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Abstract: A generalization of a composite linear multistep method [2] is developed and applied to the approximate 
integration of systems of ordinary differential equations. The proposed scheme is second-order accurate and L-stable. 
An algorithm, based on the integration formula derived in this paper, is applied to approximate the solutions of a 
number of standard test problems. The numerical results indicate that the method is _competitive with other 
fixed-order methods particularly in terms of computational overhead and could provide the basis for efficient 
temporal integration in the semidiscretization of time dependent partial differential equations. 
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1. Introduction 

In [2], a composite linear multistep formula was introduced as the time integration scheme in 
the numerical solution of the coupled system of nonlinear partial differential equations that 
model the transient behaviour of Silicon VLSI devices. In this paper, we can generalize the 
formula to a composite integration scheme which retains the important features of second order 
accuracy and L-stability of the original method. This investigation was prompted by the 
difficulties associated with the numerical solution of the type of problem discussed in [2] where 
the Jacobian matrix J = af/ay is large and consequently its frequent evaluation is expensive in 
terms of computational overhead and cpu time. In particular we examine the application of a 
composite integration scheme to approximate the solution y : [a, b] + RN of the initial-value 
problem 

y’=f(x, Y>, ~(4 given, 04 

where it is assumed that f is Lipschitz continuous on [a, b], that is, for some vector norm, there 
exists a constant L such that 

II f(x, Y> -fk 4 II =G L II Y - z II 
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for all x E [a, b] and all y, z E RN. More specifically, if we require that the first partial 
derivatives of f are bounded by a constant K. 

1 a,fi/a_Yj ( < KY l< iYj d N, 

for all x E [a, b] and all y E RN, the conditions (1.2) and (1.3) guarantee a unique solution to 
the problem (1.1) [3]. In Section 2, we present an outline derivation of the numerical method 
where the choice of parameters will be constrained by requiring that the composite scheme is 
2nd-order accurate and a common iteration matrix is employed to solve the resulting algebraic 
equations. An estimate of the local truncation error is obtained using a linear combination of 
available function values and provides the basis for automatic stepsize control. Implementation 
details are considered in Section 3 including criteria as to when a step is accepted and the control 
of Jacobian evaluations required for the iterative algorithm. We report details of some numerical 
experiments in Section 4 when the proposed method is applied to the approximate integration of 
some standard test problems including the test suite of [9]. We will conclude that, because of the 
economy in Jacobian evaluations, this generalized integration scheme could provide a basis for 
an efficient procedure in the time integration of large systems of differential equations resulting, 
for example, from the semidiscretization of systems of coupled nonlinear partial differential 
equations reported in [2]. 

2. A composite integration scheme 

In the numerical integration of the problem (1.1) we consider a formula pair which enables 
stepping from x, to x,+r to be split into two separate tasks. We apply the one-step theta scheme 
to step from x = nh to x = (n + y) h, for some 0 < y K 1, 

Y n+Y =Y,+yh[(l--B)f,+Bf,+,], O<e~l, (24 
and the solution is used in a 2-step backward-differentiation type formula which steps from 
x=nh tox=(n+l)h of the form 

aoy?l+ %Y,+, + a2~,,+1= hfn+,. (2.2) 
To generate the coefficients y, (Ye, cyr and (Ye, we impose two conditions on the composite 
formula namely (a) it is second-order accurate and (b) for computational efficiency, both 
schemes share a common iteration matrix. To consider accuracy requirements, we combine (2.1) 
and (2.2) to obtain 

a2yn+1= -bo + dy, - %Yh[O + @fn + efn+,] + hfn+u 
and, by Taylor expansion, we compare the leading terms with the corresponding Taylor series 
polynomial for the exact solution Y( x, + i): 

Y (x,+1 ) = y(x,) -I- hy’(x,) + h’y’(x,)/2! + h3y’3’(x,)/3! + . . . . 

Requiring agreement in terms up to 0( h2) yields the following relations: 

a2= +,+~I), (Y2=1-y(Y1, CC2 = 2(1 - y%a,), (2.3a, b, c) 

while both methods have a common iteration matrix if 

cu,ye = 1. (2.3d) 
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Combining (2.3a) to (2.3d) finally gives the scheme 

Y n+Y =Yn+Yh[(l--B)f,+Bf,+,] O-=OGl, 

“oY?l + ‘YlYntv + cf2Yn+1 = K+1, 

ye=1-l/G, ff-, = 2(1- yS)/(l - 2yQ 

(Yr = (1 - (x2)/y, (Yg = -(xi - ffz. 

