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SUMMARY

Dengue is the most common vector-borne viral dis-
ease, causing nearly 400 million infections yearly.
Currently there are no approved therapies. Antibody
epitopes that elicit weak humoral responses may
not be accessible by conventional B cell panning
methods. To demonstrate an alternative strategy to
generating a therapeutic antibody, we employed a
non-immunodominant, but functionally relevant,
epitope in domain III of the E protein, and engineered
by structure-guidedmethods an antibody directed to
it. The resulting antibody, Ab513, exhibits high-affin-
ity binding to, and broadly neutralizes, multiple geno-
types within all four serotypes. To assess therapeutic
relevance of Ab513, activity against important human
clinical features of dengue was investigated. Ab513
mitigates thrombocytopenia in a humanized mouse
model, resolves vascular leakage, reduces viremia
to nearly undetectable levels, and protects mice in
a maternal transfer model of lethal antibody-medi-
ated enhancement. The results demonstrate that
Ab513 may reduce the public health burden from
dengue.

INTRODUCTION

Dengue is the most important mosquito-borne viral disease

affecting humans. Half of the world population lives in areas

at risk for dengue, resulting in an estimated 390 million infec-

tions per year globally (Bhatt et al., 2013). Dengue is a self-

limiting, systemic illness caused by any of four dengue virus se-

rotypes, DENV-1 through DENV-4, which share only 60%–75%

identity in amino acid sequence. Infection results in life-long
protection to the infecting serotype but only transient protec-

tion to heterologous serotypes. Currently, there is no specific

treatment available, and the leading vaccine candidate recently

demonstrated limited efficacy, estimated to be between 30%–

60%, with limited to no significant protection against DENV-2

(Capeding et al., 2014; Sabchareon et al., 2012; Villar et al.,

2015).

Passive immunotherapy with monoclonal antibodies repre-

sents a potentially important approach to the treatment of

dengue. Treatment with monoclonal antibodies has been shown

to rapidly and substantially reduce viral titers in several in-

stances, including influenza (Ramos et al., 2015) and HIV (Cas-

key et al., 2015). Therapeutically viable antibodies to infectious

diseases must have a broad coverage of genetically diverse

strains. Such antibodies are typically identified by large-scale

panning exercises of B cells from infected individuals. These ap-

proaches are inherently biased by the native humoral immune

response, and as such, may be limited in accessing epitopes

that elicit no or little humoral response but may yet be function-

ally important target epitopes. Moreover, antibody therapy to

immunodominant regions has the potential to cause immune

interference, such as by masking important epitopes for eliciting

a memory protective response (Siber et al., 1993; Siegrist et al.,

1998; Zhang et al., 2007).

Utilizing panning of B cells derived from infected patients or

challenged mice, a range of DENV-neutralizing antibodies have

been identified, including those with reactivity to multiple sero-

types (Beltramello et al., 2010; Brien et al., 2010; de Alwis

et al., 2011; Lai et al., 2013; Smith et al., 2013). Studies charac-

terizing the human humoral response to DENV infection have

found that it is dominated by antibodies to prM and domain I

and II (DI/II) of the envelope (E) glycoprotein (Beltramello et al.,

2010; Dejnirattisai et al., 2010; Lai et al., 2008). More recent

studies have indicated that antibodies which bind complex, qua-

ternary E protein epitopes on the virus surface (de Alwis et al.,

2012; Fibriansah et al., 2014; Teoh et al., 2012), notably the hinge
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region connecting EDI and EDII, appear to contribute the major-

ity of the human humoral DENV neutralizing activity and may

mediate long-term protection, albeit in a serotype-specific

manner (de Alwis et al., 2012). In contrast, anti-EDIII antibodies

have been shown to constitute a minor proportion of the overall

human humoral response and also contribute little of the anti-

DENV neutralizing activity (Dejnirattisai et al., 2010; Wahala

et al., 2012; Wahala et al., 2009; Williams et al., 2012). Addition-

ally, there have been recent reports of potent antibodies that

bridge E monomers (EDE-directed antibodies) (Dejnirattisai

et al., 2015).

As EDIII-specific antibodies have been shown to constitute a

minor component of the overall human humoral response but

have high potency, we investigated whether targeting EDIII

might represent an important strategy for immunotherapy. How-

ever, existing EDIII-directed antibodies are not fully cross-reac-

tive; while they typically exhibit high potency due in part to

greater antibody accessibility, none have been shown to

neutralize diverse genotypes among all four serotypes. We

recently described the derivation of antibody 4E5A, which was

engineered from 4E11, a mouse antibody directed to an acces-

sible EDIII epitope, without the assistance of crystal structure

information through a structural-physicochemical statistical

approach (Tharakaraman et al., 2013).

Herein, we describe a structural framework developed to char-

acterize the epitope-paratope interface on domain III, thereby

enabling us to engineer an optimized antibody candidate,

Ab513. Ab513 was extensively characterized in vitro and in vivo

to investigate its potential to alter dengue pathogenesis. Ab513

represents an alternative, complementary approach to identifi-

cation of broad-spectrum antibodies, and illustrates an effective

strategy to target non-immunodominant but functionally relevant

epitopes.

RESULTS

Structure-Guided Redesign of 4E5A
Recently, we reported the engineering of antibody 4E5A from

4E11 with improved binding, especially to DENV-4; however,

affinity to DENV-4 was still modest (100 nM) compared to the

other serotypes. Analysis of genetic variability in epitope re-

gions confirms that the region targeted by 4E5A is far more

conserved compared to the EDI/II hinge epitope region. There-

fore, to develop a broad-spectrum potent antibody for dengue

that targets a non-immunodominant epitope, we redesigned

4E5A for improved affinity to DENV-4, leveraging analysis of

the epitope-paratope interface. Adapting from network (graph)

theory, we developed a framework to compute the inter-residue

atomic interactions between interacting amino acid pairs of an

antigen-antibody interface. As such, we define the inter-residue

interactions between a CDR residue and its neighboring epitope

residues, rendered in a 2D graph format, as the epitope-para-

tope connectivity (EPC) network (Experimental Procedures).

CDR mutations or positions (when mutated) that contribute to

more favorable epitope contacts, as evaluated by EPC network

analysis, were investigated experimentally. To wit, absent in the

identification of 4E5A was interrogation of amino acids within

CDR-H1 which, unlike CDR-H3, is positioned at the Ab-Ag
494 Cell 162, 493–504, July 30, 2015 ª2015 Elsevier Inc.
interface periphery, thereby potentially allowing for subtle

changes to the binding interface. Therefore, 4E5A CDR-H1

was inspected as a potential region to engineer, to test the

accuracy of our epitope-paratope description and to develop

an optimized immunotherapy candidate targeting a specific

epitope.

