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a b s t r a c t

Solving systems of nonlinear equations is one of the most difficult problems in all of nu-
merical computation and in a diverse range of engineering applications. Newton’s method
for solving systems of nonlinear equations can be highly sensitive to the initial guess of the
solution. In this study, a new particle swarm optimization algorithm is proposed to solve
systems of nonlinear equations. Some standard systems are presented to demonstrate the
efficiency of this method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solving systems of nonlinear equations is one of the most difficult problems in all of numerical computation and in a
diverse range of engineering applications. Many applied problems are reduced to solving systems of nonlinear equations,
which is one of the most basic problems in mathematics. This task has applications in scientific fields such as physics
[1–4], chemistry [5], economics [6], computational mechanics, aircraft control etc. Tremendous efforts have been made
to solve systems of nonlinear equations and progress along this line now includes a number of constructive theories and
algorithms related to systems of nonlinear equations [7–10]. However there still exist some obstacles in solving systems of
nonlinear equations. Recently, Luo et al. [11] and Mo et al. [12] solved a system of nonlinear equations using a combination
of chaos search and Newton-type methods and a combination of the conjugate direction method (CD) and particle swarm
optimization, respectively. Newton-type methods are the most widely used algorithms for solving systems of nonlinear
equations, but their convergence and performance characteristics are highly sensitive to the initial guess of the solution
supplied to the methods and the algorithm would fail if the initial guess of the solution is improper. However, it is difficult
to select a good initial guess for most systems of nonlinear equations. In response to this demand, in this study, an approach
to solving systems of nonlinear equations has been presented. Let the form of a system of nonlinear equations be:

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0 (1.1)
...

fr(x1, x2, . . . , xn) = 0.
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In order to use global optimization methods, the system of Eq. (1.1) is transformed to an optimization problem. This is
achieved by using the auxiliary function:

F(x) =

r−
i=1

f 2i (x). (1.2)

By definition F(x) ≥ 0, for the global minimum x∗ of F(x) it holds F(x∗) ≥ 0. If x∗: F(x∗) = 0, then it implies that x∗

is a global minimum and subsequently f1(x∗) = f2(x∗) = · · · = fr(x∗) = 0 and thus x∗ is a root for the corresponding
system of equations. In this work, we present a new particle swarm optimization (PSO) algorithm for solving minimization
problem (1.2). In the reminder of the paper, it is organized as follows. In Section 2, we describe the basic particle swarm and
a proposed particle swarm algorithm. In Section 3, some examples are also presented to demonstrate the effectiveness and
robustness of the proposed particle swarm algorithm. Finally, the conclusion is indicated in Section 4.

2. Particle swarm optimization algorithm

The particle swarm optimization (PSO) was proposed by Kennedy and Eberhart [13]. It is a randomized, population-
based optimizationmethod that was inspired by the flocking behavior of birds or fish schooling. In PSO, each single solution
is a ‘‘bird’’ in the search space. We call it a ‘‘particle’’. A swarm of these particles moves through the search space to find
an optimal position. Each particle has a position xi = (xi1, xi2, . . . , xiN) and a velocity vi = (vi1, vi2, . . . , viN) in the N-
dimensional problem space, where i denotes the ith particle and N represents the dimension of the problem or number of
unknown variables. PSO is initialized with a group of random particles (solutions) and then searches for optima by updating
generations. During every iteration, each particle is updated by following two ‘‘best’’ values. The first one is the position
vector of the best solution (fitness) this particle has achieved so far. The fitness value is also stored. This position is called
pbest. Another ‘‘best’’ position that is tracked by the particle swarm optimizer is the best position, obtained so far, by any
particle in the population. This best position is the current global best and is called gbest. After finding the two best values,
the position and velocity of the particles are updated by the following two equations:

vk
i = wvk

i + c1r1(pbestki − xki ) + c2r2(gbestk − xki )

xk+1
i = xki + vk+1

i

where vk
i is the velocity of the ith particle at the kth iteration, and xki is the current solution (or position) of the ith particle

at the kth iteration. c1, c2 are positive constants, and r1, r2 are two random variables with uniform distribution between 0
and 1. In this equation, w is the inertia weight which shows the effect of the previous velocity vector on the new vector. An
upper bound is placed on the velocity in all dimensions vmax. This limitation prevents the particle from moving too rapidly
from one region in the search space to another. This value is usually initialized as a function of the range of the problem.