In addition, the common iteration matrix takes the form 

B=I-eyhJ, J = af/ay , 
and the scheme is second-order accurate with an associated error estimate: 

errest = 
i 

3y2e - 4ye + i 

12(1 - ye) 1 
h3Yi3W 

(2-4) 

(2.5) 

Using a Taylor expansion, it is easily verified that we can approximate Y(~)(E) using the 
following combination of (available) function values: 

r,“‘(() = 5 $fn -- I y(lly)fn+Y+ &-fn+l]- (2.6) 

To consider the stability properties of the composite scheme (2.4), we apply it to approximate the 
solution of the autonomous scalar problem 

y’=AY, Re(h) (0, (2.7) 

Using the notation q = hX, for the one-step theta scheme we obtain 

Y 
= 1+ Y(1- @>q 

n+y byeq yn, 

and, substituting for y,,, in the two-step scheme (2.2), we have 

y 
PI+ 

1= 2(1-ye~+[1-2ye(1-y~)14y 
2(1 - ye)(i - yeq)* n’ 

which can be rewritten as 

1 + 1- 2Ye(1- Ye) q \ 

Y,+l= N% e>yn = 
20 - Ye) 

(I - yeq)2 “. 
(2.8) 

Inspection of (2.8) shows that the composite integration scheme is both A and L stable. 
Recalling that ye = 1 - $6, it is interesting to observe that 

lR(q, 0) -eql = 
3fi-4 

6 q3 + o( q4) = o.040441q3 + o( q4) 

where the coefficient of q3 compares directly with the coefficient of h3Yc3’(Q in the error 
estimate (2.5). 
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3. Implementation 

In the spirit of [9], we summarise the essential ingredients of the proposed scheme: 
(a) A formula to compute the next approximation, 
(b) An estimate for the local truncation error, 
(c) A strategy for accepting or rejecting the approximation, 
(d) A strategy for choosing the next stepsize, 
(e) A strategy for Jacobian updating. 

To implement (2.4) we consider the iterative application of Newton’s method to the the theta 
scheme (2.1), employing a fixed number of iterations i = 1, 2,. . . , imax, as follows: 

[I - yhBJ,(:),] AY,(& = Y, - Yn(yy + yh [ (1 - O)f, + 19f$!,] (34 

where 
AY(O (0) 

n+Y 
= Y(i+i) _ Y(i) 

n+Y n+y, Y n+y 
= y 

ll’ 

Equivalently the iterative application of the two-step method (2.2) where it is now assumed that 

Y n+y is determined from (3.1), may be written as 

(3.2) 

using the same notation as before where i = 1, 2,. . . , imax is the iteration counter. To save 
computational expense, we employ the standard modified Newton iteration scheme (noting that 
h/a, = hyt9) resulting from setting 

I - hy8J$ = I - p J,‘:‘, = I - hy8J,,, = B,,, 

where J,,, is some piecewise constant approximation to the Jacobian matrices of both formulae 
for some 0 < m < n. The iterative application of (2.4) is therefore implemented by the following 
recursions: 

B,,, Ayn(yy = y,, -y;,‘, + yh [ (1 - e)f, + K%‘y] T(3.3) 

Y (0) =y,, f(O) =f 
n+Y n+Y n, i=l, 2 ,..., imax, 

(3.3) 

Y 
(0) - 

fl+1 -Yn+y, f21 =f ?l+y, i = 1, 2,. . . , imax. 

