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Abstract. In this paper we show the following: For any A-free context-free language L there
effectively exist a weak coding g, a homomorphism h such that L=gh~'(¢ D,), where D, is the
Dyck set over a two-letter alphabet. As an immediate corollary it follows that for any A-free
context-free language L there exist a weak coding g and a mapping F such that L=gF™'(¢).

1. Introduction

There are a number of works which have been devoted to characterization theorems
of context-free languages of the form: Let £ be a class of languages; then each L
in £ can be expressed as f(L,), where L, is a possibly fixed, simple language in
%, and f is a simple combination of language operations. A well-known Chomsky
and Stanley characierization in [3] says that L can be expressed as h(Dn R) for
some homomorphism h, a Dyck set D, and a regular set R; in other words, as f(D)
where f is a finite transduction. Greibach’s theorem [2] asserts that L=h""(L,) for
some fixed language L, and a homorphism h. Further, several works on representa-
tion theorems of AFLs show that L can be expressed in the form L = h,h3 ' h,h;'(DS$),
for some homomorphisms h,, h,, h;, h, (cf. [4, 5, 8]).

In this paper we shall prove the following characterization of context-free
languages: For each \-free context-free language L there exist a weak coding g and
a homomorphism h such that L=gh™'(¢D,), wherc D, is the Dyck set over a
two-letter alphabet, and ¢ is a specific letter.

The rzader is assumed to i:z familiar with the rudiments of formal language
theory. Here we provide only the following definitions.

A homomorphism h is called a weak coding if the image of h is either a symbol
or the empty string. A weak coding is called a coding if it is \-free. For a language
L over T, the inverse homomorphism h™" is defined by h™'(L) ={x| h(x) in L}.

Let G=(N, T, P, S) be a context-free grammar in Greibach normal form, i.e., N
is the set of nonterminals, T is the set of terminals, S the iniiial symbol in N, and
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each rule of P is of one of the forms:
A->aB,...B, A->a, S-)\,

where B,,...,B,in N—{S},ain T

G is called simple deterministic if, for all Ain N, a in T, and 4, v in N*, A~>au
and A~ av in P imply u =v. A language L is simple deterministic if L is generated
by some simple deterministic context-free grammar.

Let r=1 and define G.=({S}, T,u T, P, S), where T,={a,,...,a,}, T.={4, | a;
in T,}, and P={S - Sa;Sa;S} U {S - \A}. A language D, generated by G, is called the
Dyck set over T,.

Let A=(Q, T, d, qo, F) be a finite-state automaton; then T(A) denotes the
set of strings accepted by A. Similarly, for a pushdown automaton B=
(Q, T,K d, qy, Z,, F), T(B) denotes the set of strings accepted by B with final
states, while N(B) denotes the set of strings accepted by B with the empty stack, i.e.,

T(A)={win T*|(qo, w, Zy) -* (g, \, u), q in F}
and

N(A) = {W in T*l(‘Io, w, ZO) '_* (qs K’ R)}'

As a notation, the transition relation - is sometimes associated with A as in 4 if
necessary.

In what follows, our attention is mainly concentrated on \-free languages. This is
because we would like to discuss only the essence of the subject in question, and
the result for the general case can be easily extended from the case of \-freeness.

2. An inverse homomorphic characterization of context-free languages

Lemma 2.1. For any \-free simple deterministic language L, there effectively exist a
coding g and a homomorphism h such that L= g(h~'(¢D,)), where D, is the Dyck
set over T,={a,, a,}, ¢ is a symbol not in T,u T.

Proof. We show the following: for any \-free simple deterministic grammar G, there
exist a simple deterministic grammar G,, a coding g and a homomorphism h such
that L(G) = g(L(G,)) and L(G,)=h"'(¢ D). This will immediately complete the
proof.

Let G=(N, T, P, S,) be a \-free simple deterministic grammar such that L = L(G),

where N={A,(=S,),...,A,}. Construct a simple deterministic grammar G,=
(N, T, P, S,) as follows:

T'={[A,a}]]A>axin P}, P'={A->[A, alx|A->axin P}.