First, we hypothesized that subtle differences in the CDR

backbone and/or residue side-chain conformation between the

4E11 model developed earlier (Tharakaraman et al., 2013) and

the crystal structure, published recently (Cockburn et al.,

2012), could have led us to underestimate the significance of

certain CDR residues in our previous design calculations. While

the placement of the majority of the backbone and side-chain

atoms were highly similar (pairwise Ca RMSD of the six CDR

loops, CDR-H1, -H2, -H3, -L1, -L2, -L3, varies from 0.176 to

0.407 Å), one notable exception was Thr33 of CDR-H1, which

is observed to be in close contact with Lys310, Lys323, and

Val364 of DENV-4 EDIII (Figure S1). In all the DENV-1 to -4 co-

crystal structures (3UZE, 3UYP, 3UZQ, 3UZV), the CG2 carbon

of Thr is proximal to the CG2 carbon of Val364 filling a void be-

tween VH and EDIII, whereas in the homology model, the CG2

carbon points away from Val364 disrupting this hydrophobic

contact. In view of the different side-chain orientation of Thr33,

we hypothesized that a Val in place of Thr at 33 would form a

stronger hydrophobic contact with the Val at 364 of EDIII. This

is evident from the EPC network analysis (Figure 1A). Further-

more, the fact that position 364 is hydrophobic in all DENV-1

to -4 suggests that a Thr33Val mutation would not be detrimental

toward DENV-1 to 3 binding.

Structural analyses coupled with EPC network analysis identi-

fied sites 27–28 and 31–33 of heavy chain as being positioned to

potentially mediate new or improved contacts. To interrogate

these sites, including Thr33Val, site-saturation combinatorial

libraries were generated (Supplemental Experimental Proce-

dures), combined, transformed into yeast, and assessed for

binding to DENV-4 EDIII by scFv surface display using flow cy-

tometry. Relative to 4E5A, the combined library exhibited a pop-

ulation with greater binding, supporting predictions that these

regions are hotspots for improving DENV-4 affinity. After three

rounds of sorting in which the top binders to DENV-4 EDIII

were selected, the FACS profile of the population showed signif-

icant enrichment of cells with enhanced DENV-4 EDIII binding.

Sequencing of 50 clones from this enriched population revealed

four unique variants (Table S1). Interestingly, for the enriched

triple-site variants, all contained a Thr33Val substitution and no

variation was observed at position 32, despite sequencing of

the unsorted library demonstrating that variation at this position

was intact.

We tested the mutations identified by the EPC network anal-

ysis in the context of full-length IgG and found the variants ex-

hibited�10- to 20-fold enhanced affinity to DENV-4 EDIII relative

to 4E5A (Table 1, rows 1–4). In this process, we noted that the

Lys31Ser variant introduces a putative N-glycosylation site at

position 29, therefore, this variant was not further pursued. The

single mutation Thr33Val demonstrated the best binding profile

overall (Table 1, row 2), consistent with our EPC network anal-

ysis. Notably, all variants demonstrated enhanced or equivalent

binding to DENV-1 to -3.



Figure 1. Epitope Paratope Connectivity

Network of Putative Affinity-Enhancing Mu-

tations and Structural Impact of Asn360Tyr

Mutation (EDIII) on Antigen-Antibody Inter-

action

(A) The EPC networks observed in 4E11 and

mutant antibodies are shown for examples of pu-

tative affinity enhancing positions. Each of these

EPCs networks is shown as a 2D graph: nodes

represent amino acids (antibody: red; antigen:

blue) and edges represent inter-residue non-co-

valent interactions (black: hydrophobic bonds;

red: hydrogen bonds; yellow: cation pi; green:

ionic). For each position of interest, the EPC

network is given before and after mutation (with

the arrow pointing from the WT to the modeled

structure).

(B) Sequence alignment of EDIII domain of repre-

sentative DENV-4 strains from genotypes I, IIA,

and IIB. 4E5A epitope residues are highlighted in

red. The column corresponding to the Asn360Tyr

mutation, observed in the genotype I strain H241

(Philippines/1956), is highlighted by bold letters.

(C) Close-up view of CDR-H1 and the DE-loop

(residues 358–365) as observed in the 4E11-EDIII

(DENV-4) co-crystal structure (PDB: 3UYP): VH:

green; VL: not shown; EDIII: cyan. Asn360 forms a

water-mediated hydrogen bond (dotted arrows)

with Gly27 of the CDR-H1 loop of 4E11.

(D) Alternate conformers of Tyr360 generated by

modeling are rendered in stick format. The side

chains of these conformers are colored according

to potential steric clashes: yellow-favorable; red-

unfavorable.

(E) Energetic calculations as carried out using

Discovery Studio.
Next, we analyzed the conservation of the epitope residues

across serotypes to identify potential DENV-4 ‘‘signature’’ resi-

dues, as these might contribute to the relatively weaker affinity

of 4E5A to DENV-4. Critically, four out of the seven epitope resi-

dues unique to DENV-4 were localized to a region in the loop be-

tween the ‘‘D’’ and ‘‘E’’ b strands (residues 358–365), suggesting
Cell 162, 493–
that differences in this region could be

partly responsible for the lower affinity

binding of 4E5A against DENV-4 strains.

Closer examination of this region indi-

cated that shortening the length of the

proximal antibody CDR-H1 loop via resi-

due deletion would result in the removal

of a ‘‘elbow’’ region (25ASGF28) in the

CDR loop, resulting in roughly an 8% in-

crease in shape complementarity (Law-

rence and Colman, 1993) between the

interacting surfaces (estimated shape

complementarity ‘‘Sc’’ of 4E11 and CDR

deletionmutant are0.65and0.71, respec-

tively). In addition to aiding DENV-4 EDIII

binding, our analysis also suggested that

deletion of a residue in the region 25–28
of CDR-H1, notably Ala25, Ser26, or Gly27 of CDR-H1, would

permit the antibody to more efficiently engage DENV-1 to -3 by

virtue of electrostatic interactions between the positively charged

surfaceon theantibodyVHcreatedbyArg99ofCDR-H3andLys3

of FR1 and the negatively charged residues 360–363 of EDIII

(D360, E362 on DENV-1; E360 and D362 on DENV-2; E362 and
504, July 30, 2015 ª2015 Elsevier Inc. 495



Table 1. Binding of 4E5A and Variants to EDIII of DENV-1 to �4 Determined by Competition ELISA

Variant (chain)

EDIII-DENV-1 EDIII-DENV-2 EDIII-DENV-3 EDIII-DENV-4

KD (nM) Relative Affinity KD (nM) Relative Affinity KD (nM) Relative Affinity KD (nM) Relative Affinity

