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Abstract

In this paper we extend the notion of “filtration-consistent nonlinear expectation” (or “F -consistent
nonlinear expectation”) to the case when it is allowed to be dominated by a g-expectation that may have
a quadratic growth. We show that for such a nonlinear expectation many fundamental properties of a
martingale can still make sense, including the Doob–Meyer type decomposition theorem and the optional
sampling theorem. More importantly, we show that any quadratic F -consistent nonlinear expectation with
a certain domination property must be a quadratic g-expectation as was studied in [J. Ma, S. Yao, Quadratic
g-evaluations and g-martingales, 2007, preprint]. The main contribution of this paper is the finding of a
domination condition to replace the one used in all the previous works (e.g., [F. Coquet, Y. Hu, J. Mémin,
S. Peng, Filtration-consistent nonlinear expectations and related g-expectations, Probab. Theory Related
Fields 123 (1) (2002) 1–27; S. Peng, Nonlinear expectations, nonlinear evaluations and risk measures, in:
Stochastic Methods in Finance, in: Lecture Notes in Math., vol. 1856, Springer, Berlin, 2004, pp. 165–253]),
which is no longer valid in the quadratic case. We also show that the representation generator must be
deterministic, continuous, and actually must be of the simple form g(z) = µ(1 + |z|)|z|, for some constant
µ > 0.
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1. Introduction

In this paper we study a class of filtration-consistent nonlinear expectations (or F-consistent
nonlinear expectations), first introduced by Coquet, Hu, Mémin and Peng [6]. Such nonlinear
expectations are natural extensions of the so-called g-expectation, initiated in [13], and therefore
have direct relations with a fairly large class of risk measures in finance. The main point of
interest of this paper is that the nonlinear expectations are allowed to have possible quadratic
growth, and our ultimate goal is to prove a representation theorem that characterizes the nonlinear
expectations in terms of a class of quadratic BSDEs. We should note that the class of “quadratic
nonlinear expectations” under consideration contains many convex risk measures that are not
necessarily “coherent”. The most notable example is the entropic risk measure (see, e.g., Barrieu
and El Karoui [2]), which is known to have a representation as the solution to a quadratic BSDE,
but falls outside the existing theory of F-consistent nonlinear expectations. We refer the reader
to [1] and [7] for the basic concepts of coherent and convex risk measures, respectively, to [14]
for detailed accounts of the relationship between the risk measures and nonlinear expectations.
A brief review of the basic properties of F-consistent nonlinear expectations will be given in
Section 2 for ready reference.

An interesting result so far in the development of the notion of F-consistent nonlinear
expectations is its relationship with the backward stochastic differential equations (BSDEs).
Although as an extension of the so-called g-expectation, which is defined directly via the BSDE,
it is conceivable that an F-consistent nonlinear expectation should have some connection to
BSDEs, the proof is by no means easy. For the case where g has only linear growth, it was shown
in [6] that if an F-consistent nonlinear expectation is “dominated” by a gµ-expectation in the
sense that

E[X ] − E[Y ] ≤ Egµ
[X − Y ], ∀X, Y ∈ L2(FT ), (1.1)

where gµ = µ|z| for some constant µ > 0, then it has to be a g-expectation. The significance
of such a result might be more clearly seen from the following consequence in finance: any
time-consistent risk measure satisfying the required domination condition can be represented by
the solution of a simple BSDE(!). In an accompanying paper by Ma and Yao [11], the notion
of g-expectation was generalized to the quadratic case, along with some elementary properties
of the g-expectations including the Doob–Meyer decomposition and upcrossing inequalities.
However, the representation property for general (even convex) risk measure seems to be much
more subtle. One of the immediate obstacles is that the “domination” condition (1.1) breaks
down in the quadratic case. For example, one can check that a quadratic g-expectation with
g = µ(|z| + |z|2) cannot be dominated by itself(!). Therefore some new ideas for replacing the
domination condition (1.1) are in order.