Define g by g([A, a])=a for [A, a] in T'. Then, it is obvious that G, is simple
deterministic and L(G) = g(L(G,)) holds.
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Now, since G is simple deterministic, one can define a homomorphism h from
T'* into {a,, a,, 4,, a,, ¢}* as follows:

h([A,, a)) = 4,d34,a,a%"a, ... a,a} a,
ifA;»>aA;,...AminPandi#1,

h([A,, a)) =¢a,ada, ... a,a% a,
ifA,»aA; ... Ajnin P,

h([A;, a])=a,a:d, ifA;»ainPandi#1,

h([A,,a])=¢ ifA,»>ain P.

It suffices to show that L(G,)=h"'(¢D,) holds. We claim the following: For
by,....,bin T, Ay,..., A, in N—{A,}, we have

Alglib;... bkAil-°-Air (r?O) in Go
iff (1) h(b,...b)=¢y is a prefix of a word in ¢ D,,

() f(¢y)=¢aiaa,...aa7a,,
where f is a mapping defined by f(\) =\ and, for i=1, 2,
f(xa)=f(x)a;,
f(xa)=f(x)a; iff(x)notin/{a,,a,, a,, d,}*{a:},
f(xa;)=x' ifjux)=1'a,
f(¢)=¢.

(Note that =} indicates the k-step leftmost derivation, i.e., k consecutive rewrit-
ing steps in which the leftmost nonterminal is always rewritten. It is well-known
that any word generated by a simple deterministic grammar has a unique leftmost
derivation. Further, from the property of a simple deterministic grammar, the length
of a generated nonempty word exactly equals the number of derivation steps used.
A mapping image f(w), the reduced word, is the final resultant obtained by cancelling
all pairs a.a;.)

It should be noted that the claim suffices to prove the lemma. We shall prove the
claim by induction on the length of derivation steps.

(Basic step, k = 1): Suppose that A,=>b, or A,=>b,A;, ... A,. There exists A, > b,
or A,> b,A;,... A, in P'. Ther, h(b,)=¢ or h(b,)=t¢a,a’a,...a a3 a,. Clearly,
condition (2) linlds for either case. Converscly, assuming (1} and (2) for k=1 gives
us that i(b,) = ¢y, is a prefix of a word in ¢D, and f(¢y,) =¢a,aza,... a2y a,.
From the way of constructing h, if f(¢y;,) =¢ (r=0), i.e., y, is in D,, then we hgve
A,~b, is in P’ leading to A,=b,. Otherwise, h(b,)=¢y;=¢a1a54;. .. a,a3'a,
implies that A, - b,A;, ... A, is in P’". This verifies the case k=1.
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(Induction step): Suppose that A, =>[b,...bA,... A, (r=1) and A~
biAjr ... Ajm (M =0) is used at the (k+l)st step. Let h(bx+1) = yx+1- By the
induction hypothesis, f(¢y, ... y) =¢a,a%a, ... a,a% a,. Then, we have

F(h(by... b)) =F(&¥1 - . Yesr)
=¢a,ara,...a,a2a,a,a"a, ... a\akla,.

(Note that yy., = d,d5 d,a,a5"a, ... a,ad'a,.)
This also implies that h(b,...b.,) is a prefix of a word in ¢D,. Since
A 25 by b Ay .. AjmAss - . . Ay, the “only-if® part of the claim is proved.
Conversely, suppose that we have h(b, . .. b)) = ¢y . . . Yisr is a prefix of a word
in ¢D, and f(¢y, ... yxs1) =¢a,a5a, ... a,a5'a,. From the construction of h, we
have a partition:

Sy ...») =¢a|a¥a: oo alaipal s

fGrs) = h(bisy) = didsdaiasa, ... aafay,

where there exists A, > by; A;; ... A; in P'. However, since f(¢y, . . . Yi+1) is a word
of the form ¢a,a¥ a, ... a,a3a, there must be some cancellation between the two,
which implies that ip = t. By the induction hypothesis,

A= b ... bA,... A,
and applying A, = by, A;; ... A, We have
A28, . b A .. As. .. A

This completes the proof. [

Lemma 2.2. Foran arbitrarily given regular set R over T, U T,, there exists a determinis-
tic pushdown automaton such that

(i) jt accepts (D, R)# with the empty stack, where # is a specific symbol not in
T,uT, and

(ii) it has a special sta:z which appears only once as a final state and no transition
Jrom this state is defined.