4E5A 0.27 0.10 15.8 94.08

T33V (HC) <0.1 >2.7 <0.1 >1.0 0.7 22.6 3.45 27.3

K31Q, T33V <0.1 >2.7 <0.1 >1.0 1.1 14.4 4.13 22.8

G27Y, F28W <0.1 >2.7 <0.1 >1.0 14.5 1.1 5.35 17.6

A25D (HC) 1.27 0.21 <0.3 >0.33 19.9 0.79 297.00 0.32

S26D (HC) <0.3 >0.90 <0.3 >0.33 5.5 2.87 13.80 6.82

G27D (HC) <0.3 >0.90 <0.3 >0.33 9.6 1.65 25.76 3.65

G27P (HC) 4.58 0.06 <0.3 >0.33 37.4 0.42 1936.00 0.05

G27A (HC) <0.3 >0.90 <0.3 >0.33 22.3 0.71 44.70 2.10

Y106R (HC) <0.3 >0.90 <0.3 >0.33 31.3 0.50 318.50 0.30

E97R (LC) 0.36 0.75 <0.3 >0.33 31.6 0.50 120.55 0.78

E97K (LC) 0.37 0.73 <0.3 >0.33 29.1 0.54 112.20 0.84

E97Q (LC) 0.45 0.60 <0.3 >0.33 26.1 0.61 123.25 0.76

Humanized 4E5A <0.1 >2.70 <0.1 >1.0 5.8 2.72 55.08 1.71

Ab513 <0.1 >2.7 <0.1 >1.0 1.2 13.2 4.32 21.8
E363 on DENV-3) (Figure 1A and Figure S1B). Additionally, a

fourth mutation—Gly27Pro—was also predicted to have a similar

effect as the deletion since introduction of a Pro residue might

introduce a bend in the loop backbone.

Experimental testing of these variants indicated that two of the

deletion mutants, Ser26D and Gly27D, demonstrated �7-fold

and 3.6-fold greater binding to EDIII of DENV-4 (strain BC287/

97, having Asn at position 360), without being detrimental to

DENV-1 and DENV-2 EDIII affinity (Table 1, rows 5–9). In agree-

ment with the structural predictions, the two deletion mutants

also improved affinity to DENV-3 albeit to a lesser extent. The

Ser26D mutant improved affinity to DENV-4 strain H241 EDIII

(containing Tyr at 360) to 240.9 nM, a 19-fold improvement

when compared to the parent 4E5A antibody. Notably, other

putative affinity-enhancing amino acid substitutions that were

predicted from a standard structure-based rational design,

including Glu97Arg/Lys and Tyr106Arg, were found to have mar-

ginal or no improvement based on EPC network analysis (Fig-

ure 1)—a result that was verified experimentally (Table 1, rows

10–13). The final engineered antibody, Ab513, differs from

4E11, the starting antibody, through introduction of six affinity-

enhancing point mutations and an affinity-enhancing deletion

at position 26 (VH) and amino acid changes to humanize the

candidate. Relative to 4E5A, Ab513 exhibits a 13- and 22-fold

affinity improvement to DENV-3 and DENV-4, respectively, while

showing smaller gains to DENV-1 and DENV-2 (Table 1).

The Structure of the Ab513-EDIII Complex
To verify the structure-based predictions of affinity-enhancing

mutations and to cross-compare 4E11 against Ab513, we solved

the crystal structure of Ab513 (reformatted as a scFv) bound to

EDIII of DENV-4. Two crystal forms were obtained providing a

total of eight independent views of the complex (Table S2). The

crystal asymmetric unit of form I contains six scFv-EDIII com-

plexes arranged as three dimers (Figure 2A). The scFvs in each

dimer are related by a non-crystallographic dyad (Figure 2C)
496 Cell 162, 493–504, July 30, 2015 ª2015 Elsevier Inc.
adopting a ‘‘swapped’’ configuration. Crystal form II (Figure 2B),

however, comprises two independent monomeric mAb513scFv-

DIII complexes (related by a non-crystallographic dyad).

Notably, the temperature factors for the antigen in both crystal

forms (temperature factors of DIII in form I and II are 80.5 and

120.4 Å2 respectively) exceed that of the scFv moiety (form I,

II: 47.5, 70.4 Å2), indicating greater flexibility. Nevertheless, the

eight complexes do not differ significantly from each other

(average pairwise rmsd of 0.457 Å).

As expected, Ab513 recognizes the A-strand epitope on EDIII,

with the heavy and light chain domains contacting the A and G b

strands, respectively. The overall scFv-EDIII complex structure

is similar to the 4E11-EDIII complex (PDB: 3UYP) with a root-

mean-square deviation (rmsd) of 0.463 Å, indicating that the

epitopes recognized by these two antibodies are nearly superim-

posable. Examination of the epitope-paratope interface reveals

that the side chains of the six affinity-enhancing substitutions

(Thr33Val and Ala55Glu of VH; Arg31Lys, Asn57Glu, Glu59Gln

and Ser60Trp of VL) make the predicted contacts, with no signif-

icant deviations observed at any of the contact positions (Fig-

ure S2). Further, it is observed that the deletion of Ser26 results

in higher surface complementarity with the antigen due to

removal of the ‘‘elbow’’ present in 4E11, as predicted (Figure 2D).

It should be noted that the deletion does not alter the canonical

conformation (Chothia et al., 1989) of the H-CDR1 loop (Chothia

type 1). A total of 898 Å2 of accessible surface area of Ab513 is

buried in the Ab513-EDIII interface with the VH and VL making

contact surface areas of 480 and 418 Å2, respectively. Twenty

H-bonds and 13 salt bridge interactions are found across the

Ab513-EDIII interface, whereas 16 H-bonds and 8 salt bridges

are found across the 4E11-EDIII interface, indicating improved

contacts as the principal reason of affinity enhancement.

Ab513 Neutralizes a Wide Range of DENVs
To assess the breadth of binding of Ab513, the antibody was

tested against a panel of 21 EDIII proteins, which represent a



Figure 2. scFv Ab513-EDIII (DENV-4, BC287/

97 (Mexico/1997)) Complex Structure

(A–D) The asymmetric unit of crystal forms I (A) and

II (B) contain six and two Ab513-EDIII complexes,

respectively. The scFvs of form I are rendered in

solvent accessible surface format and the EDIII

domains are rendered in cartoon format. The

interface formed by the heavy chains of the two

ScFvs in the dimer is shown in C. (D) Comparison

of the antibody-EDIII interface for Ab513 (left) and

4E11 (right) demonstrating that deletion of Ser26

results in higher surface complementarity due to

removal of the ‘‘elbow’’ present in 4E11.
set of diverse challenge strains selected, in part, for having diver-

sity within the epitope region. Ab513 was able to bind all EDIII

proteins and demonstrated affinity improvement relative to

4E5A by asmuch as 40-fold against DENV-3 and DENV-4 strains

while marginally increasing the affinity against DENV-1 and

DENV-2 strains (Table 2). Consistent with its strong binding,

Ab513 demonstrated strong in vitro neutralization of DENV-1

to -4, with observed EC50 values of <200 ng/ml for all four sero-

types (Table 2), a substantial enhancement compared to 4E11

(Figure S3).