The main purpose of this paper is to generalize the notion of F-consistent nonlinear
expectation to the quadratic case and prove at least a version of the representation result for
such nonlinear expectations. An important contribution of this paper is the finding of a new
domination condition for the quadratic nonlinear expectation, stemming from the reverse Hölder
inequality in BMO theory [9]. More precisely, we observe that there exists an L p estimation
for the difference of quadratic g-expectations by using the reverse Hölder inequality. Extending
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such an estimate to the general nonlinear expectations, we then obtain an L p-type domination
which turns out to be sufficient for our purpose. Following the idea in [14], with the help of
the new domination condition, we then prove the optional sampling, and a Doob–Meyer type
decomposition theorem for quadratic F-martingales. Like for the linear case, we can then prove
that the representation property for the quadratic F-consistent nonlinear expectation remains
valid under such a domination condition. That is, one can always find a quadratic g-expectation
with g being of the form: g = µ(1 + |z|)|z|, to represent the given nonlinear expectation.

Our discussion on quadratic nonlinear expectation benefited greatly from the recent
development on the theory of BSDEs with quadratic growth, initiated by Kobylanski [10],
and the subsequent results on such BSDEs with unbounded terminal conditions by Briand and
Hu [4,5]. In particular, we need to identify an appropriate subset of exponentially integrable
random variables with certain algebraic properties on which a quadratic F-consistent nonlinear
expectation can be defined. It is worth noting that such a set will have to contain all the random
variables of the form ξ + zBτ , where B is the driving Brownian motion, ξ ∈ L∞(FT ), and τ is
any stopping time, which turns out to be crucial in proving the representation theorem and the
continuity of the representation function g. We should remark that although most of the steps
towards our final result look quite similar to the linear growth case, some special treatments are
necessary along the way to overcome various technical subtleties caused by the quadratic BSDEs,
especially those with unbounded terminal conditions. We believe that many of the results are
interesting in their own right. We therefore present full details for future reference.

This paper is organized as follows. In Section 2 we give the preliminaries and review
some basics of quadratic g-expectations and the BMO martingales. In Section 3 we introduce
the notion of quadratic F-consistent nonlinear expectations and several new notions of the
dominations. In Section 4, we show some properties of quadratic F-expectations including the
optional sampling theorem, which pave the ways for the later discussions. In Section 5, we prove
a Doob–Meyer type decomposition theorem for quadratic F-submartingales. The last section is
devoted to the proof of the representation theorem of the quadratic nonlinear expectations.

2. Preliminaries

Throughout this paper we consider a filtered, complete probability space (Ω ,F, P,F) on

which is defined a d-dimensional Brownian motion B. We assume that the filtration F
4
= {Ft }t≥0

is generated by the Brownian motion B, augmented by all the P-null sets in F , so that it satisfies
the usual hypotheses (cf. [15]). We denote as P the progressive measurable σ -field on Ω×[0, T ];
and asM0,T the set of all F-stopping times τ such that 0 ≤ τ ≤ T , P-a.s., where T > 0 is some
fixed time horizon.

In what follows we fix a finite time horizon T > 0, and denote as E a generic Euclidean
space, whose inner products and norms will be denoted as the same 〈·, ·〉 and | · |, respectively;
and denote as B a generic Banach space with norm ‖ · ‖. Moreover, we shall denote as G ⊆ F
any sub-σ -field, and for any x ∈ Rd and any r > 0 we denote as Br (x) the closed ball with
center x and radius r . Furthermore, the following spaces of functions will be frequently used in
the sequel. We define:

• for 0 ≤ p ≤ ∞, L p(G; E) to be the space of all E-valued, G-measurable random variables
ξ , with E(|ξ |p) < ∞; in particular, if p = 0, then L0(G,E) denotes the space of all E-
valued, G-measurable random variables; and if p = ∞, then L∞(G; E) denotes the space of

all E-valued, G-measurable random variables ξ such that ‖ξ‖∞

4
= esssupω∈Ω |ξ(ω)| < ∞;
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• for 0 ≤ p ≤ ∞, L p
F([0, T ]; B) to be the space of all B-valued, F-adapted processes ψ , such

that E
∫ T

0 ‖ψt‖
pdt < ∞; in particular, p = 0 stands for all B-valued, F-adapted processes;

and p = ∞ denotes all processes X ∈ L0
F([0, T ]; B) such that ‖X‖∞

4
= esssupt,ω|X (t, ω)| <

∞;
• D∞

F ([0, T ]; B) = {X ∈ L∞

F ([0, T ]; B) : X has càdlàg paths};
• C∞

F ([0, T ]; B) = {X ∈ D∞

F ([0, T ]; B) : X has continuous paths};
• H2

F([0, T ]; B) = {X ∈ L2
F([0, T ]; B) : X is predictably measurable}.

