lemma 2.3 for n = 1, we get (P”” - I)*,51 = (k2 - l)L,. Now since 

Ll = fm, if we take coefficients in Z[i, $1 we have (!P’- l)*p, = (k* - l)p, . Lemma 2.4 

fern= 1 implies that 3 will divide (k2 - 1) and no odd prime different from 3 will 

divide (k* - 1). Since ZcP) 8 Z/p 2 Z/p, for p # 3, (P’ - I)*@, mod p) # 0. Now 

v*(Pl mod p) = (1 @ (@ - l)*)m*(pl mod p) 

= (1 @ (@ - 1,*> (p ~modp@l+l@plmodp) 

= (pl mod p) @ 1 + 1 @ (P’ - l)*(pl mod p) 

# (PI mod P) @ 1. 

By the necessary and sufficient condition, this implies that pl mod p is not homotopy 

invariant_. In general 

.u*(P,, mod P> = ( P, mod p) @ 1 + (~~~-1 mod P) ~3 (*” - l)*(p~ mod p) 

+ c (p; mod p) @ (!P” - l)*(pj mod p) 
i-t-_jZTL, j>l 

# (pT1. mod p) @ 1 (since (!P”” - I )*(pl mod p) # 0). 

Again, using the necessary and sufficient condition for p,, mod p we get the result. 0 



Remark 2.5. From the above argument it follows that the universal integral Pontrjagin 

classes and their multiples are not homotopy invariant. 

Theorem 2.6. Hirzebruch classes L,, are not hornotopy invariant. 

Proof. By Lemma 2.3, we have 

where 

{ 

1 if il? ‘12, , i,. = 71,, 0, , 0, 
(xl,...i,. = 

(- l)(‘“+‘) if 1:1,%2 ,... .i,. = 1, I:...; 1. 

Since by definition of k, k: # 1, (k2” - I) # 0, implying (!@ - l)*LTL # 0. Hence by 

Proposition 2.2 I)* L,, # L,,, @ 1. Now by applying the necessary and sufficient condition 

for homotopy invariance we get the result. 0 
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