The compact yet dynamic surface structure of flaviviruses,

including DENV, impacts epitope accessibility and thereby anti-

body neutralization activity (Lok et al., 2008; Sukupolvi-Petty

et al., 2013). Therefore, extending beyond the binding studies,

we performed a series of neutralization studies to characterize

further the activity of Ab513. First, to validate the affinity gain

observed by Ser26Dmutation to DENV-4 strain H241 (containing

a bulky Tyr at position 360) EDIII protein, as predicted by struc-

tural modeling analyses, we also tested Ab513 for in vitro

neutralization against this strain. Compared to 4E5A, Ab513 ex-

hibits a 4-fold improvement in neutralization potency to H241,
Cell 162, 493–
with an EC50 of about 2 mg/ml. Next, to

challenge Ab513 neutralization breadth,

we performed a bioinformatic analysis of

strains available from the World Refer-

ence Center for Emerging Viruses and

Arboviruses to identify diverse isolates

having sequence diversity within and

near the Ab513 epitope region. This anal-

ysis resulted in the identification of 12 iso-

lates, three from each serotype, which

collectively represent a true challenge

panel of viruses that are most likely to

be refractory to Ab513 neutralization.

Ab513 was able to fully neutralize

all tested challenge viruses, with 9 of

12 viruses yielding EC50 values of

<0.5 mg/ml, and the remaining three vi-

ruses neutralized at <4 mg/ml (Table S3).

To further assess and compare Ab513

with other DENV-neutralizing antibodies,

we performed comparison studies of

in vitro neutralization. We note that varia-
tions exist in methods of measuring in vitro neutralization of

DENV, and studies have shown that even when using the same

method, substantial titer/EC50 differences are often observed

between laboratories with the same antibody samples (Rain-

water-Lovett et al., 2012; Thomas et al., 2009). We therefore per-

formed side-by-side direct comparisons, first against four of the

most potent antibodies from the recently described EDE class of

antibodies (Dejnirattisai et al., 2015). Results demonstrated that

Ab513 exhibits similar or better potency than EDE mAbs of sub-

class 1 and comparable activity to those of subclass 2, which are

sensitive to glycosylation state of DENV (Table S4). We also

directly compared Ab513 with a representative fusion loop-

directed antibody (4G2) (Henchal et al., 1982), two DI/II hinge

epitope-directed antibodies (14c10 and 1F4) (de Alwis et al.,

2012; Teoh et al., 2012), and a potent human cross-reactive anti-

body directed to DIII (DV87.1) (Beltramello et al., 2010). Ab513

showed greater potency than the fusion-loop mAb, comparable

activity to the potent DIII-directed mAb and one DI/II hinge-

directed mAb and slightly lower potency than the other DI/II

hinge-directed mAb (Figure S4). Collectively, these results

demonstrate that Ab513 is able to efficiently neutralize a broad
504, July 30, 2015 ª2015 Elsevier Inc. 497



Table 2. Ab513 Breadth of Binding to Diverse Genotypes Determined by Competition ELISA and SPR, with In Vitro Neutralization of

Select Strains

Serotype EDIII strain ELISA KD (nM)

Fold increase

from 4E5A SPR KD (nM) EC50 (ng/ml)a

I Hawaii/1944 <0.1 NDb 0.041 67 ± 12

Vietnam/2008 <0.1 ND 0.039

Malaysia/2005 <0.1 ND 0.064

Mexico/2007 <0.1 ND 0.071

II New Guinea/1944 (NGC) <0.1 ND 0.015 190 ± 55

Singapore/2008 <0.1 ND 0.024

Peru/1995 <0.1 ND 0.012

Vietnam/2007 <0.1 ND 0.014

Venezuela/2007 <0.1 ND 0.029

IIII Philippines/1956 (H87) 1.24 12.8 1.0 97 ± 20

Singapore/2009 0.35 18.3 0.6

Nicaragua/2010 3.36 9.5 4.9

Puerto Rico/1977 1.36 9.3 1.4

Cambodia/2008 1.32 10.1 2.5

IV Mexico/1997 (BC287/97) 4.32 21.8 3.8 79 ± 30

Singapore/2010 8.43 14.4 6.1

New Caledonia/2009 10.81 15.9 8.9

Philippines/1956 (H241) 113.10 40.7 118.5 2,300 ± 1,500

Brazil/2011 14.68 18.2 7.9

Venezuela/2008 4.50 11.9 3.0

Thailand/1997 611.60 6.6 >300c

aAverage ± SEM, from three independent experiments.
bND, not determined.
cAffinity estimate based on curve.
panel of challenge viruses which contain sequence diversity

within the epitope region and which represent genotypic and

geographical diversity of DENV. Additionally, Ab513 is able to

neutralize virus more strongly than fusion loop-directed anti-

bodies and with similar or better potency than the most potent

EDE antibodies.

Ab513 Neutralizes DENV Despite Fc Receptor-Mediated
Phagocytosis
Secondary infection with a heterologous DENV serotype has

been associated with more severe illness; one mechanism that

has been posited to explain this observation is antibody-medi-

ated enhancement of virus uptake through the Fc receptor

upon virus binding with either a non-neutralizing antibody, for

example to prM, or binding of a neutralizing antibody at sub-

neutralizing concentrations. Therefore, we investigated the abil-

ity of Ab513 to enhance virus uptake in the context of an ex vivo

model.

We compared the extent of enhanced virus replication with

Ab513 and a chimeric version of the fusion loop-directed anti-

body, 4G2, in Fc-receptor bearing cells. Significantly lower levels

of enhancement were observed with Ab513 as compared to 4G2

against all four DENV serotypes (Figure 3A). Since neutralization

of the homologous DENV serotype can occur in the presence of

Fc receptor-mediated phagocytosis, whereas heterologous
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DENV neutralizes by inhibiting uptake (Chan et al., 2011), we as-

sessed the ability of Ab513 to neutralize the four DENV in the

presence of cellular uptake. We examined the fate of fluores-

cently labeled DENV with the highest dilution of antibodies that

resulted in complete virus neutralization in THP-1 cells. Then,

the localization of DENV-immune complexes was visualized

by immunofluorescence. Ab513 neutralized all four DENV sero-

types in the presence of uptake, with DENV-immune complexes

trafficked to the LAMP-1 compartment (Figure 3B). This is in

contrast to chimeric 4G2 (and 4E5A, data not shown) where

DENV was neutralized by inhibition of initial virus uptake (Fig-

ure 3C). Collectively, these results demonstrate that Ab513 can

neutralize all DENV serotypes in the presence of phagocytosis,

which has been previously observed exclusively when convales-

cent serum samples were reacted with the homologous but

not heterologous DENV serotypes (Chan et al., 2011; Wu et al.,

2012).

