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a b s t r a c t

This paper proposes an optimal congestion management approach in a deregulated
electricity market using particle swarm optimization with time-varying acceleration
coefficients (PSO-TVAC). Initially, the values of generator sensitivity are used to select
redispatched generators. PSO-TVAC is used to determine the minimum redispatch cost.
Test results on IEEE 30-bus and 118-bus systems indicate that the PSO-TVAC approach
could provide a lower rescheduling cost solution compared to classical particle swarm
optimization and particle swarm optimization with time-varying inertia weight.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In a deregulated electricity environment, transmission congestion management is a function and responsibility of
independent system operators (ISOs). There are several system operating limits to be observed including thermal, voltage
and stability limits.
A number of the congestion management approaches are presented in [1]. In [2–4], the technique called transmission

congestion distribution factors (TCDFs) is discussed. The zones are divided by active and reactive power flow sensitivity
indexes. Nevertheless, when all buses are considered, this technique requires a huge computational effort. In [5], an
optimal power flow (OPF)-based approach for minimizing cost of congestion and service costs are expressed. In [6], OPF for
coordination between generation companies and the ISOs using the Benders cuts is discussed. In [7], OPF is used to adjust
the power injection in the least costmanner and optimal curtail transactions due to voltage instability and thermal overload.
In [8], relative electrical distance (RED) concept is introduced tomitigate the transmission overload by real power generation
rescheduling. The method minimizes the system losses and maintains the voltage profile. However, the rescheduling cost
is not considered by this method. In [9], the optimal generation rescheduling approach considering the rescheduling cost
minimization based on particle swarm optimization (PSO) is proposed. Although PSO is an efficient solution approach for
non-convex optimization problems, the statistical results should be investigated to confirm searching performance of the
optimizer.
In this paper, the congestion management approach based on particle swarm optimization with time-varying

acceleration coefficients (PSO-TVAC) is proposed. The redispatch cost of participating generators is minimized satisfying
power balance, generator operating limit and line flow limits constraints. PSO-TVAC is compared to classical particle swarm
optimization (CPSO) and particle swarm optimizationwith time-varying inertiaweight (PSO-TVIW) in searching for optimal
congestion management solutions on the IEEE 30 and 118-bus systems.
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Nomenclature

The notations used in this paper are given below.

g Participating generator.
Ng Number of participating generators.
ICg Incremental and decremental cost of generator g .
1Pg Active power adjustment at bus g .
1Pming Minimum adjustment limit of generator g .
1Pmaxg Maximum adjustment limit of generator g .
Pg Active power output.
Pming Minimum generation limit of generator g .
Pmaxg Maximum generation limit of generator g .
F 0l Power flow caused by all contracts requesting the transmission service.
Fmaxl Power flow limit of line l.
nl Number of transmission lines in the system.
1Pij Changed in active power flow on the line connected between buses i and j.
1PGg Changed in active power of generator g .
n Number of all the buses in the system.
Vi, Vj Voltage magnitude at buses i and j.
θi, θj Phase angle at buses i and j.
Gij Conductance of the line connected between buses i and j.
Bij Susceptance of the line connected between buses i and j.
k Current iteration number.
C Constriction factor.
w Inertia weight.
c1 Cognitive acceleration coefficient.
c2 Social acceleration coefficient.
randi Random numbers between 0 and 1, i = 1, 2.
wmin Minimum inertia weight.
wmax Maximum inertia weight.
kmax Maximum number of iterations.
c1i, c1f Initial and final values of c1.
c2i, c2f Initial and final values of c2.

2. Problem formulation

The optimal congestion management minimizing redispatch cost can be expressed as [9]

Min
Ng∑
g

ICg
(
1Pg

)
·1Pg (1)

subject to:

power balance constraint

Ng∑
g=1

1Pg = 0 (2)

operating limit constraints

1Pming ≤ 1Pg ≤ 1P
max
g ; g = 1, 2, . . . ,Ng (3)

where1Pming = Pg − P
min
g and1Pmaxg = Pmaxg − Pg

line flow constraints
Ng∑
g=1

(
GSij

g
·1Pg

)
+ F 0l ≤ F

max
l ; l = 1, 2, . . . , nl. (4)
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3. Selecting redispatched generators

The generator sensitivity (GS) technique indicates the change of active power flow due to change in active power
generation. The GS value of generator g on the line connected between buses i and j can be written as [9]

GSijg =
1Pij
1PGg

=
∂Pij
∂θi
·
∂θi

∂PGg
+
∂Pji
∂θj
·
∂θj

∂PGg
. (5)

The power flow equation on congested lines can be calculated by

Pij = −V 2i · Gij + Vi · Vj · Gij · cos(θi − θj)+ Vi · Vj · Bij · sin(θi − θj). (6)
The differentiations of (6) with respecting to θi and θj are in (7) and (8) as