The following two spaces are variations of the L p spaces defined above; they will be important
for our discussions regarding quadratic BSDEs with unbounded terminal conditions. For any
p > 0, we define Mp(Rd) to be the space of all Rd -valued predictable processes X such that

‖X‖Mp
4
=

(
E

(∫ T

0
|Xs |

2ds

)p/2)1∧1/p

< ∞. (2.1)

We note that for p ≥ 1, Mp(Rd) is a Banach space with the norm ‖ · ‖Mp , and for p ∈ (0, 1),
Mp(Rd) is a complete metric space with the distance defined through (2.1) Finally, if d = 1, we
shall drop E = R from the notation (e.g., L p

F([0, T ]) = L p
F([0, T ]; R), L∞(FT ) = L∞(FT ; R),

and so on).

2.1. Quadratic g-expectations on L∞(FT )

We now give a brief review of the notion of quadratic g-expectations studied in Ma and
Yao [11]. First recall that for any ξ ∈ L2(FT ), and a given “generator” g = g(t, ω, y, z) :

[0, T ] × Ω × R × Rd
7→ R satisfying the standard conditions (e.g., it is Lipschitz in all spatial

variables, and is of linear growth, etc.), the g-expectation of ξ is defined as Eg(ξ)
4
= Y0, where

Y = {Yt : 0 ≤ t ≤ T } is the solution to the following BSDE:

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds −

∫ T

t
ZsdBs, ∀t ∈ [0, T ]. (2.2)

We shall denote (2.2) as BSDE(ξ, g) in the sequel for notational convenience.
In [11] the g-expectation was extended to the quadratic case, based on the well-posedness

result of the quadratic BSDEs given by Kobylanski [10], and under rather general conditions on
the generator g. In this paper, however, we shall content ourselves with a slightly simplified form
of the generator g that is sufficient for our purpose. More precisely, we assume that the generator
g is independent of the variable y, and satisfies the following Standing Assumptions:

(H1) The function g : [0, T ] × Ω × Rd
7→ R is P ⊗ B(Rd)-measurable and g(t, ω, ·) is

continuous for all (t, ω) ∈ [0, T ] × Ω .
(H2) There exists a constant ` > 0 such that for dt ×dP-a.s. (t, ω) ∈ [0, T ]×Ω and any z ∈ Rd

|g(t, ω, z)| ≤ `(|z| + |z|2) and

∣∣∣∣∂g

∂z
(t, ω, z)

∣∣∣∣ ≤ `(1 + |z|). (2.3)

In the light of the results of [10] we know that under the assumptions (H1) and (H2), for any
ξ ∈ L∞(FT ) the BSDE (2.2) has a unique solution (Y, Z) ∈ C∞

F ([0, T ])×H2
F([0, T ]; Rd). We

can then define the quadratic g-expectation of ξ as Eg(ξ) = Y0 and the conditional g-expectation
as
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Eg
[ξ |Ft ]

4
= Y ξt , ∀t ∈ [0, T ],∀ξ ∈ L∞(FT ). (2.4)

It is easy to see that g|z=0 = 0 from (H2). So by the uniqueness of the solution to the quadratic
BSDE, one can show that all the fundamental properties of nonlinear expectations are still valid
for quadratic g-expectations:

(i) (time-consistency) Eg
[Eg

[ξ |Ft ]|Fs] = Eg
[ξ |Fs], P-a.s. ∀0 ≤ s ≤ t ;

(ii) (constant-preserving) Eg
[ξ |Ft ] = ξ, P-a.s. ∀ξ ∈ L∞(Ft );

(iii) (“zero–one law”) Eg
[1Aξ |Ft ] = 1AEg

[ξ |Ft ], P-a.s. ∀A ∈ Ft .

Furthermore, since g is independent of y, then we know that the quadratic g-expectation is also
“translation invariant” in the sense that

Eg
[ξ + η|Ft ] = Eg

[ξ |Ft ] + η, P-a.s. ∀t ∈ [0, T ],∀η ∈ L∞(Ft ). (2.5)

Along the same lines as [14] we can define the “quadratic g-martingales” as usual. For
example, a process X ∈ L∞

F ([0, T ]) is called a g-submartingale (resp. g-supermartingale) if
for any 0 ≤ s < t ≤ T , it holds that

Eg
[X t |Fs] ≥ (resp. ≤)Xs, P-a.s.