Ab513 Demonstrates Activity in Multiple Mouse Models
Capturing Key Clinical Features of Disease
Severe dengue infection is associated with increases in vascular

permeability, which can lead to life-threatening hypovolemic

shock. The increased permeability is often accompanied by

thrombocytopenia. Currently, there are no specific therapies

for treating dengue and management consists of supportive



Figure 3. Effects of Antibody on DENV Uptake in a Monocytic

Cell Line

(A) Enhanced virus infection in THP-1.2S cells with addition of either chimeric

4G2 or Ab513.

(B) Analysis of Ab513 and DENV localization in THP-1.2S cells. The late

endosomal and lysosomal compartments of cells were stained by LAMP-1.

(C) Analysis identical to (B) except chimeric 4G2 is used as antibody.
care only. Therefore, development of a therapeutic strategy that

attenuates the duration and severity of symptoms and/or

reduces the incidence of these major complications is of clinical

importance (Simmons et al., 2012). To test the hypothesis of

whether an immunotherapy can reduce clinical signs and symp-

toms of DENV infection, we deployed Ab513 in a set of animal

models havingmultiple relevant endpoints: (1) viremia, (2) throm-

bocytopenia, (3) vascular leak/permeability, and (4) antibody-

enhanced disease.

To test the ability of Ab513 to reduce viremia, we administered

Ab513 to 7- to 10-week-old AG129 mice infected with DENV-2.

While the AG129mousemodel has potential limitations, wewere

particularly interested in whether we could prevent virus from

migrating to the CNS. In this model, using DENV-2 strain NGC

as the infective agent, administration of 25mg/kg of an irrelevant

isotype-matched antibody (‘‘Ctl. mAb’’) 24 hr prior to virus injec-

tion had no effect on CNS-related migration of virus, paralysis,

and death. In contrast, a single prophylactic administration of

Ab513 at 5 mg/kg resulted in survival of 6/10 animals (p <

0.0001) out to day 31 post-challenge, indicating elimination of

most virus, little to no migration of DENV-2 to the CNS, and pro-

tection against CNS-related symptoms, such as paralysis (Fig-

ures 4A and 4B). This effect was even more pronounced at

25 mg/kg, where 9/10 animals survived. This increase in survival

was also reflected in measurement of viremia levels at day 3

post-infection, the day of peak viremia in this model (Figure 4A).

Administration of 5 mg/kg of Ab513 resulted in a 1.7 log10 reduc-

tion in viral titer; a 2.4 log10mean reduction was observed inmice

treated with 25 mg/kg Ab513, with three of the animals in this

group having titers below the limit of detection. We note that

the typical read-outs of this model are viremia at day 3 or

following animals for 14–21 days, prior to evidence of CNS-

related symptoms. However, as demonstrated here, a single

dose of Ab513 is able to effectively neutralize the virus and pre-

vent migration of virus to the CNS.

Next, we directly tested the prophylactic and therapeutic po-

tential of Ab513 in the context of platelet loss upon DENV infec-

tion. To this end, we adapted a recently reported humanized

mice (humice) dengue model developed using DENV-2. Humice

were reconstituted with human blood lineage cells, leading to

production of a significant level of human platelets. We have

shown previously that DENV infection in humice reproduces

some key features of dengue in human, most notably thrombo-

cytopenia (Sridharan et al., 2013). Critically, the reduction in

platelet count occurs with human but not mouse platelets, thus

allowing us to evaluate if Ab513 can specifically prevent human

thrombocytopenia, in vivo. We applied the same infection

approach with clinical isolates representing all four DENV sero-

types for evaluation of Ab513, without any adaptation. Humice

challenged with virus only or virus with isotype control antibody

display a sharp reduction of human platelets after virus infection,
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Figure 4. In Vivo Activity of Ab513 in AG129 and Humanized Mice
(A) AG129 mice (n = 10) were treated with Ab513, an irrelevant IgG1mAb (‘‘Isotype control’’), or PBS prior to challenge with 106.4 CCID50 of DENV-2. Viremia from

serum 3 days post-infection (dpi) was measured by qRT-PCR. Dotted line represents limit of detection. The three dots on the x axis represent values (samples)

below the lower limit of detection.

(B) A separate cohort of animals were monitored for survival. ***p < 0.0001, as compared with PBS controls.

(C–F) Comparison of human platelet levels in uninfected and infected humanized mice (humice) without treatment or treated with an isotype control Ab (‘‘Control

Ab’’) or Ab513. The dashed line indicates the average of human platelet counts in uninfected humice. Results are shown as the average counts of human platelets

per microliter of blood at different days post-infection (n = 5–7). **p < 0.05. Log-rank (Mantel-Cox) statistical test was performed to assess for significance. Error

bars denote SD.
with the nadir typically observed 2–3 days post challenge fol-

lowed by a gradual recovery (Figures 4C–4F). Humice receiving

a single administration of Ab513 (25 mg/kg) either 24 hr prior to

or after virus challenge demonstrated a significantly accelerated

recovery of human platelet levels (Figures 4C–4F), with a more

dramatic impact on humice challenged with DENV-1 and

DENV-2 (Figures 4C and 4D). In contrast, mouse platelet levels

were not affected by virus infection or by Ab513 administration

(Figure S5). Quantification of virus levels in sera (as determined

by plaque assay) from humice challenged with DENV-1 and

DENV-2 showed a significant reduction in viral load by adminis-
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tration of Ab513 prior to or post-infection. DENV-4 viremia could

not be detected by plaque assay or qRT-PCR and DENV-3

viremia could only be detected by qRT-PCR but mostly near

the limit of detection, precluding a robust analysis (Figure S5).