2.1. Proposed particle swarm optimization algorithm (PPSO)

The basic PSO approach typically converges rapidly during the initial search period and then slows. It has the tendency
of being trapped in local minima and slow convergence. Furthermore, inertia weight w, c1 and c2 are critical factors that
affect the convergence of PSO [14–17]. In order to overcome these problems, we introduced the proposed particle swarm
optimization algorithm. The key difference between PPSO and the basic PSOmethod is in the way of updating each particle.
In this algorithm, the position and velocity of the particles are updated by the following equations:

vk+1
i = (2r1 − 0.5)vk

i + (2r2 − 0.5)(pbestki − xki ) + (2r3 − 0.5)(gbestk − xki ) (2.1)

wk+1
= (2r4 − 0.5)(gbestk − pbestki ) + (2r5 − 0.5)(gbestk − xki )

xk+1
i = pbestki + (2r6 − 0.5)vk+1

i + (2r7 − 0.5)wk+1 (2.2)

where r1, r2, r3, r4, r5, r6 and r7 are random numbers between 0 and 1. The procedure of the proposed algorithm is summa-
rized as follows:
Step 1. Random generation of an initial population and velocities.
Step 2. Computing the fitness of each particle and determining pbest of each particle and gbest. The initial fitness value of
each pbesti is equal to the fitness value of the current position of each particle.
Step 3. Change the velocity of the particle according to (2.1).
Step 4. Move each particle to a new position using Eq. (2.2).
Step 5. The fitness value of each particle is compared with that of its corresponding pbest. If the fitness value of the ith
particle is smaller than that of pbesti, pbesti is replaced with the ith particle. The new pbesti is then stored in the Mm×n
matrix, wherem is number of particles and n represents number of unknown variables.
Step 6. The worst pbesti among all the best particles of theM matrix is chosen as pworsti.
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Table 1
Results of PPSO.

Variable Initial After 100 After 200 After 300 After 420
and function value iteration iterations iterations iterations iterations

x1 2.0000 0.341 −0.00019 0.000000 0.000000
x2 2.0000 0.251 −0.00026 −0.000002 0.000000
x3 −2.0000 −0.0226 0.00013 0.000000 0.000000
x4 2.0000 0.0012 0.00002 0.000000 0.000000
x5 −2.0000 −0.0197 0.000015 −0.000001 0.000000
x6 2.000 0.0247 0.00019 0.000001 0.000000
x7 2.0000 0.0262 −0.00003 −0.000002 0.000000
x8 −1.9675 −0.0223 0.00019 −0.000003 0.000000
x9 1.9871 −0.0135 −0.00010 −0.000004 0.000000
x10 1.0285 −0.0038 −0.00012 −0.000002 0.000000
f (X) 37.278233 0.926675 0.00004 0.000000 0.000000

Step 7. Selecting randomly a component l of pworsti and updating this component as follows:

pworstnewi,l = pworsti,l + (2r8 − 0.5)
∂ f

∂pworsti,l
(pworsti)

xU(l) − xL(l)
, (2.3)

where xU is the upper bound and xL is the lower bound of each variable. r8 is a random number between 0 and 1. It is
obvious, in most cases, that the functions are too complicated or expensive to calculate. To overcoming this problem, finite
differencing is an approach to the calculation of approximate derivatives whose motivation comes from Taylor’s theorem.
A more accurate approximation to the derivative can be obtained by using the central difference formula, defined as:

∂ f
∂xi

(x) ≈
f (x + ϵei) − f (x − ϵei)

2ϵ

where f is the objective function, ei is the ith unit vector and ϵ = 10−8. So Eq. (2.3) is updated as follows:

pworstnewi,l = pworsti,l + (2r8 − 0.5)
f (pworsti + ϵel) − f (pworsti − ϵel)

2ϵ(xU(l) − xL(l))
. (2.4)

Step 8. The fitness value of pworstnewi is compared with that of its corresponding pworsti. If the fitness value pworstnewi is
smaller than that of pworsti, pworsti is replaced with the pworstnewi . The new pbesti is then stored in theM matrix.
Step 9. The best pbesti among all the particles is chosen as the gbest.
Step 10. Go to step 3, and repeat until convergence.