In implementing (3.3) (3.4) to approximate the solution of a nonlinear initial-value problem, the 
resulting nonlinear algebraic equations for each of the required approximations y,, +y and y,,, 1 

are solved using the described modified iterative algorithm for a fixed number of iterations 
(typically imax = 4, 5). The algorithm may be summarised as follows: 

Given absolute ATOL and/or relative RTOL tolerances: 
Initially: n = m = 0: Factorize B, = I - hy0Jo 

WHILE (final time is not reached) DO 

Define e, = RTOL * 1 y, 1 + ATOL 
Update B, if necessary 



WHILE 1 Ay,,.,) >O.l*en+y 

Compute y,+, from (3.3): 
WHILE 1 AY,+~ 1 >o.l*e,+, 

Compute y,+ i using (3.4): 
Using (2.5) compute 
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and i<imax 

and i < imax 

and hence the quantity: 

IF r 2 1 THEN reject y,,+i and h,,, = 0.5 * hoId 
ELSE accept y,,+ 1 and 

IF r > 0.5 THEN h,,, = hoId 
ELSE h,,, = r-1/3 hoId 

END IF 

provided hold was unchanged for the previous 3 steps 

The decision to update the Jacobian (and hence the iteration) matrix is based on a combination 
of the following: 

(i) h.., 2 Bh&l, 
(ii) r > 0.85, 

(iii) the Jac o b ian has not been updated for the past k steps. 
The choice of p and k are arbitrarily chosen to be 2 and 15 [7] respectively. It will be useful in 
later applications to measure the rate of convergence: 

A = (( A,;+‘)/AyF) I( 

(where L is n + y or n + 1) and, following [7], decide to update J whenever A > 0.5. For the 
systems of ordinary differential equations considered in this paper, it proves more expedient to 
reduce the stepsize before deciding to update J. We remark that, while many codes iterate to 
convergence, we impose an iteration limit (typically imax < 5). As noted in [ll], in the former 
case, the number of iterations, and hence the number of function evaluations, is open-ended and 
typically much greater than for the latter approach. For their PECE algorithms [ll], when 
iterating to convergence, they noted limitations on the convergence of the iterative process itself. 
In [6], the iteration matrix is held fixed over as many steps is possible. If, after 5 iterations, the 
correction vector is still “large”, they re-evaluate the Jacobian matrix at the most recently 
converged solution whereupon the iterative cycle is retried with a step-size halving if this is not 
successful. 

4. Numerical experiments 

Taking the specific case 8 = 0.55 171, we apply the composite integration scheme to a number 
of test problems. The first set comprise Class A to E of [9]. At different (absolute) tolerances, we 
measure 
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Table 1 

Class A with TOL = lo-’ 

Al A2 A3 A4 

NSTEP 22 25 33 26 
NFE 62 68 122 90 
NJE 8 9 14 15 

Table 2 

Class B with TOL =10e2 

Bl B2 B3 B4 BS 

NSTEP 98 22 21 28 49 
NFE 464 68 64 138 261 
NJE 19 8 8 I 9 

Table 3 

Class C with TOL = 10e2 

Cl c2 c3 c4 CS 

NSTEP 22 34 23 65 234 
NFE 73 111 83 488 1792 
NJE 8 11 8 16 19 

Table 4 

Class D with TOL = 10s2 

Dl D2 D3 D4 D5 D6 

NSTEP 130 130 30 22 27 14 
NFE 806 622 155 62 82 42 
NJE 23 22 15 8 8 6 

(a) the number of composite integration steps NSTEP, 
(b) the total number of functions evaluations NFE, and 
(c) the total number of Jacobian evaluations NJE. The method of testing is analogous to that 

in [93 but for each problem the initial stepsize was chosen arbitrarily to be TOL/lO. 
The results are summarized in Tables l-10. 

In [9], results are summarized for 5 different methods: two variable order schemes GEAR and 
SDBASIC and three fixed order schemes TRAPEX, GENRK and IMPRK. The authors 
conclude “tentatively” that GEAR, SDBASIC and TRAPEX are “quite good” with certain 
limitations: 

(i) GEAR is less efficient when the eigenvalues are close to the imaginary axis; 
(ii) SDBASIC becomes less efficient as the problem becomes more highly nonlinear and 
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Table 5 