Despite the current limitations of this model in the context of

the DENV-3 and DENV-4 clinical isolates, our data indicate that

treatment with Ab513 shortened the duration of human thrombo-

cytopenia. Additionally, levels of IFN-g and IL-10 were markedly

reduced in DENV-2 challenged humice treated with Ab513 in

comparison to those that received no Ab or the control sero-

type-specific mAb. A significant reduction in IFN-g was also



Figure 5. Ab513 Protects Animals from Enhanced Disease

(A) Five- to six-week-old AG129 mice born to DENV-1 immune mothers were

infected with DENV-2; included was an uninfected control (black). On day 1

post-infection, infected mice were either treated with 25 mg/kg of Ab513

(green) or isotype control antibody (red). On day 6 post-infection, the extent of

vascular leakage in the mice were assessed by Evans blue assay. **p < 0.01

based on the Mann-Whitney test with reference to the isotype control.

(B and C) A group of A129 infected pupswas followed daily. (B) Survival curves

of four cohorts (n = 8): untreated, receiving a control antibody (Ctrl mAb), or

5 mg/kg or 25 mg/kg Ab513. Statistical inferences were made by pairwise

comparisons for each treatment group to the control group, considering the

survival of both. Ab513 at all doses had a significant effect on survival, log-rank

(Mantel-Cox) test, p < 0.0001). (C). Assessment of mean clinical score of the

three treatment cohorts.
observed in DENV-4 challenged humice in response to adminis-

tration of Ab513. These results demonstrate that a single dose of

Ab513 administered before or after infection is able to effectively

prevent thrombocytopenia or accelerate recovery of human

platelets to normal levels in humanized mice across all four

DENV serotypes. Additionally, in the more robust models of

DENV-1 and -2, Ab513 causes a significant reduction in viremia

in humanized mice, consistent with the data generated in the

AG129 mouse.

In addition to thrombocytopenia, another crucial aspect to

address in use of an immunotherapy for dengue treatment is

whether it can mitigate vascular leakage. Therefore, we as-

sessed the extent of vascular leakage in Ab513-treated

DENV2-infected mice by Evans Blue assay on day 6 post-infec-

tion, the time point at which the isotype control mice were mori-

bund and expected to display significant increased vascular

permeability (Ng et al., 2014). Evans’ blue dye binds strongly to

albumin present in the blood and the amount of the dye detected

in perfused organs is proportional to the extent of vascular

leakage. In the AG129 ADE model, significant vascular leakage

can be detected in the liver, intestine, spleen, and kidney of in-

fected mice born to immune mothers (Ng et al., 2014). In this

model, a significant increase in vascular leakage was observed

in the isotype antibody-treated mice compared to control mice

asmeasured by elevated Evans Blue content in their livers, intes-

tines, spleen, and kidneys (Figure 5A). Upon treatment with

Ab513 on day 1 post-infection, the extent of vascular leakage

detected for all the organs was significantly reduced (Figure 5A).

Taken together, this data indicates that Ab513 treatment signif-

icantly limited the extent of vascular leak in key organs.

Finally, for Ab513 to be useful therapeutically to treat dengue,

this antibody must be able to compete with heterologous anti-

bodies that could enhance DENV infection of Fc-receptor

bearing cells. This is particularly relevant since severe dengue

is more common in patients having secondary infection with a

DENV serotype heterologous to initial infection. To test whether

our antibody can be effective under such circumstances, we

examined whether Ab513 could mitigate enhanced disease

caused by heterotypic antibodies. Consistent with previous re-

ports (Ng et al., 2014), a sublethal challenge with 106 PFU of

DENV-2 of A129 pups from DENV naive mothers resulted in a

transient infection with 100% survival. In contrast, 100% of

pups from DENV-1 immune mothers reached moribund state

on day 4 post-DENV-2 infection (Figure 5B), indicating that these

animals underwent enhanced disease severity mediated by

maternally acquired heterologous DENV antibodies. The protec-

tion efficacy of Ab513 in the presence of these heterologous

enhancing antibodies was then determined by treating the in-

fected pups from DENV-1 immune mother with 25 mg/kg or

5 mg/kg of Ab513 on day 1 post-infection. Ab513 treatment

was able to efficiently prevent disease enhancement in these in-

fected pups with 100% and 88% survival rate, respectively (Fig-

ure 5B). In sharp contrast, administration of an isotype Ab control

resulted in 100% mortality on day 4 post-infection. Notably, the

mice from the treatment groups displayedmild diarrhea but were

still very active on day 4 post-infection. In contrast, infected an-

imals administered an isotype control displayed ruffled fur, se-

vere diarrhea, hunched backs and lethargy (Figure 5C). A dose
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response was observed for Ab513, with more rapid recovery

time associated with the higher antibody dose.

DISCUSSION

In this study, we sought to address the question of whether

an engineered anti-DENV antibody targeted to a non-immundo-

minant—but functionally relevant—epitope could be used for

immunotherapy. Importantly, development of such a strategy

to treat dengue, unlike most other infectious agents such as

influenza virus or HIV, faces a unique set of challenges arising

from the fact that DENV antibodies potentially have the capacity

tomediate protection or exacerbate disease. Additionally, recent

discovery of antibodies that neutralize DENV-1 to -4 and bind

epitopes that span two adjacent E monomers within a single

dimer (EDE-directed antibodies) raises interesting and important

questions with regards to the human immunological response

(Dejnirattisai et al., 2015). While EDE antibodies exhibit potent

pan-serotype neutralizing activity, they have features which

may limit their potential as effective immunotherapies. First,

they have long CDR-H3 loops (15–27 amino acids) with a high

level of Tyr residues. Both these features have been linked

to antibody polyreactivity (Mouquet and Nussenzweig, 2012;

Wardemann et al., 2003). Additionally, activity of many EDE

antibodies is dependent on glycosylation state of the virus,

thereby limiting their breadth and providing potential viable

escape mechanisms (Dejnirattisai et al., 2015).

Our structure-based EPC network analysis enabled the suc-

cessful prediction of a CDR-proximal deletion to enhance

epitope-paratope complementarity. Engineering of Ab513 vali-

dates the EPC network approach, enabling a structural under-

standing of antibody diversification with regards to antigen

engagement, thereby providing a complementary tool to existing

genetic approaches that aim to trace the development of broadly

neutralizing antibodies from germline (Lingwood et al., 2012;

Pappas et al., 2014).

Ab513 exhibits broad binding and neutralization, regardless of

virus genotype, neutralizes all four DENV serotypes even in the

presence of FcR-mediated uptake, and demonstrates in vivo

efficacy against all four DENV serotypes. Taken together, these

data demonstrate that an immunotherapy has the potential to

effectively control viremia and disease in humans.

EXPERIMENTAL PROCEDURES

Materials

Cell culture and virus propagation were carried out as previously described

(Tharakaraman et al., 2013). Briefly, viruses were procured from ATCC or

BEI Resources and propagated in C6/36 or Vero cells using an MOI of approx-

imately 0.1, and harvested after 4–7 days, depending on the strain. Aliquots

were stored at �80�C. For breadth of neutralization studies, the 12 viruses

were obtained from the UTMB World Reference Center for Emerging Viruses

and Arboviruses (WRCEVA) repository.