∂Pij
∂θi
= −Vi · Vj · Gij · sin(θi − θj)+ Vi · Vj · Bij · cos(θi − θj) (7)

∂Pij
∂θj
= +Vi · Vj · Gij · sin(θi − θj)− Vi · Vj · Bij · cos(θi − θj) = −

∂Pij
∂θi

. (8)

The active power injected at a bus-s which refers to any bus in the system can be calculated as

Ps = |Vs| ·
n∑
t=1

{(Gst · cos (θs − θt)+ Bst · sin (θs − θt)) · |Vt |}

= |Vs|2 · Gss + |Vs| ·
n∑
t=1
t 6=s

{(Gst · cos (θs − θt)+ Bst · sin (θs − θt)) · |Vt |} . (9)

Further calculation can be linked by differentiating (9) as

∂Ps
∂θt
= |Vs| · |Vt | · {Gst · sin(θs − θt)+ Bst · cos(θs − θt)} (10)

∂Ps
∂θs
= |Vs| ·

n∑
t=1
t 6=s

{(−Gst · sin (θs − θt)+ Bst · cos (θs − θt)) · |Vt |} . (11)

The relation between the change in active power at each bus and voltage phase angles can be written as
[1P]n×1 = [H]n×n · [1θ ]n×1 (12)

[H]n×n =



∂P1
∂θ1

∂P1
∂θ2

. . .
∂P1
∂θn

∂P2
∂θ1

∂P2
∂θ2

. . .
∂P2
∂θn

...
...

. . .
...

∂Pn
∂θ1

∂Pn
∂θ2

. . .
∂Pn
∂θn


n×n

. (13)

Given [M] = [H]−1 . (14)

Thus [1θ ] = [M] · [1P] . (15)
Since bus 1 is the reference bus, the first row and first column of [M] can be eliminated. Therefore, the modified [M] is

written as

[1θ ]n×1 =
[
0 0
0 [M−1]

]
n×n
· [1P]n×1 . (16)

In (16), the modified [M] represents the values of (∂θi)/(∂PGg ) and (∂θj)/(∂PGg ) in (5) to calculate GS values. Large GS
generators will be selected for redispatch since they are more influential on the congested line.

4. PSO schemes

PSO is an efficient population-based optimization technique [10]. During a search, all particles keep their personal best
positions, pbestp = (pp1, pp2, . . . , ppd), and their global best position, gbestg = (gg1, gg2, . . . , ggd), to adjust their velocities.
Velocity of particle p, Vp = (vp1, vp2, . . . , vpd), determines searching directions of the particle. A position of particle p,
Xp = (xp1, xp2, . . . , xpd), is updated using its velocity. In the optimal congestion management problem, a particle position
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represents the amount of redispatch power generation shown in Fig. 1. Xk+1p is the updated position at iteration k + 1 of a
particle p. Each dimension of particle position could be updated by different PSO schemes described below.

Fig. 1. Particle positions representing and redispatch power generation.

4.1. Classical PSO (CPSO)

CPSO is mathematically defined as [10]

vk+1pd = w · v
k
pd + c1 · rand1 ·

(
pbestpd − xpd

)
+ c2 · rand2 ·

(
gbestgd − xpd

)
(17)

xk+1pd = xpd + v
k+1
pd . (18)

In (17), a velocity updating equation of CPSO is shown. A particle position will be updated by (18).

4.2. PSO with time-varying inertia weight (PSO-TVIW)

The main concept of PSO-TVIW is similar to CPSO in which the Eqs. (17)–(18) are used. However, for PSO-TVIW the
velocity update equation is modified by the constriction factor C and the inertia weightw is linearly decreasing as iteration
grows [11]

vk+1pd = C
{
w · vkpd + c1 · rand1 ·

(
pbestpd − xpd

)
+ c2 · rand2 ·

(
gbestgd − xpd

)}
(19)

w = (wmax − wmin) ·
(kmax − k)
kmax

+ wmin. (20)

C =
2∣∣∣2− ϕ −√ϕ2 − 4ϕ∣∣∣ , where 4.1 ≤ ϕ ≤ 4.2. (21)

4.3. PSO with time-varying acceleration coefficients (PSO-TVAC)

PSO-TVAC is extended from PSO-TVIW. All coefficients including inertia weight and acceleration coefficients are varied
with iterations. The velocity updating equation of PSO-TVAC can be expressed as [12]

vk+1pd = C
{
w · vkpd +

((
c1f − c1i

) k
kmax
+ c1i

)
· rand1 ·

(
pbestpd − xpd

)
+

((
c2f − c2i

) k
kmax
+ c2i

)
· rand2 ·

(
gbestgd − xpd

)}
. (22)

5. PSO-TVAC procedure

The procedure of PSO-TVAC for the congestion management problem is described as follows.
Step 1: Line and bus data are input to obtain power flow analysis solution.
Step 2: GS values at generator buses are determined and redispatched generators are selected.
Step 3: PSOparameters such as inertiaweight, acceleration coefficients, and number of particles and iterations are specified.
Step 4: Particles’ positions are randomly initialized and the iteration counter is set as 1.
Step 5: Particles’ fitness is evaluated by the objective function in (1).