The process X is called a quadratic g-martingale if it is both a g-submartingale and a g-
supermartingale.

Similar to the cases studied in [14] where g is Lipschitz continuous and of linear growth, it
was shown in [11] that the quadratic g-sub(super)martingales also admit the Doob–Meyer type
decomposition, and an upcrossing inequality holds (cf. [11, Theorem 4.6]). The next theorem
summarizes some results of [11], adapted to the current setting, which will be used in our future
discussion. The proof of these results can be found in [11, Theorem 4.2 and Corollary 4.7].

Theorem 2.1. Assume (H1) and (H2). Then, for any right-continuous g-submartingale (resp.
g-supermartingale) Y ∈ L∞

F ([0, T ]), there exist an increasing (resp. decreasing) càdlàg process
A null at 0 and a process Z ∈ H2

F([0, T ]; Rd), such that

Yt = YT +

∫ T

t
g(s, Ys, Zs)ds − AT + At −

∫ T

t
ZsdBs, t ∈ [0, T ].

Furthermore, if g vanishes as z vanishes, then any g-submartingale (resp. g-supermartingale)
X must satisfy the following continuity property: For any dense subset D of [0, T ], P-almost
surely, the limit limr↗t,r∈D Xr (resp. limr↘t,r∈D Xr ) exists for any t ∈ (0, T ] (resp. t ∈ [0, T )).

�

2.2. BMO and exponential martingales

To end this section, we recall some important facts regarding the so-called “BMO
martingales” and the properties of the related stochastic exponentials. We refer the reader to
the monograph of Kazamaki [9] for a complete exposition of the theory of continuous BMO
and exponential martingales. Here we shall be content with just some facts that are useful in our
future discussions.

To begin with, we recall that a uniformly integrable martingale M null at zero is called a
“BMO martingale” on [0, T ], if for some 1 ≤ p < ∞, it holds that

‖M‖BMOp

4
= sup
τ∈M0,T

‖E{|MT − Mτ−|
p
|Fτ }1/p

‖∞ < ∞. (2.6)
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In such a case we define M ∈ BMO(p). It is important to note that M ∈ BMO(p) if and only if
M ∈ BMO(1), and all the BMO(p) norms are equivalent. Therefore in what follows we shall say
that a martingale M is BMO without specifying the index p; and we shall use only the BMO(2)
norm and denote it simply by ‖ · ‖BMO. Note also that for a continuous martingale M one has

‖M‖BMO = ‖M‖BMO2 = sup
τ∈M0,T

‖E{〈M〉T − 〈M〉τ |Fτ }‖∞.

Now, for a given Brownian motion B, we say that a process Z ∈ L2
F([0, T ]; Rd) is a BMO

process, denoted by Z ∈ BMO with a slight abuse of notation, if the stochastic integral M
4
= Z•B

is a BMO martingale. We remark that the space of BMO martingales is smaller than anyMp(Rd)

space (see (2.1) for definition). To wit, it holds that BMO ⊂
⋂

p>0Mp(Rd). Furthermore, by
the so-called “energy inequality” [9, p. 29], one checks that

(‖Z‖M2n )
2n

= E

(∫ T

0
|Zs |

2ds

)n

≤ n!‖Z‖
2n
BMO, ∀n ∈ N. (2.7)

We now turn our attention to the stochastic exponentials of the BMO martingales. Recall
that for a continuous martingale M , the Doléans–Dade stochastic exponential of M , denoted

customarily by E (M), is defined as E (M)t
4
= exp{Mt −

1
2 〈M〉t }, t ≥ 0. Note that if E (M) is a

uniformly integrable martingale, then the Hölder inequality implies that

E (M)p
τ ≤ E[E (M)p

T |Fτ ], P-a.s. (2.8)

for any stopping time τ ∈ M0,T and any p ≥ 1. However, if M is further a BMO martingale,
then the stochastic exponential E (M) is itself a uniform integrable martingale (see [9, Theorem
2.3]). Moreover, the so-called “reverse Hölder inequality” (cf. [9, Theorem 3.1]) holds for E (M).
We note that this inequality plays a fundamental role in the new domination condition for the
nonlinear expectations, which leads to the representation theorem and its continuity; we give the
complete statement here for ready reference. For any α > 2, define