Computation of Epitope-Paratope Connectivity Network of Dengue

EDIII-Antibody Complexes

The X-ray co-crystal structures of 4E11 in complex with the EDIII antigen (PDB:

3UYP [DENV4], 3UZE [DENV3], 3UZV [DENV2], 3UZQ [DENV1]) were used to

determine the various inter-residue inter-atomic contacts across the antigen-

antibody interface, including putative hydrogen bonds (including water-
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bridged ones), disulfide bonds, pi-bonds, polar interactions, salt bridges,

and Van derWaals interactions (non-hydrogen) as described previously (Soun-

dararajan et al., 2011). The interactions between a CDR residue and its neigh-

boring epitope residues are represented by a 2D network graph as a visual aid,

where nodes represent amino acids and the edges represent inter-residue

non-covalent interactions (black: hydrophobic bonds; red: hydrogen bonds;

yellow: cation pi; green: ionic).

Structure Determination, Refinement, and Analysis

Data were collected at a wavelength of 1.00 Å at the Swiss Light Source beam-

line PXIII using a Pilatus 6M detector (Dectris, Baden, Switzerland). Indexing,

integration, and merging of the intensities were carried out with program

XDS (Kabsch, 2010) and scaling was performed using programSCALA (Evans,

2006). Data collection statistics are summarized in Table S2. The structure of

form I crystals was determined by molecular replacement using scFvE11 and

DIII DENV4 as individual search probes (Cockburn et al., 2012). The molecular

model was rebuilt using COOT and refined with REFMAC (Winn et al., 2011).

Subsequently, a second crystal form (form II) diffracting to higher resolution

(2.49 Å) was obtained in the monoclinic space group P21 with two scFv513-

DIII complexes per asymmetric unit. The data were collected by exposing

two different regions of the prismatic crystals and processed using the same

packages. The structure was solved by molecular replacement using the

refined coordinates obtained from crystal form I and the structure was refined

using REFMAC. Figures were prepared in PyMOL (http://pymol.sourceforge.

net) and the structure was validated using the Molprobity web server (http://

molprobity.biochem.duke.edu). Structural superimpositions, buried surface

areas and inter-molecular contacts were calculated using programs LSQKAB,

AREAIMOL, SC, and NCONT from the CCP4 package (Winn et al., 2011).

Assessment and Visualization of DENV Fate in the Presence of

Antibody

THP-1.2S was subcloned from THP-1 by limiting dilution (Chan et al., 2014).

DENV-1 (06K2402DK1), DENV-2 (ST), DENV-3 (05K863DK1), and DENV-4

(06K2270DK1) are clinical isolates. For visualization of DENV immune com-

plexes, DiD-labeled DENV was incubated with media, antibodies, or serum

for 1 hr at 37�C before adding to cells at MOI 10. Uptake was assessed as

described previously (Chan et al., 2011).

Administration of Ab513 in a Humanized Mouse Model

All experiments were performed in compliance with the guidelines of the insti-

tutional committees at the National University of Singapore and Massachu-

setts Institute of Technology. Humanized mice were generated as previously

described (Sridharan et al., 2013). Experiments were initiated 1 week before

infection with the i.v. administration of 300 mg/kg human immune globulins

(IVIG, GAMMAGARD [BAXTER]) twice a week to ensure normal levels of circu-

lating IgG. Humice were infected by tail vein injection of 1 3 107 PFU of virus

(DENV2 strain 05K3295) in 200 ml of RPMI 1640 medium. IVIG administration

continued during the infection period. Uninfected humice reconstituted with

the same batch of fetal liver cells were injected with 200 ml of RPMI medium.

Humice were prophylactically (24 hr before DENV infection) or therapeutically

(24 hr after infection) administered with 25 mg/kg of Ab513 or an isotype con-

trol antibody (control Ab) intravenously (i.v). Plaque assay and platelet counts

were performed as described (Sridharan et al., 2013). Results are shown as

means ± SEM except for viremia which presented as a median. Differences

were compared by using ANOVA followed by Student-Newman-Keuls

post hoc analysis. Results with a p < 0.05 were considered significant. All cal-

culations to examine differences between cohorts were completed using

GraphPad Prism v5.0 (GraphPad Software).

Maternal Transfer Model and Measurement of Vascular Leakage

Five- to six-week-old AG129 pups that were born to DENV1-immune mothers

were infected via the subcutaneous route with 103 PFU of DENV2 (D2Y98P-

PP1) diluted in 0.1 ml of sterile PBS. On day 1 post-infection, mice received

the respective treatments, either control antibody or Ab513, via the intrave-

nous (i.v.) route. The mice were then monitored twice daily for their survival

and clinical score for a period of 27 days (0: healthy; 1: ruffled fur; 2: hunched

back; 3: severe diarrhea; 4: lethargic; 5: moribund). In addition, on day 6

http://pymol.sourceforge.net
http://pymol.sourceforge.net
http://molprobity.biochem.duke.edu
http://molprobity.biochem.duke.edu


post-infection (the time point at which mice from the isotype antibody-treated

group became moribund), Evans blue assay was performed on 5 mice per

group (infected control, isotype control, 5 mg/kg and 25 mg/kg group) as pre-

viously described (Ng et al., 2014). An uninfected control group, comprising

age-matched AG129 mice, was included to obtain the baseline absorbance

readings.
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Siegrist, C.A., Córdova, M., Brandt, C., Barrios, C., Berney, M., Tougne, C.,

Kovarik, J., and Lambert, P.H. (1998). Determinants of infant responses to vac-

cines in presence of maternal antibodies. Vaccine 16, 1409–1414.

Simmons, C.P., Wolbers, M., Nguyen, M.N., Whitehorn, J., Shi, P.Y., Young,

P., Petric, R., Nguyen, V.V., Farrar, J., and Wills, B. (2012). Therapeutics for

dengue: recommendations for design and conduct of early-phase clinical tri-

als. PLoS Negl. Trop. Dis. 6, e1752.

Smith, S.A., de Alwis, A.R., Kose, N., Harris, E., Ibarra, K.D., Kahle, K.M., Pfaff,

J.M., Xiang, X., Doranz, B.J., de Silva, A.M., et al. (2013). The potent and

broadly neutralizing human dengue virus-specific monoclonal antibody 1C19

reveals a unique cross-reactive epitope on the bc loop of domain II of the en-

velope protein. MBio 4, e00873, e13.