3. Experiment and results

Five benchmark functions are given to investigate the performance of PPSO in this section.
Test 1: Rastrigin function

f (x) =

10−
i=1

(x2i − 10 cos(2πxi) + 10) |xi| ≤ 5.2.

The minimum solution of the Rastrigin function is located at point x = (0, 0, 0, . . . , 0, 0, 0) with an objective function
value equal to f (x) = 0.0. When applying the PPSO algorithm to the function, the algorithm found the optimal solution
after approximately 300 iterations. Results were compared with Mo et al. [12]. The results of the PPSO algorithm, the result
of Mo et al. [12] and convergence history of the PPSO algorithm are shown in Tables 1 and 2 and Fig. 1 respectively.

It is obvious from Tables 1 and 2 that the PPSO results are better than the Mo et al. [12] results.
Test 2: Consider the following function:

max f (x) = −

D−
i=1

[
sin(xi) + sin


2xi
3

]
.

The objective function of the above function is 1.21598D. When applying the PPSO algorithm to the function with D = 10,
the algorithm found the optimal solution after approximately 500 iterations. Results and convergence history are shown in
Table 3 and Fig. 2 respectively. In this example, the bound variables were set between 3 and 13.

Also when applying the PPSO algorithm to the function with D = 100, the algorithm found the optimal solution after
approximately 6000 iterations. Results and convergence history are shown in Table 4 and Fig. 3 respectively.

Test 3: Powell quartic function

min f (x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4.
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Fig. 1. Convergence history of Rastrigin function.

Fig. 2. Convergence history of Test 2 with D = 10.

Fig. 3. Convergence history of Test 2 with D = 100.
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Table 2
Results of Mo et al. [12].

Variable Initial After 200 After 400 After 600 After 1000
iteration iterations iterations iterations iterations

x1 0.1431 −0.0001 −0.0007 0.0001 −0.0000
x2 2.1983 −0.0001 0.0000 0.0001 0.0001
x3 1.9401 0.0000 0.0000 0.0001 0.0001
x4 −1.7080 −0.0002 −0.0001 0.0000 −0.0000
x5 0.2261 −0.9950 −0.9962 −0.9948 0.0001
x6 0.9392 0.9950 0.9941 0.9949 0.9949
x7 −0.1129 0.9949 0.9949 0.0001 0.0000
x8 −0.1516 0.9950 0.9949 0.9949 −0.0000
x9 −2.1893 −0.0001 0.0000 0.0001 −0.0000
x10 4.9798 0.9950 0.0000 0.0001 −0.0000

Table 3
Results of Test 2 with D = 10.

Variable Initial After 100 After 200 After 300 After 400 After 500
and function value iteration iterations iterations iterations iterations

x1 4.9203 5.3737 5.3667 5.3656 5.3626 5.3623
x2 4.6815 5.3564 5.3601 5.3618 5.3628 5.3624
x3 4.9207 5.3522 5.3651 5.3658 5.3627 5.3621
x4 5.5048 5.3846 5.3656 5.3648 5.3636 5.3633
x5 6.3685 5.3597 5.3628 5.3630 5.3607 5.3627
x6 6.7112 5.3520 5.3669 5.3640 5.3631 5.3625
x7 5.6790 5.3369 5.3621 5.3626 5.3613 5.3624
x8 6.3557 5.3420 5.3626 5.3629 5.3623 5.3622
x9 11.7889 5.3705 5.3574 5.3647 5.3627 5.3627
x10 10.3531 5.3515 5.3580 5.3592 5.3622 5.3616
f (x) −7.690599 −12.158781 −12.159769 −12.159797 −12.15981 −12.15982

Table 4
Results of Test 2 with D = 100.

Variable Initial After 1000 After 2000 After 3000 After 4000 After 5000 After 6000
and function value iteration iterations iterations iterations iterations iterations iterations

f (x) 54.103342 121.208321 121.554754 121.593659 121.596941 121.598050 121.598204

Fig. 4. Convergence history of Powell function.