Class E with TOL = 10M2 

El E2 E3 E4 E5 

NSTEP 13 18 129 63 29 

NFE 13 52 407 296 29 

NJE 5 6 31 14 10 

Table 6 

Class A with TOL = lop4 

Al A2 A3 A4 

NSTEP 60 60 87 80 

NFE 264 256 386 431 

NJE 10 13 12 14 

Table 7 

Class B with TOL =10e4 

Bl 

NSTEP 409 

NFE 1814 

NJE 67 

B2 B3 B4 B5 

56 60 85 199 

255 297 388 852 

10 10 12 20 

Table 8 

Class C with TOL = lop4 

Cl c2 c3 c4 c5 

NSTEP 68 70 69 259 1029 

NFE 336 317 358 1591 5471 

NJE 11 13 15 36 164 

Table 9 

Class D with TOL =10e4 

Dl D2 D3 D4 D5 D6 

NSTEP 567 561 63 32 63 35 

NFE 3287 2692 313 101 278 144 

NJE 99 80 11 12 16 10 

Table 10 

Class E with TOL = 10e4 

El E2 E3 E4 E5 

NSTEP 25 43 396 193 39 

NFE 44 174 1412 953 39 

NJE 9 8 130 37 14 
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All Problems, TOL = lo-* 

NSTEP 
NFE 
NJE 

GEAR SDBASIC 

4059 593 
10798 3366 

445 2571 

TRAPEX (2.4) 

465 1307 
7802 6450 

705 307 

(iii) TRAPEX becomes relatively less efficient at more stringent tolerances and also when the 
problem exhibits strong nonlinear coupling between smooth and transient components. 
In Tables 11 and 12, we present a summary of the total number of integration steps, function 
and Jacobian evaluations for the various methods at two tolerances. 

Note that GEAR is not included in Table 12 since this method failed to solve the chemical 
kinetics problem E5 due to a round-off error (which introduced a small negative concentration 
whereupon the method attempted to follow the resulting unstable solution). Excluding E5, the 
statistics for GEAR at TOL = 10e4 are NSTEP = 7172, NFE = 18539 and NJE = 541. 

It is evident from Tables l-10 that the proposed method (2.4) experiences considerable 
difficulty when solving the four problems C5, Dl, D2 and E3 and the statistics collected from 
this subset tend to dominate the overall figures in Tables 11 and 12. This is reflected in the 
figures presented below: 

Method (2.4) with TOL = 10e2: 

(C5, Dl, D2, E3) All Problems 
NSTEP 623 1307 
NFE 3627 6450 
NJE 95 307 

Method (2.4) with TOL = 10p4: 

(C5, Dl, D2, E3) All Problems 
NSTEP 2350 4608 
NFE 12866 22457 
NJE 473 833 

In the latter case, namely when TOL = 10p4, it can be seen that the number of both function 
and Jacobian evaluations for the 4 problems C5, Dl, D2 and E3 comprise approximately 57% of 
the corresponding total figures. The behaviour of (2.4) when applied to C5 is similar to that 
reported in [9] for the three fixed order methods tested. Note that, in terms of function and 

Table 12 

All Problems, TOL = lop4 

SDBASIC TRAPEX (2.4) 

NSTEP 1215 1662 4608 
NFE 8242 37095 22457 
NJE 6898 2091 833 
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Jacobian evaluations, the composite scheme is more competitive than TRAPEX at both toler- 
ances tested. The scheme is designed to be economical with respect to Jacobian evaluations and 
this is clearly evident when TOL = 10-4. 

We remark that the proposed method (2.4) is a fixed-order method and, as noted in [4], the 
advantages of using variable-order methods include 

(i) the ease with which they can adjust order and steplength; 
(ii) the availability of higher-order stable schemes and not least; 
(iii) their efficiency with respect to computational effort. 

However, we believe that (2.4) is efficient especially at less stringent tolerances. A particular 
application of the method (which will be reported in a future paper) where stringent tolerances 
are typically unnecessary lies in the simulation of parabolic partial differential equations. 

We next consider the application of the composite integration scheme to the approximate 
solution of a number of linear and nonlinear test problems taken from the literature. The 
problems are detailed below: 

(Pl) y,‘= -6y,+5y,+2sin(x), _Y; = 94y, - 95y, ; 

Ym = 0, _h(o) = 0, O<xglOO; 

with exact solution [l]: 

yl(x) = y eAx + i $ e-1ooo” _ 

[ 
9496 cos( x) + 9506 sin(x) , 1 y2(y)=yedx+~ -E$ e-looox_ 9494 cos(x) + 9306 sin(x) , 1 

where y = 94/99 and h = 10001. 

