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Role of Interleukin-33 in Innate-Type
Immune Cells in Allergy
Susumu Nakae1,2, Hideaki Morita3, Tatsukuni Ohno4, Ken Arae3,5,
Kenji Matsumoto3 and Hirohisa Saito3

ABSTRACT
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is preferentially and constitutively expressed in epi-
thelial cells, and it is especially localized in the cells’ nucleus. The nuclear IL-33 is released by necrotic cells af-
ter tissue injury and�or trauma, and subsequently provokes local inflammation as an alarmin, like high-mobility
group box protein-1 (HMGB-1) and IL-1α. IL-33 mainly activates Th2 cells and such innate-type immune cells
as mast cells, basophils, eosinophils and natural helper cells that express IL-33R (a heterodimer of IL-1
receptor-like 1 [IL-1RL1; also called ST2, T1, Der4, fit-1] and IL-1 receptor accessory protein [IL-1RAcP]). That
activation causes the cells to produce Th2 cytokines, which contribute to host defense against nematodes. On
the other hand, excessive and�or inappropriate production of IL-33 is also considered to be involved in the de-
velopment of such disorders as allergy. In this review, we summarize current knowledge regarding the patho-
genic roles of IL-33 in the development of allergic inflammation by focusing on its effects on innate-type im-
mune cells.
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IL-33

IL-33, a ligand for IL-1RL1 (also called ST2, T1, Der4
and fit-1), which is a member of the Toll�IL-1 recep-
tor superfamily,1 is produced�expressed by various
types of immune cells such as mast cells, macro-
phages and dendritic cells (DCs), and non-immune
cells such as endothelial, epithelial and smooth mus-
cle cells and fibroblasts2 (Fig. 1). IL-33 is also known
to be identical to DVS27, a gene transcript that is
upregulated in vasospastic cerebral arteries after
subarachnoid hemorrhage,3 and nuclear factor from
high endothelial venules (NF-HEV), a transcript ex-
pressed in the nucleus of endothelial cells.4 IL-33 is
localized in the nucleus―due to its association with
heterochromatin via a helix-turn-helix motif within
the N-terminal part―where it acts as a transcriptional
repressor, at least in vitro.5,6 Thus, like IL-1α and
high-mobility group box 1 (HMGB1),7,8 IL-33 is con-

sidered to act not only as a proinflammatory cytokine
but also a nuclear factor. However, the pathophysi-
ological roles of IL-33 as a nuclear factor remain un-
clear.

IL-1β and IL-18, members of the IL-1 family of cy-
tokines, are initially synthesized as precursor
forms―which lack the amino acid sequences of sig-
nal peptides―in the cytosol and fail to induce cell ac-
tivation.9,10 After exposure to certain stimuli in cells,
the IL-1β and IL-18 precursors are proteolytically
cleaved by caspase-1 through activation of inflamma-
somes, after which the cleaved forms become biologi-
cally active and are secreted.9,10 In an early study, IL-
33 was similarly considered to be biologically acti-
vated by cleavage by caspase-1 and then secreted via
an unconventional secretion mechanism.1 Unlike IL-
1β and IL-18, however, full-length IL-33―which does
not have a typical caspase-1 cleavage site such as
seen in IL-1β and IL-18―is bioactive even without
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Fig.　1　The IL-33-IL-33R pathway and bioactivities of IL-33. A. Producers of IL-33. B. IL-33R and signal trans-

duction. C. Bioactivities of IL-33 on various types of cells. DC, dendritic cell; SMC, smooth muscle cell; NK, natu-

ral killer; NKT, natural killer T; Th, helper T; Tc, cytotoxic T; NH, natural helper; ILC, innate lymphoid cell; AAMφ, 

alternative activated macrophage.
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Fig.　2　IL-33-mediated allergic infl ammation by innate-type immune cells. IL-33 is 

released by epithelial cells in response to protease allergens such as Der f1/p1 

and papain and/or LPS. Epithelial cell-derived IL-33 induces production of IL-5 and 

IL-13 by innate-type immune cells such as NH cells/ILC2 cells, mast cells, and ba-

sophils. Subsequently, such innate-type immune cell-derived IL-5 and IL-13 pro-

voke recruitment of eosinophils in the local sites, contributing to the development 

of various allergic disorders.
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caspase-1-dependent cleavage11-13 Thus, the caspase-
mediated proteolytic cleavage during apoptosis asso-
ciated with activation of inflammasomes is not neces-
sary for activation and secretion�release of IL-33.
Conversely, IL-33 released by necrotic cells without
cleavage by caspases or calpain, which is required for
IL-1α, has biological activity.13,14 In addition, in con-
trast to cleaved-form IL-33 generated by caspase,
cleaved-form IL-33 generated by neutrophil elastase
and cathepsin G from full-length IL-33 released by
cells during tissue injury has -10 fold higher biologi-
cal activity than full-length IL-33.15 Thus, like HMGB-
1 and IL-1α, IL-33 is considered to be an alarmin or a
damage-associated molecular pattern (DAMP) mole-
cule that is released by necrotic cells after tissue in-
jury and�or trauma.