Presf. Let A=(Q,, T, u T, da, Po, F4) be a deterministic finite-state automaton
SHCb that T(A) = R‘ Then’ by COﬂStructing A' = (QOU {pf}a Tr (Y Tr v { # }a dA's p(h
{pe}), where

da(q, #)=pc for all g in F,

da(p,a)=ds(p,a) forallpin Qy, ain T,u T,

we obtain a deterministic finite-state automaton A’ which accepts R#.
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Now, construct a deterministic pushdown automaton B =({qq, q,, q¢}, T,u T.u
{#}, T,UT,U{Zy}, ds, qo, Zo, {gs}), where

dg(qo, ai, Zo; =(q1, Zoa;)) (1si<r),

dp(qi, ai, a)=(qy,aqa;) (A=<ij=<r),

dp(qy, G, @) =(q:,\) (I=sisr),

ds(q:. N, Z5) =(qo, Zo),  dp(qo, #, Zo) = (gr, \).

It is easily seen that N(B) (=T(B)) = D, # holds.
Finally, !et a deterministic pushdown automaton C be defined as follows; C =

({‘Io, qla qf}x QOa 1; Ko dCs (‘Io, pO)’ ZOs {(Qr, Pf)})’ Where
T=T,uTu{#}, K=TuTu{z},

‘fic((q, p)$ a, Z) = ((q" dA'(p: a))’ u) if dB(q’ a, Z) = (q'a u)'

Then it can be checked that, for each (g, p), (¢, p’) in {qo, g1, g} X Qo, W in T%,
u, vin K*

((q,p), w,u)FE (', p), N\, v) iff (g, w,u)%(q’,\,v) and d.(p, w)=p".

Letting (q, p) =(qo, Po), ¥ =2Z,, and v=X\, we have that w is in N(C) iff w is in
both N(B) (=D, #) and T(A’) (=R#). Hence, N(C)=(D,n R)# holds and C
satisfies the desired condition. O

Lemma 2.3. Let C be the deterministic pushdown automaton obtained in Lemma 2.2.
Then there exist a coding f and a \-free simple deterministic grammar G such that

N(C)=f(L(G)).

Proof. Note that, in a given C=(Q, T, K, dc, so, Zo, {s¢}), the final state s; satisfies
condition (ii) in Lemma 2.2, and that the length of u in a-transition d-(g, a, A) =
(p, u) is at most 2. We may assume that

(50, x, Zo) * (g, A\, ) iff g=s;.

Now, define a context-free grammar G=(N, T, P, S,) as follows:
(i) N=(QxKxQ),
(") T'= {[)\’ a]’ [QIs a]a [qlq‘b a]lqh q: in Q9 a in T}’
(iil) So=(50, Zo, 51);
(iv) forain TU{\}, ¢,p in Q, A, B,, and B, in K,
(1) if dc(q, a, A) = (p, B,B,), then, for each q,, g, in Q,

(9, A, 42)~>[49:92, al(p, Bz, 1)(g1, By, ) is in P,
(2) if dc(q, a, A)=(p, B), then, for each q' in Q,
(9, A, q)~>[q',al(p,B,q') isin P,
(3) if dc(g, a, A)=(p, \), then (q, A, p)>[\,a] isin P.
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From the way of constructing P of G aau the property (determinism) of C, it can
be checked that
(i) G is \-free, and
(ii) for A'in N, ', v'in N*, @' in T', A’»>a'u’ and A'>a’v’' in P imply u' =10/,
i.e., G is simple dete-ministic.
Further define a homomorphism f by
f([u,al)=a for each[u,a]in T

Then we claim that, for each w in T, x,y in T* p,q,q' in Q, and z=
(pl’ Bls ql)'-'(pks Bks qk) in N*;

(g.A,g)=>Lwz and f(w)=x

iff (g, xy, A)~¢(p,y, Bi... By)
and either zisin H or (z=\ and p=gq’),

where H={z in N*|z=2z,(p, A\, 9)(q', A, 9")z, implies g = q'}, i.e., H is the set
of strings of triples where the triples are all internally linked between the last
component and the next first component. (The claim can be shown by induction
on n. Refer to [3, pp. 154-157] for the details.)