(P2) y,‘= -~~~~-fl~~+((~+p-l)e-~, 

v; = ByI - (~y~ + (CY - /S - 1) ewx (Y’l, p=15; 

Yl(O> = 1, Y2(0) = 1; o<x<20; 

with exact solution [S]: 

yl(x) =y2(x) = e-“. 

(P3) vl’ = -4498~~ - 5996~~ + 0.006 - x, 

y; = 2248.5~~ + 2997~~ - 0.503 + 3x; 

25498 
Y,(O) = 1500 9 0~~~225, 

with exact solution [8] 

y,(x) = -2 ewx + 7 e-1soox + & (17998 - 14991x), 

y*(x) = 1.5 ewx - 3.5 e-15oox - A(13499 - 11245.5x). 

(P4) ,w; = -0.2[(46 + g)y, + (2b - 2g)uz] - g eb’(2yl +Y~)~, 

&= -0.2[(2b - 2g)y, -t (b + 4g)y2] - & eb’(2yl +Y*)~; 

b = 0.2, g = 200, p = lop5 

Vl(O> = 29 Y?_(O) = 1, 0 < x’g 20, 
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with exact solution [13]: 

Yl(X> = F(x), y*(x) = 2F(x), F(x) = eBb’(l + px)-‘. 

(P5) y,‘= -&y,-y,‘, 1 <i<4; 

p1 = 1000, pz = 800, &= -10, p4 = 0.001) 

y,(O) = -1, l<i<4; o<x<20; 

with exact solution [19]: 

Y,(X) = 
Pi 

1 - (1 + p,) efllX ’ 
l<i<4. 

(P6) y; = -0.04~~ + 104y,y3, Y,(O) = 1; 

y; = o.o4y, - 104y,y3 - 3 x 107y,2, Y*(O) = 0; 

y; = 3 x 107y;, y3(0) = 0. 

This problem was considered by many authors including [5], [6], and [lo]. In the numerical 
experiments which follow, the exact solution was approximated by the NAG routine D02EBF 
with a tolerance of 1O-7 with the range of integration from 0 to 40. 

Using the value 8 = 0.55, we applied (2.4) to the approximate integration of the test problems 
(Pl) to (P6) for three tolerance values lo-“, m = 2, 3, and 4, using relative error control for (P3) 
and absolute error control for the remaining problems. The statistics measured include NSTEP, 
NFE and NJE (which were introduced earlier) together with ERRGLO, the largest absolute 
component of error encountered over the integration interval. The initial stepsize for all 
problems was arbitrarily chosen to be TOL/20. The results are summarised in Tables 13, 14 and 
15. 

In the case of (PS), we can assess the accuracy of the final solution values (at XEND = 40) by 
comparing the numerical approximations obtained by (2.4) with the approximation reported in 
[lo] (where a tolerance of 10m9 was employed). They are given in Table 16. 

In addition to variable-stepsize integration, a number of problems were solved using fixed- 
stepsize sequences. With some of the problems given above, we also considered the following 
cases: 

(IV Y;= 0.2(Y, -Y,), Vi(O) = 0; 

y; = lOy, - (60 - .125x)y, + 0.125x, ~~(0) = 0. 

Table 13 

Problems (Pl)-(P6), TOL = lop2 

(Pl) (P2) (P3) (P4) (P5) (P6) 

NSTEP 49 50 37 29 37 35 
NFE 246 167 143 73 174 99 
NJE 9 18 12 7 10 8 

ERRGLO 0.40 E-2 0.33 E-2 0.22 E-2 0.33 E-2 0.16 E-l 0.36 E-2 
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Table 14 

Problems (Pl)-(P6), TOL = 10e3 

NSTEP 

WI 
81 

WV 
68 

(P3) 

48 

(P4) 

38 

(P5) 

64 

(P6) 

39 

NFE 444 377 218 119 355 116 

NJE 13 19 12 8 11 10 

ERRGLO 0.93 E-3 0.18 E-3 0.13 E-2 0.11 E-2 0.20 E-2 0.41 E-3 

Table 15 

Problems (Pl) - (P6), TOL = lop4 

(Pl) (P2) (P3) (P4) (P5) (P6) 

NSTEP 155 91 84 57 115 54 

NFE 1084 491 401 189 672 230 

NJE 19 18 14 10 13 12 

ERRGLO 0.22 E- 3 0.57 E-4 0.39 E-3 0.29 E- 3 0.44 E-3 0.11 E-3 

Table 16 

(P6)-Comparison with EPISODE [lo] 