IL-33 RECEPTOR (IL-33R)

IL-33R is a heterodimer comprised of IL-1RL1 and IL-
1 receptor accessory protein (IL-1RAcP).16-18 It is ex-
pressed on various types of cells and induces activa-
tion of those cells by activation of transcription fac-
tors such as NF-κB and AP-1 via a signal pathway
[consisting of recruitment of myeloid differentiation
factor 88 (MyD88) to the Toll�IL-1R domain in the cy-
toplasmic region of IL-1RL1, IL-1R-associated kinase
(IRAK), TNF receptor-associated factor 6 (TRAF6)
and�or mitogen-activated protein kinase (MAPK)] af-
ter binding of IL-33, in a similar manner with other IL-
1R family members such as IL-1R and IL-18R1,19 (Fig.
2).

Regarding IL-1RL1, two major forms, i.e., trans-
membrane- and soluble-forms, are produced from the
IL-1RL1 gene as a result of alternative splicing under
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the control of two distinct promoters.2,20,21 The
transmembrane-form IL-1RL1 is considered to be a
functional component of IL-33R, whereas soluble-
form IL-1RL1 is regarded as a decoy receptor for IL-
33, like soluble IL-1R for IL-1α and IL-1β.2,20,21

IL-33 ON MAST CELLS

Human peripheral blood or cord blood progenitor
cell-derived mast cells (MCs) and mouse peritoneal
and bone marrow-derived cultured MCs constitu-
tively express IL-1RL116,18,22-25 and produce various
cytokines and chemokines (i.e., IL-1β, IL-6, IL-13,
TNF, GM-CSF, CXCL8, CCL1 and CCL2) that induce
expression of mouse mast cell protease-6, prolong
survival and promote adhesion of naïve human and
murine MCs without inducing degranulation in re-
sponse to IL-3322-24,26,27 (Fig. 2). IL-33 can enhance
IgE�Ag-, monomeric IgE-, C5a-, stem cell factor
(SCF)- and nerve growth factor (NGF)-mediated cy-
tokine production in human and mouse MCs, and a
human mast cell line, HMC-1.2,21,28 On the other
hand, long-term exposure of human and mouse MCs
to IL-33 resulted in attenuation of IgE�Ag-FcεRI-
mediated degranulation due to down-regulation of
PLCγ1 and Hck expression, although short term ex-
posure to IL-33 did not influence that degranulation
directly.29

IL-33 ON BASOPHILS

IL-33 can induce production of such cytokines and
chemokines as IL-4, IL-5, IL-6, IL-8, IL-13, GM-CSF,
CCL2, CCL3 and CCL4 and cell adhesion by promot-
ing CD11b expression―without inducing degranula-
tion or migration―in human and�or mouse naïve ba-
sophils that constitutively express IL-1RL1.30-33 IL-33
enhances IgE-mediated degranulation and migration
as well as IgE- and IL-3-mediated cytokine and
chemokine production in human and mouse baso-
phils28,30-32,34 (Fig. 2). IL-33 also enhances the recep-
tor for leptin―which is an adipokine and a member
of the IL-6 family of cytokines―on human basophils,
suggesting that IL-33 may be involved in metabolic
abnormalities associated with inflammation via baso-
phil activation.35

IL-33 ON EOSINOPHILS

Human eosinophils also express IL-1RL1,36,37 and IL-
33 enhances eosinophils’ survival, cell adhesion ac-
companied by increased expression of CD11b and
ICAM-1, and production of such cytokines and
chemokines as IL-6, IL-8, IL-9 and CCL2, as well as
superoxide31,36-38 (Fig. 1). The role of IL-33 in de-
granulation of human eosinophils is controversial. IL-
33 failed to induce degranulation as assessed by re-
lease of eosinophil-derived neurotoxin (EDN) and
leukotriene C4,36 but others conversely found it to in-
duce degranulation as assessed by EDN release.37 In
humans, IL-33-stimulated basophils enhanced IL-17

production by CCR6+ CD4+ T cells and by effector
and central memory T cells, suggesting basophil in-
volvement in development of Th17-mediated inflam-
matory disorders such as inflammatory bowel dis-
ease.39