φα(x)
4
=

{
1 + x−2 log

[
(1 − 2α−x )

2x − 1
2x − 2

]} 1
2

− 1, x ∈ (1,∞). (2.9)

Theorem 2.2 (Reverse Hölder Inequality). Suppose that M ∈ BMO. If it satisfies that
‖M‖BMO ≤ φα(p), then one has

E[E (M)p
T |Fτ ] ≤ α pE (M)p

τ , ∀τ ∈ M0,T . (2.10)

Finally, we give a result that relates the solution to a quadratic BSDE to the BMO processes.
Let us consider the BSDE (2.2) in which the generator g has a quadratic growth. For simplicity,
we assume there is some k > 0 (we may assume without loss of generality that k ≥

1
2 ) such that

for dt × dP-a.s. (t, ω) ∈ [0, T ] × Ω ,

|g(t, ω, y, z)| ≤ k(1 + |z|2), ∀(y, z) ∈ R × Rd . (2.11)

Let (Y, Z) ∈ C∞

F ([0, T ]) ×H2
F([0, T ]; Rd) be a solution to (2.2). Applying Itô’s formula to

e4kYt from t to T one has
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e4kYt + 8k2
∫ T

t
e4kYs |Zs |

2ds = e4kYT + 4k
∫ T

t
e4kYs g(s, Ys, Zs)ds − 4k

∫ T

t
e4kYs ZsdBs

≤ e4kYT + 4k2
∫ T

t
e4kYs (1 + |Zs |

2)ds − 4k
∫ T

t
e4kYs ZsdBs .

Taking the conditional expectation E{·|Ft } on both sides above, and then using some standard
manipulations one derives fairly easily that

E

[∫ T

t
|Zs |

2ds|Ft

]
≤ e4k‖Y‖∞ E[e4kξ

− e4kYt |Ft ] + e8k‖Y‖∞(T − t).

In other words, we have proved the following result.

Proposition 2.3. Suppose that (Y, Z) ∈ C∞

F ([0, T ])×H2
F([0, T ]; Rd) is a solution of the BSDE

(2.2) with ξ ∈ L∞(FT ), and g satisfies (2.11). Then Z ∈ BMO, and the following estimate holds:

‖Z‖
2
BMO ≤ (1 + T )e8k‖Y‖∞ . �

3. Quadratic F -expectations

In this section we introduce the notion of “quadratic F-consistent nonlinear expectation”.
To begin with, we recall from [14] that an F-consistent nonlinear expectation is a family of
operators, denoted by {Et }t≥0, such that for each t ∈ [0, T ], Et : L0(FT ) 7→ L0(Ft ), and that the
following axioms are fulfilled:

(A1) monotonicity: Et [ξ ] ≥ Et [η], P-a.s., if ξ ≥ η, P-a.s.;
(A2) constant-preserving: Et [ξ ] = ξ , P-a.s., ∀ξ ∈ L0(Ft );
(A3) time-consistency: Es[Et [ξ ]] = Es[ξ ], P-a.s., ∀s ∈ [0, t];
(A4) “zero–one law”: Et [1Aξ ] = 1AEt [ξ ], P-a.s., ∀A ∈ Ft .

The operator Et [·] has been called the “nonlinear conditional expectation”, and denoted by
E{·|Ft } for obvious reasons. It was worth noting that in all the previous cases the natural
“domain” of the nonlinear expectation is the space L2(FT ); thus a nonlinear expectation can
be related to the solution to the BSDEs using the “classical” theory.

In the quadratic case, however, the situation is quite different. In particular, if the main concern
is the representation theorem where the quadratic BSDE is inevitable, then the domain of the
nonlinear expectation will become a fundamental issue. For example, due to the limitation of
the well-posedness of a quadratic BSDE, a quadratic nonlinear expectation would naturally be
restricted to the space L∞(FT ). But on the other hand, in the light of the previous works (see,
e.g., [6,14]), we see that technically the domain of E should also include the following set:

L ∞

T
4
= {ξ = ξ0 + zBT : ξ0 ∈ L∞(FT ), z ∈ Rd

}. (3.1)

Here B is the driving Brownian motion. A simple observation of the Axioms (A3) and (A4)
clearly indicates that E cannot be defined simply as a mapping from L ∞

T to L ∞
t . For example,

in general the random variable 1Aξ will not even be an element of L ∞

T (!), thus (A4) will not
make sense.