Soundararajan, V., Zheng, S., Patel, N., Warnock, K., Raman, R., Wilson, I.A.,

Raguram, S., Sasisekharan, V., and Sasisekharan, R. (2011). Networks link

antigenic and receptor-binding sites of influenza hemagglutinin: mechanistic

insight into fitter strain propagation. Sci Rep 1, 200.
504 Cell 162, 493–504, July 30, 2015 ª2015 Elsevier Inc.
Sridharan, A., Chen, Q., Tang, K.F., Ooi, E.E., Hibberd, M.L., and Chen, J.

(2013). Inhibition of megakaryocyte development in the bonemarrow underlies

dengue virus-induced thrombocytopenia in humanized mice. J. Virol. 87,

11648–11658.

Sukupolvi-Petty, S., Brien, J.D., Austin, S.K., Shrestha, B., Swayne, S., Kahle,

K., Doranz, B.J., Johnson, S., Pierson, T.C., Fremont, D.H., and Diamond,M.S.

(2013). Functional analysis of antibodies against dengue virus type 4 reveals

strain-dependent epitope exposure that impacts neutralization and protection.

J. Virol. 87, 8826–8842.

Teoh, E.P., Kukkaro, P., Teo, E.W., Lim, A.P., Tan, T.T., Yip, A., Schul, W.,

Aung, M., Kostyuchenko, V.A., Leo, Y.S., et al. (2012). The structural basis

for serotype-specific neutralization of dengue virus by a human antibody.

Sci Transl Med. 4, 139ra183.

Tharakaraman, K., Robinson, L.N., Hatas, A., Chen, Y.L., Siyue, L., Raguram,

S., Sasisekharan, V., Wogan, G.N., and Sasisekharan, R. (2013). Redesign of a

cross-reactive antibody to dengue virus with broad-spectrum activity and

increased in vivo potency. Proc. Natl. Acad. Sci. USA 110, E1555–E1564.

Thomas, S.J., Nisalak, A., Anderson, K.B., Libraty, D.H., Kalayanarooj, S.,

Vaughn, D.W., Putnak, R., Gibbons, R.V., Jarman, R., and Endy, T.P. (2009).

Dengue plaque reduction neutralization test (PRNT) in primary and secondary

dengue virus infections: How alterations in assay conditions impact perfor-

mance. Am. J. Trop. Med. Hyg. 81, 825–833.

Villar, L., Dayan, G.H., Arredondo-Garcı́a, J.L., Rivera, D.M., Cunha, R.,

Deseda, C., Reynales, H., Costa, M.S., Morales-Ramı́rez, J.O., Carrasquilla,

G., et al.; CYD15 Study Group (2015). Efficacy of a tetravalent dengue vaccine

in children in Latin America. N. Engl. J. Med. 372, 113–123.

Wahala, W.M., Kraus, A.A., Haymore, L.B., Accavitti-Loper, M.A., and de Silva,

A.M. (2009). Dengue virus neutralization by human immune sera: role of enve-

lope protein domain III-reactive antibody. Virology 392, 103–113.

Wahala, W.M., Huang, C., Butrapet, S., White, L.J., and de Silva, A.M. (2012).

Recombinant dengue type 2 viruses with altered e protein domain III epitopes

are efficiently neutralized by human immune sera. J. Virol. 86, 4019–4023.

Wardemann, H., Yurasov, S., Schaefer, A., Young, J.W., Meffre, E., and Nus-

senzweig, M.C. (2003). Predominant autoantibody production by early human

B cell precursors. Science 301, 1374–1377.

Williams, K.L., Wahala, W.M., Orozco, S., de Silva, A.M., and Harris, E. (2012).

Antibodies targeting dengue virus envelope domain III are not required for

serotype-specific protection or prevention of enhancement in vivo. Virology

429, 12–20.

Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans,

P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Over-

view of the CCP4 suite and current developments. Acta Crystallogr. D Biol.

Crystallogr. 67, 235–242.

Wu, R.S., Chan, K.R., Tan, H.C., Chow, A., Allen, J.C., Jr., and Ooi, E.E. (2012).

Neutralization of dengue virus in the presence of Fc receptor-mediated phago-

cytosis distinguishes serotype-specific from cross-neutralizing antibodies.

Antiviral Res. 96, 340–343.

Zhang, P., Wu, C.G., Mihalik, K., Virata-Theimer, M.L., Yu, M.Y., Alter, H.J.,

and Feinstone, S.M. (2007). Hepatitis C virus epitope-specific neutralizing an-

tibodies in Igs prepared from human plasma. Proc. Natl. Acad. Sci. USA 104,

8449–8454.

http://refhub.elsevier.com/S0092-8674(15)00827-2/sref20
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref20
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref21
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref21
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref21
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref21
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref22
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref22
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref22
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref22
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref23
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref23
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref24
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref24
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref24
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref24
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref25
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref25
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref25
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref25
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref26
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref26
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref26
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref27
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref27
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref27
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref27
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref28
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref28
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref28
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref28
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref28
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref29
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref29
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref29
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref30
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref30
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref30
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref31
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref31
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref31
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref31
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref32
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref32
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref32
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref32
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref32
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref33
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref33
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref33
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref33
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref34
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref34
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref34
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref34
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref35
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref35
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref35
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref35
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref35
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref36
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref36
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref36
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref36
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref37
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref37
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref37
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref37
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref38
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref38
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref38
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref38
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref38
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref39
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref39
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref39
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref39
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref40
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref40
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref40
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref41
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref41
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref41
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref42
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref42
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref42
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref43
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref43
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref43
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref43
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref44
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref44
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref44
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref44
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref45
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref45
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref45
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref45
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref46
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref46
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref46
http://refhub.elsevier.com/S0092-8674(15)00827-2/sref46

	Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope
	Introduction
	Results
	Structure-Guided Redesign of 4E5A
	The Structure of the Ab513-EDIII Complex
	Ab513 Neutralizes a Wide Range of DENVs
	Ab513 Neutralizes DENV Despite Fc Receptor-Mediated Phagocytosis
	Ab513 Demonstrates Activity in Multiple Mouse Models Capturing Key Clinical Features of Disease

	Discussion
	Experimental Procedures
	Materials
	Computation of Epitope-Paratope Connectivity Network of Dengue EDIII-Antibody Complexes
	Structure Determination, Refinement, and Analysis
	Assessment and Visualization of DENV Fate in the Presence of Antibody
	Administration of Ab513 in a Humanized Mouse Model
	Maternal Transfer Model and Measurement of Vascular Leakage

	Accession Numbers
	Supplemental Information
	Author Contributions

	Acknowledgments
	References