Now, let g =so, A=2Z,, p=q'=s, and z=y=\. Then, we have that

(S0s Zo, s)=>"w and f(w)=x
iﬁ (So, X, ZO) *_2‘ (sf' Ra k)'
Thus, N(C)=f(L{G)) is obtained. O

Further, we have the following well-known result.

Lemma 2.4. Any context-free language L can be expressed in the form t(D, R) for
some weak identity t and a regular set R (see, e.g., [3]).

The series of lemmas above leads to the following main resuit.

Theorem 2.5. For any \-free context-free language L, there effectively exist a weak
coding g, a homomorphism h such that L = gh™'(¢ D).

Proof. By Lemma 2.4. we have L= ¢(D, n R). Further, Lemmas 2.2 and 2.3 tell us
that (D, n R)# = f(L,}, for some coding f and a \-free simple deterministic language
L,. Now, extend ¢ and define ¢ as #'(# ) =\, t'(a) = t(a) (otherwise); then we have

L=0r({D,nR)#)=1t(f(Ly)).
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Since it holds true by Lemma 2.1 that L,= k(h~'(¢D.)) for some coding k and a
homomorphism h, we eventvally have

L=1t(f(k(h™'(¢Dy)))) =g(h~'(¢D,)), where g =1'fk.
Thus, L = gh™'(¢ D»), for some weak coding g and homomorphism h, is obtained. [

Corollary 2.6. For any \-free context-free language L, there effectively exist a weak
coding g, a mapping F such that L=gF~'(¢), where F is a composition fh, f is a
mapping defined in the proof of Lemma 2.1, h is a homomorphism.

The next result immediately follows from Theorem 2.5 and from the fact that for
each recursively enumerable language K there exist an alphabet T, a \-free simple
deterministic (linear) language L on T*T*, and a weak identity g such that
K =g(Dn L), where D is the Dyck set over T (cf. [1]).

Corollary 2.7. For each recursively enumerable language K there exist an alphabet T,
a weak identity g, a coding f and a homomorphism h such that K = g(D ~ f(h™'(¢ D)),
where D is the Dyck set over T.

Corollary 2.8. For each recursively enumerable language K there exist an alphabet T,
a weak identity g, a coding f and a homomorphism k such that K=
g(ho'(Dy) nf(h™'(¢D,))), where hy is a homomorphism depending on only the size
of T.

This is also obtained from Theorem 2.5 and the fact that, for D over T, there is
a homomorphism h, such that D = h;'(D,), and h, depends on only the size of T.

3. Concluding remarks

We have shown that any A-free context-free language L can be expressed in the
form gh™'(¢D,), for some weak coding g and homomorphism h, where D, is the
Dyck set over a two-letter alphabet. Rather recently, Yokomori and Wood [9]
showed the following result that is closely related to the above characterization: Let
< be a full principal AFL closed under context-free substitution. Then there is a
fixed language L, in & such that for each L in £ there exist a weak coding g and
a homomorphism h such that L = gh™'(L,). Since the proof for the result is construc-
tive, there effectively exists such a fixed language L,. However, it turns out that L,
is much more complicated than ¢ D,. (In fact, L, would be an extended nondeter-
ministic version of ¢D,.) Thus, our characterization of context-free languages
presented here provides a refinement of the result mentioned above.

It is also interesting to compare the main result here with the following, shown
(in principle) in [6] or [7], that for any \-free context-free language L, there exists
a finite substitution f such that L=f""(¢D,). That is, it may be said that as far as
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the representation of context-free languages is concerned, the inverse of a finite
substitution can be replaced by a composition of an inverse homomorphism and a
weak coding.
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