IL-33 ON NATURAL HELPER CELLS AND
OTHER TYPE II INNATE LYMPHOID CELLS

Recently, a number of IL-5- and IL-13-producing Lin−

c-kit+ Sca-1−�+ innate lymphoid cells, such as natural
helper (NH) cells, multi-potent progenitor type 2 cells
(MPPtype2 cells), nuocytes and innate helper type 2
(Ih2) cells, were identified as populations that are dis-
tinct from lymphoid progenitors, lymphoid tissue in-
ducer cells and RORγt+ ILCs.40-46 Also, GATA-3 was
found to be a key transcription factor for development
of those cells47 (Table 1). Lin− c-kit+ Sca-1+ NH cells,
found in fat-associated lymphoid clusters in visceral
adipose tissue, constitutively express IL-1RL1 and
produce larger amounts of IL-5, IL-6 and IL-13, but
not IL-4, than basophils and mast cells in response to
IL-33 alone or IL-2 + IL-25, but not IL-25 alone. They
are involved in host defense against helminths such
as Nippostrongylus brasiliensis (N. brasiliensis) via IL-
5- and IL-13-dependent eosinophilia and goblet cell
hyperplasia.40,48 IL-1RL1-expressing Lin− c-kit+ Sca-1+

nuocytes and IL-1RL1-expressing Lin− c-kit+ Sca-1−

Ih2 cells accumulate in the mesenteric lymph nodes,
spleen and liver of mice injected with IL-25 or IL-33
and infected with N. brasiliensis. Both nuocytes and
Ih2 cells as well as NH cells are known to be crucial
for host defense against N. brasiliensis41,43,49 and the
development of allergic airway inflammation.50,51 Ex-
pansion of Lin− c-kit+ Sca-1+ MPPtype2 cells, which do
not express IL-1RL1, is observed in mesenteric lymph
nodes and gut-associated lymphoid tissues, including
Peyer’s patches, of mice injected with IL-25 or in-
fected with helminths such as N. brasiliensis and
Trichuris muris, contributing to host defense against
such pathogens.42 Although IL-33 and�or IL-25 are
key cytokines for expansion of IL-5- and IL-13-
producing ILCs such as NH cells, nuocytes, Ih2 cells
and MPPtype2 cells in mice, except for NH cells it is
unclear whether these cells produce IL-5 and�or IL-
13 in response to IL-33 or IL-25.

Brickshawana et al. reported that IL-33-responsive
c-Kit-negative Sca-1+ CD25+ cells differed from c-Kit-
positive NH cells, nuocytes and Ih2 cells.52 Monticelli
et al. identified Lin− c-Kit+ Sca-1+ CD90+ CD25+

CD127 (IL-7Rα)+ IL-1RL1+ cells, which produce IL-5
and IL-13 in response to IL-33, among resident cells
in human and mouse lungs, and found that differen-
tiation of those cells requires expression of a tran-
scription factor, Id2.53 Ikutani et al. found two types of
c-Kit+ ILCs, which produce IL-5 alone or IL-13 alone
in response to IL-33 or IL-25, in the peritoneal cavity,
lung and gut of mice.54 Bartemes et al. also found
Lin− c-Kit+ Sca-1+ CD25+ ILCs that produced IL-5 and
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Table　1　Natural helper cells and other type 2 innate lymphoid cells

Natural helper Nuocyte MPPtype2 Ih2

Induction Resident

IL-25 &/or IL-33 
injection

Nb infection

IL-25 injection

Nb infection

Tm infection

IL-25 &/or IL-33 injection

Nb infection

Location FALC
Mesentric LNs,

spleen & bone marrow
GALT

Mesentric LNs,

spleen, liver,  bone 
marrow & lung

Surface phenotype

Lin - - - -

c-Kit + + + +

Sca-1 + + + -

CD45 + + + +

IL-7Rα/CD127 + + -/lo ?

Thy-1/CD90 + + ? +

CD34 - - -/lo ?

CD25/IL-2Rα + - ? +

CD44 + + ? +

CD69 + ? - +

CD62L - ? -/lo ?

FcεRIα - - - ?

IL-1RL1 + + -/lo ?

MHCII - + ? ?

IL-17RB ? + ? ?

Others GITR+ CD43+ CD122lo

CD27+ CD132+

CD38+ Itgb7+

ICOS+

CD49d+

CCR9+

Transcription factor
GATA-3 + ? ? +

ROR-α ? + ? ?

Responsivity to IL-25 ○ (+IL-2) × ? ?

Responsivity to IL-33 ○ ○ (+IL-7) ? ?

Reference 40, 47 41 42 43

MPPtype2, multipotent progenitor type 2; Ih2, innate helper type 2; Nb, Nippostrongylus brasiliensis; Tm, Trichuris muris; LN, lymph node; 

FALC, fat-associated lymphoid cluster; GALT, gut-associated lymphoid tissue.