1072 P. Boonyaritdachochai et al. / Computers and Mathematics with Applications 60 (2010) 1068–1077

Step 6: Particle positions and velocities are updated by (18) and (22), respectively.
Step 7: If the maximum PSO iteration is reached, the optimal solution is the position of the global best particle. Otherwise

increase the iteration counter by 1 and go to Step 5.

The PSO-TVAC procedure could be summarized in Fig. 2.

Fig. 2. Flowchart of the PSO-TVAC for congestion management.

6. Numerical results

The proposed congestion management approach based on PSO-TVAC is tested on the IEEE 30-bus and 118-bus systems
and compared with the CPSO and PSO-TVIW approaches. In Table 1, PSO parameters are given.

Table 1
Parameters of PSO.

Parameters CPSO PSO-TVIW PSO-TVAC

C – ϕ = 4.1 ϕ = 4.1

w 0.5 wmin = 0.4 wmin = 0.4
wmax = 0.9 wmax = 0.9

c1 2 2 c1i = 2.5, c1f = 0.2

c2 2 2 c2i = 0.2, c2f = 2.5

6.1. IEEE 30-bus system

Here, the IEEE 30-bus system with 6 generators and 41 lines is used. The system configuration is shown in Fig. 3 and the
system data can be found in [13]. Bus 1 is assigned as the reference bus. A congested line between buses 1 and 2 exists as
shown in Table 2. The maximum number of iterations and particles are set as 500 and 70, respectively.
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Fig. 3. The IEEE 30-bus system configuration.

Table 2
A congested line on the IEEE 30-bus system.

Congested line Active power flow (MW) Line limit (MVA) Overload (MW)

1 to 2 170 130 40

The GS values of 6 generation units in the IEEE 30-bus system are shown in Table 3. Considering GS values, all generators
are selected for redispatch.
In the IEEE 30-bus system, the GS of all 6 generators are high. This implies that all generators should be used to relieve

the congested line. For a larger system, selected group of generators having the largest GS values may be used to save the
computational effort.

Table 3
Generation sensitivity of 6 units on the IEEE 30-bus system.

Gen no. 1 3 5 8 11 13

GS 1–2 0 −0.8908 −0.8527 −0.7394 −0.7258 −0.6869

In Fig. 4, the average active power adjustment and GS values of each generator are shown. With 50-trial simulation,
statistical results with different PSO approaches are compared in Table 4. PSO-TVAC provides the minimum redispatch cost
solution of $ 237.9/h, whereas CPSO and PSO-TVIW provide $ 240.3/h and $ 239.2/h, respectively. In addition, the solutions
of PSO-TVAC have the lowest standard deviation compared to the other PSO.
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Table 4
Comparison of PSO solutions on the IEEE 30-bus system.

MW 1P1 1P2 1P5 1P8 1P11 1P13 Total1P Cost ($ /h)

CPSO

Max −66.1 28.9 23.3 18.1 6.2 3.7 146.3 403.1
Min −47.9 18.6 16.5 11.3 2.8 0.1 97.2 240.3
Mean −55.9 22.6 16.2 10.5 5.6 2.6 113.2 287.1
SD 8.3 7.6 3.5 3.3 3.2 3.3 15.9 48.2

PSO-TVIW

Max −58.5 16.7 13.0 11.8 8.6 5.7 114.2 288.0
Min −47.3 20.1 14.5 10.5 4.8 0.5 97.7 239.2
Mean −50.1 18.9 13.2 9.2 5.9 4.1 101.4 253.1
SD 2.8 3.5 5.4 3.3 3.5 6.1 13.3 3.8

PSO-TVAC

Max −51.1 22.0 14.7 8.8 6.2 1.0 103.8 254.9
Min −47.3 25.1 16.0 7.6 0.6 0.0 96.7 237.9
Mean −49.3 17.5 14.0 9.9 6.8 3.0 100.5 247.5
SD 0.8 2.1 2.1 2.2 2.3 2.4 4.6 1.6
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Fig. 4. GS values and generation redispatch on the IEEE 30-bus system.

In Fig. 5, the convergence characteristics of different PSO schemes are shown. The proposed PSO-TVAC could converge
to a better solution than CPSO and PSO-TVIW.

Fig. 5. Convergence characteristics of PSO schemes on the IEEE 30-bus system.
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6.2. IEEE 118-bus system

The IEEE 118-bus system with 54 generators and 186 lines [14–17] is used here. Bus 1 is assigned as the reference bus.
The congested line data is shown in Table 5.