FORMULA (2.4) EPISODE [lo] 

TOL =10p2 TOL =10-3 TOL =10-4 TOL =10-9 

r, (40) 0.713303 EO 0.715426 EO 0.715722 EO 0.71583 EO 

r, (40) 0.907555 E- 5 0.917102 E - 5 0.917167 E - 5 0.91855 E-5 

r, (40) 0.286688 EO 0.284565 EO 0.284269 EO 0.28416 EO 

Taken from [15], where the interval of integration is [0, 4001, this is the nonautonomous form of 

Dl in 193 and the exact solution will be approximated by the NAG routine D02EBF using a 

tolerance of 10-7. 

(P8) yl’= -y2+(1-Y:-Y22)? Yl(o)=l; 

y; =y1 + (1 -Y: -Y22)d2(0) =o* 
The interval of integration was taken as 0 & x < 20 and the exact solution is given by: 

_YI(X) = cos(x), y*(x) = sin(x). 

(P9) y; = - 10004y, + 10$,4, 

u; =Yl -_Y2 -Y& 

o<x,(5, 

y1(0) = 10000/10004, Y2(0) = 1. 
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Table 17 

Max errors with uniform step 

h 

W) 

(P2) 

(P4) 

(P7) 

(P8) 

(P9) 

(PlO) 

+ A & A 

0.72 E-3 0.18 E-3 0.44 E-4 0.15 E-4 

0.23 E-3 0.54 E-4 0.13 E-4 0.32 E-5 

0.39 E-4 0.26 E-4 0.10 E-4 0.13 E-4 

0.22 E-4 0.30 E-4 0.74 E-5 0.24 E-5 

0.30 E-2 0.74 E- 3 0.16 E-3 0.21 E-4 

0.24 E-3 0.61 E-4 0.16 E-4 0.98 E- 5 

0.24 E-l 0.59 E-2 0.15 E-2 0.37 E- 3 

This problem was taken from [14] where an approximation to the exact solution was provided. In 
experiment however, the exact solution was approximated by the NAG routine D02EBF with a 
tolerance of lo-‘. 

(PI@ Y,’ = -Y,, Y,(O) = 5; 

y;=y:-2y,, y2(0)=5. 

This problem was solved on the interval [0,20] and has the exact solution 

y,(x) = 5 eCX, yz(.x) = 5 ee2”(1 + 5.x). 

Using the uniform step size sequences h = 2pm, 3 < m d 6, we applied the composite integration 
scheme (2.4) to a number of the above test problems and, in each case, we measure the maximum 
absolute component of error over the integration interval. The results are summarised in Table 
17. In the case of (P7), we compare the numerical approximations obtained using (2.4) for 
various values of h with the analytical solution given in [15] at x = 400. The results are presented 
in Table 18. 

5. Conclusions 

The numerical results illustrate some of the properties of the proposed approach. The 
algorithm is competitive with alternative fixed order methods especially with respect to Jacobian 
evaluations. However, unlike variable order formulae, it is clearly becomes inefficient at the more 

Table 18 

(P7)-Reference solution, x = 400 

h Yl Y2 

2 22.2422490237 27.1107399846 

& 22.2422273401 27.1107199744 
1 v 22.2422219152 27.1107149984 

B 22.2422205585 27.1107137577 

Exact [15] 22.242220 27.110713 
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stringent tolerances. We conclude nonetheless that low order formulae are still useful in many 
applications, for example in the simulation of parabolic partial differential equations where the 
space variable is discretized giving a stiff system of ordinary differential equations in the time 
variable. In such applications, it is unnecessary to specify temporal accuracy constraints 
significantly less than the errors resulting from the spatial discretization. Such applications will 
be reported in a future paper. We remark finally that the choice of 0 was taken arbitrarily to be 
0.55 throughout the numerical experiments in this paper. This value was prompted by [7] and 
some limited numerical testing of other values of 8, notably 8 = 0.5 which was considered in [2], 
suggested that it is close to optimal for the problems selected. Further investigations into the 
choice of an optimal value of 8, for certain problem classes, will be considered in a future study. 
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