As the second derivative of the Powell quartic function is singular at theminimumpoint, it is difficult to obtain theminimum
solution using gradient-based algorithms [18]. The minimum solution of the Powell quartic function is located at point
x = (0, 0, 0, 0) with an objective function value equal to f (x) = 0.0. The convergence history of the PPSO algorithm is
shown in Fig. 4.
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Fig. 5. Convergence history of Six-Hump Camelback function.

Fig. 6. Convergence history of Rosenbrock function.

Test 4: Six-Hump Camelback

min f (x) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42.

The Six-Hump Camelback has six local optima two of which are global. So the result from gradient-based algorithms
may depend on the selection of an initial point. The global optima are located at either x = (−0.08984, 0.71266) or
x = (0.08984, −0.71266), each with a corresponding function value equal to f (x) = −1.0316285. Convergence history
of PPSO algorithm is shown in Fig. 5.

Test 5: Rosenbrock function
f (x) = 100(x2 − x21)

2
+ (1 − x1)2.

Because of a long narrow and curved valley present in the function, gradient-based algorithms may require a large
number of iterations to obtain the optimal solution. The minimum solution of the Rosenbrock function is at point x = (1, 1)
with an objective function value equal to f (x) = 0.0. Convergence history of PPSO algorithm is shown in Fig. 6. In this
example, the bound variables were set between −10.0 and 10.0.

4. Examples

Now, some standard systems are borrowed from the literature to demonstrate the efficiency of the proposed particle
swarm optimization algorithm for solving systems of nonlinear equations. Result of seven case studies are shown in Table 7
and convergence history of each case study is demonstrated in Figs. 7–13.
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Table 5
Comparison results of PPSO with Mo et al. [12] and Luo et al. [11].

Methods b h t f1(x) f2(x) f3(x)

PPSO (present study) 43.155566052654329 10.12895020227820 12.944048457756352 165 9369 6835
PPSO (present study) −7.602995198463455 −24.541982377674739 −11.576715672202731 165 9369 6835
Mo et al. [12] 8.943089 23.271482 12.912774 251.2378 9369 6835
Luo et al. [11] 12.5655 22.8949 2.7898 408.6488 9544.3 7213.1
Luo et al. [11] −12.5655 −22.8949 −2.7898 408.6488 9544.3 7213.1
Luo et al. [11] 8.943089 23.271482 12.912774 251.2378 9369 6835
Luo et al. [11] −8.943089 −23.271482 −12.912774 251.2378 9369 6835
Luo et al. [11] −2.3637 35.7564 3.0151 −334.0376 9369 6835
Luo et al. [11] 2.3637 −35.7564 −3.0151 −334.0376 9369 6835

Fig. 7. Convergence history of case study 1.

Numerical test results
Case study 1. Geometry size of thin wall rectangle girder section:

f1(x) = bh − (b − 2h)(h − 2t) = 165

f2(x) =
bh3

12
−

(b − 2t)(h − 2t)3

12
= 9369 (4.1)

f3(x) =
2t(h − t)2(b − t)2

h + b − 2t
= 6835,

where b is the width of the section, h is the height of the section and t is the thickness of the section. Recently, Mo et al. [12]
solved the above system using a combination of the conjugate direction method (CD) and particle swarm optimization.
Also Luo et al. [11] solved the above system using a combination of chaos search and Newton-type methods. Luo et al. [11]
found six different solutions. When applying the PPSO algorithm, two solutions were found. Table 5 lists the best solutions
obtained by the PPSO method, and compares them with earlier results reported by Mo et al. [12] and Luo et al. [11].

It is obvious from Table 5 that the PPSO results are the exact solution and outperform other two results.
Case study 2. [19]

f1(x) = (3 − 5x1)x1 + 1 − 2x2 = 0
f2(x) = (3 − 5xi)xi + 1 − xi−1 − 2xi+1 = 0 i = 2, . . . , 9 (4.2)
f3(x) = (3 − 5x10)x10 + 1 − x9 = 0.