IL-13 in response to IL-33 in the murine lung.55 How-
ever, unlike Ikutani et al., these cells did not respond
to IL-25.55

IL-33 IN INNATE-TYPE CELLS DURING AL-
LERGY

Genetic polymorphism of IL-33 and IL-1RL1 is sus-
pected of causing susceptibility to development of
asthma in certain patients.56 In support of that, in-
creased expression�production of IL-33 and�or IL-1
RL1 was shown in specimens from asthma pa-
tients.57-60 Treatment of mice with IL-33 resulted in
development of eosinophil-associated inflammation in
the lung and gut dependent on IL-13, but independ-
ently of B cells (that is, IgE), T cells and NKT
cells.1,61 However, airway eosinophilia after IL-33 in-

halation was observed even in mast cell-deficient
mice and mice whose NK-cell and basophil popula-
tions were depleted61 by injection of anti-asialo GM1
mAb.62 These observations suggest that mast cells
and basophils are not essential for IgE-independent
IL-33-mediated airway eosinophilia. Rather than mast
cells and basophils, lung NH cells are suggested to
be involved in development of IL-33-mediated airway
eosinophilia. A plant-derived cysteine protease, pa-
pain, which is homologous to Der P1 and Der f1 from
house dust mites and human cathepsin B,63 induces
airway inflammation by disrupting tight junctions be-
tween epithelial cells in mice64 and is a cause of occu-
pational asthma in humans.65 In mice, papain inhala-
tion increased IL-33 expression in the lung, and sub-
sequently IL-33 induced airway eosinophilia de-
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pendently of IL-13 even in the absence of acquired
immune cells such as T cells, B cells and NKT cells.64

In addition to IL-33-deficient mice,64 NH cell-depleted
mice showed attenuated airway eosinophilia after pa-
pain inhalation.66 Thus, lung natural helper cells are
crucial for development of papain-induced IL-33-
mediated innate-type acute airway eosinophilia. As in
mice, resident IL-1RL1-expressing Lin− CD127+

CD25+ NH cells�innate lymphoid cells have been
identified in lung parenchymal tissue from healthy
humans,53 suggesting that resident NH cells�innate
lymphoid cells also may be important for human pul-
monary immune responses.

As in asthma, genetic polymorphism of IL-1RL1
has also been identified in patients with atopic derma-
titis, and expression of IL-33 is increased in inflamed
skin from these patients,21,67,68 suggesting involve-
ment of IL-33 in the development of atopic dermatitis.
Intradermal injection of IL-33 to mice caused develop-
ment of skin inflammation accompanied by accumula-
tion of neutrophils.69 In contrast to IL-33-induced air-
way eosinophilia, the IL-33-induced neutrophilic skin
inflammation was dependent on dermal mast cell acti-
vation via IL-1RL1.69 The possible roles of basophils
and NH cells in IL-33-induced skin inflammation re-
main poorly understood.

Genetic polymorphism of IL-1RL1 and IL-33 and in-
creased IL-33 levels in specimens are found in certain
patients with rhinitis, conjunctivitis and�or rhinosi-
nusitis.70-73 Ovalbumin-induced or ragweed pollen-
induced allergic rhinitis is attenuated in anti-IL-33-Ab-
treated mice,74 IL-33-deficient mice and FcεRI-
deficient mice.73 In ragweed pollen-induced allergic
rhinitis, IL-33 enhances release of histamine and
chemoattractant factors for eosinophils and basophils
by mast cells and basophils, contributing to local in-
flammation in the early and late phases of diseases.73

IL-1RL1-expressing Lin− CD127+ CD161+ CRTH2+

NH�innate lymphoid cells, which produce IL-13 in re-
sponse to IL-33 or IL-25 in the presence of IL-2, were
identified in the human fetal gut and observed to be
accumulated in inflamed, but not non-inflamed, nasal
polyps from adult patients with chronic rhinosinusi-
tis.75 Those findings suggest a contribution of IL-33-
activated NH�innate lymphoid cells―in addition to
mast cells and basophils―to the pathogenesis of al-
lergic diseases.

CONCLUSION

IL-33 released by such cells as epithelial cells and
macrophages after tissue injury during infection plays
important roles in host defense against pathogens
such as nematodes and viruses by activating various
cell types, especially innate-type immune cells, in-
cluding mast cells, basophils, eosinophils and NH
cells�innate lymphoid cells. In addition, dysregula-
tion of IL-33 is suspected to be involved in develop-
ment of various allergic disorders, such as asthma,

dermatitis and rhinitis. Thus, neutralization of IL-33
may be a new therapeutic approach for allergic dis-
eases.
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