Table 5
A congested line on the IEEE 118-bus system.

Congested line Active power flow (MW) Line limit (MVA) Overload (MW)

89 to 90 260 200 60

In Fig. 6, the illustration of GS values is shown. GS values of all generator buses are compared in Table 6. The generator
buses 85, 87, 89, 90, and 91 are among the largest magnitude of GS. This implies that these generators could significantly
affect to the congested line. Thus, they are chosen as redispatched generators.
Using the largest GS values, only 6 generators out of 54 are used for redispatching by PSO, requiring a much less

computational effort.
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Fig. 6. GS values of 54 units on the IEEE 118-bus system.

Table 6
GS values of 54 generators on the IEEE 118-bus system.

Gen no. GS (10−3) Gen no. GS (10−3) Gen no. GS (10−3)

1 0 42 −0.0375 80 −0.9250
4 −0.0005 46 −0.0242 85 50.068
6 −0.0001 49 −0.0460 87 50.654
8 −0.0014 54 −0.0838 89 74.455
10 −0.0014 55 −0.0871 90 −701.15
12 0.0004 56 −0.0854 91 −427.90
15 0.0021 59 −0.1100 92 −28.411
18 0.0051 61 −0.1160 99 −9.391
19 0.0046 62 −0.1130 100 −12.915
24 0.1350 65 −0.1350 103 −12.737
25 0.0484 66 −0.0983 104 −12.854
26 0.0337 69 0.2120 105 −12.772
27 0.0451 70 0.3690 107 −12.202
31 0.0339 72 0.2326 110 −12.274
32 0.0477 73 0.3400 111 −12.07
34 −0.0323 74 0.5410 112 −11.747
36 −0.0329 76 0.8650 113 0.0110
40 −0.0343 77 0.0012 116 −0.1750
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With 50-trial simulation, the solutions from different PSO approaches are shown in Table 7. From the results, PSO-TVAC
provides the lowest redispatch cost of $ 829.5/h, while CPSO and PSO-TVIW provide the minimum $ 875.0/h and $ 853.8/h,
respectively. Mean and standard deviation values of PSO-TVAC are also lower than the other PSO.

Table 7
Comparison of PSO solutions on the IEEE 118-bus system.

MW 1P1 1P85 1P87 1P89 1P90 1P91 Total1P Cost ($ /h)

CPSO

Max −5.1 −6.4 −8.6 −122.9 117.8 18.9 279.8 1604.5
Min −5.1 −27.3 −27.5 −28.9 68.1 25.9 182.7 875.0
Mean −5.9 −15.3 −31.5 −62.0 85.1 26.8 226.6 1183.8
SD 4.4 8.4 11.4 17.5 23.2 14.6 30.5 196.4

PSO-TVIW

Max −2.7 −13.8 −23.4 −97.7 121.4 10.4 269.4 1497.8
Min 3–6.8 −18.2 −28.2 −33.1 78.3 8.9 173.5 853.8
Mean −5.5 −12.1 −28.2 −59.8 76.4 29.8 211.7 1088.4
SD 4.3 6.7 10.7 16.9 21.1 13.5 26.3 165.8

PSO-TVAC

Max −5.9 −6.2 −6.5 −96.2 80.1 30.5 225.5 1229.6
Min −0.8 −12.1 −13.9 −52.3 81.6 3.3 163.8 829.5
Mean −4.4 −10.3 −22.0 −58.5 69.4 24.7 189.3 970.7
SD 2.9 5.0 10.0 15.1 9.8 16.1 16.5 94.5

Fig. 7 shows the relationship between power redispatch and GS values. As the GS at bus 85, 87, and 89 are positive, the
generation output at these buses is reduced. By contrast, the generators at bus 90 and 91 have negative GS values, thus the
generation is increased. Moreover, the GS magnitude affects the amount of active power adjustment. The reference bus is
used to maintain the power balance.

Generator bus no.
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Fig. 7. GS values and power redispatch on the IEEE 118-bus system.

In Fig. 8, convergence characteristics of CPSO, PSO-TVIW, and PSO-TVAC are shown. The maximum iteration limit is set
to 1000. PSO-TVAC could converge to a lower redispatch cost than CPSO and PSO-TVIW.
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Fig. 8. Convergence characteristics of PSO schemes on the IEEE 118-bus system.

7. Conclusion

In this paper, the optimal congestion management approach based on PSO-TVAC is efficiently minimizing redispatch
cost. Redispatched generators are selected based on the large magnitude of GS. Test results on the IEEE 30-bus and 118-bus
systems indicate that PSO-TVAC is superior to CPSO and PSO-TVIW in providing the optimal congestion management. The
proposed approach is useful for ISOs in managing the transmission congestion in a deregulated electricity environment.
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