This system has ten variables and ten equations. Mo et al. [12] solved the above system using a combination of the conjugate
direction method (CD) and particle swarm optimization. Table 6 lists the best solution obtained by the PPSO method, and
compares them with earlier results reported by Mo et al. [12].

It is obvious from Table 6 that the PPSO results are very close to the exact solution and the solution accuracy is so far
better than the solution found by Mo et al. [12].

Also, we solved the following test problems. Table 7 lists the best solutions obtained by the PPSO method and other
methods.
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Table 6
Comparison results of PPSO with Mo et al. [12].

Solutions and equations Mo et al. [12] PPSO (present study)

x1 0.915551 −0.382084303665302
x2 −0.222256 −0.438097493266449
x3 −0.414654 −0.445927622082887
x4 −0.439254 −0.446971296832353
x5 0.420892 −0.446951484687073
x6 −0.354588 −0.446355652774381
x7 −0.135767 −0.444141158727146
x8 0.427562 −0.436187333892258
x9 0.752203 −0.407858897094904
x10 −0.440697 −0.309566878544907

f1(x) −3.1680e−006 0
f2(x) 3.5232e−007 0
f3(x) −1.6986e−006 8.8e−016
f4(x) 1.7710e−006 1.11e−016
f5(x) −1.6836 1.11e−016
f6(x) 2.5254 −1.11e−016
f7(x) −0.8418 −1.11e−016
f8(x) −3.9144e−007 −1.11e−016
f9(x) 6.8078e−007 1.11e−016
f10(x) 2.3396e−007 −1.66e−016

Fig. 8. Convergence history of case study 2.

Case study 3. [8]

x1 +
x42x4x6

4
+ 0.75 = 0

x2 + 0.405e1+x1x2 − 1.405 = 0

x3 −
x4x6
2

+ 1.5 = 0

x4 − 0.605e(1−x23) − 0.395 = 0

x5 −
x2x6
2

+ 1.5 = 0

x6 − x1x5 = 0.

Case study 4. [12]

xx21 + xx12 − 5x1x2x3 = 85

x31 − xx32 − xx23 = 60

xx31 + xx13 − x2 = 2
3 ≤ x1 ≤ 5, 2 ≤ x2 ≤ 4, 0.5 ≤ x3 ≤ 2.
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Fig. 9. Convergence history of case study 3.

Fig. 10. Convergence history of case study 4.

Case study 5. [20]

ex
2
1 − 8x1 sin(x2) = 0

x1 + x2 − 1 = 0
(x3 − 1)3 = 0.

When applying the PPSO method, two solutions were obtained.
Case study 6. [20]

3x1 − cos(x2x3) − 0.5 = 0
x21 − 625x22 − 0.25 = 0

e−x1x2 + 20x3 +
(10π − 3)

3
= 0.

Case study 7. [21]

x31 − 3x1x22 − 1 = 0

3x21x2 − x32 + 1 = 0.
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Fig. 11. Convergence history of case study 5.

Fig. 12. Convergence history of case study 6.

Fig. 13. Convergence history of case study 7.
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Table 7
Optimal results of case study.

Case study Methods x1 x2 x3 x4 x5 x6

Case 3 Mo et al. [12] -1 1 -1 1 -1 1
Krzyworzcka [8] -1 1 -1 1 -1 1
PPSO (present study) -1 1 -1 1 -1 1

Case 4 Mo et al. [12] 4 3 1
PPSO (present study) 4 3 1

Case 5 PPSO (present study) 0.17559892417766 0.82440107582234 1
PPSO (present study) 0.70424696664893 0.29575303335107 1

Case 6 PPSO (present study) 0.5 0 −0.52359877559662

Case 7 PPSO (present study) −0.29051455550725 1.08421508149135
−0.793700525984100 −0.793700525984100

5. Conclusions

In this paper, an approach for solving a system of nonlinear equations was presented. A system of nonlinear equations
was converted to the minimization problem. Also we suggested solving the minimization problem using a new particle
swarm optimization algorithm. Some standard problems were presented to demonstrate the efficiency of finding the best
solution of a system of nonlinear equations using the proposed particle swarm optimization algorithm.
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