To overcome this difficulty let us now find a larger subset Λ ⊆ L0(FT ) that contains L ∞

T and
can serve as a possible domain of a nonlinear expectation. First, we observe that such a set must
satisfy the following property in order that Axioms (A1)–(A4) can be well defined.
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Definition 3.1. Let D(FT ) denote the totality of all subsets Λ in L0(FT ) satisfying: for all

t ∈ [0, T ], the set Λt
4
= Λ∩L0(Ft ) is closed under the multiplication withFt indicator functions.

That is, if ξ ∈ Λt and A ∈ Ft , then 1Aξ ∈ Λt . �

It is easy to see that L∞(FT ) ∈ D(FT ) and D(FT ) is closed under intersections and unions.
Thus for any S ⊂ L0(FT ), we can define the smallest element in D(FT ) that contains S as usual

by Λ(S)
4
=
⋂

Λ∈D(FT ),S⊂Λ Λ. We are now ready to define the quadratic F-consistent nonlinear
expectations.

Definition 3.2. An F-consistent nonlinear expectation with domain Λ is a pair (E,Λ), where
Λ ∈ D(FT ), and E = {Et }t≥0 is a family of operators Et : Λ 7→ Λt , t ∈ [0, T ], satisfying
Axioms (A1)–(A4).

Moreover, E is called “translation invariant” if Λ + L∞

T ⊂ Λ and (2.5) holds for any ξ ∈ Λ,
any t ∈ [0, T ] and any η ∈ L∞(Ft ). �

Again, we shall define Et [·] = E[·|Ft ] as usual, and we define Λ = Dom(E) to be the domain of
E . To simplify notation, in what follows when we say an F-consistent nonlinear expectation E ,
we always mean the pair (E,Dom(E)). Note that a standard g-expectation and the F-consistent
nonlinear expectation studied in [6] and [14] all have domain Λ = L2(FT ), and they are
translation invariant if g is independent of y. The quadratic g-expectation studied in [11] is one
with domain Λ = L∞(FT ).

We now turn to the notion of “quadratic” F-consistent nonlinear expectations.

Definition 3.3. AnF-consistent nonlinear expectation (E,Dom(E)) is called upper (resp. lower)
semi-quadratic if there exists a quadratic g-expectation (Eg,Dom(Eg)) with Dom(Eg) ⊆

Dom(E) such that for any t ∈ [0, T ] and any ξ ∈ Dom(Eg), it holds that

E[ξ |Ft ] ≤ (resp. ≥)Eg
[ξ |Ft ], P-a.s. (3.2)

Moreover, E is called quadratic if there exist two quadratic g-expectations Eg1 and Eg2 with
Dom(Eg1) ∩ Dom(Eg2) ⊆ Dom(E) such that for any t ∈ [0, T ] and any ξ ∈ Dom(Eg1) ∩

Dom(Eg2), it holds that

Eg1 [ξ |Ft ] ≤ E[ξ |Ft ] ≤ Eg2 [ξ |Ft ], P-a.s. (3.3)

In what follows, we shall call an F-consistent nonlinear expectation an “F-expectation” for
simplicity. Note that a quadratic g-expectation (Eg, L∞(FT )) would be a trivial example of
quadratic F-expectations. The following example is a little more subtle.

Example 3.4. Consider the BSDE (2.2) in which the generator g is Lipschitz in y and has
quadratic growth in z. Furthermore, assume that g is convex in (t, y, z). Then, by a recent result
of Briand and Hu [5], for any ξ ∈ L0(FT ) such that it has exponential moments of all orders
(i.e. E{eλ|ξ |} < ∞, ∀λ > 0), the BSDE (2.2) admits a unique solution (Y, Z). In particular, if we
assume further that g satisfies g|z=0 = 0, then it is easy to check that the g-expectation Eg(ξ) =

Y0 defines an F-expectation with domain Dom(Eg)
4
= {ξ ∈ FT : E[eλ|ξ |] < ∞,∀λ > 0}. We

should note that in this case the domain does indeed contain the set L ∞

T defined in (3.1)! �

Since we are only interested in the quadratic g-expectations whose domain contains at least
the set L ∞

T , we now introduce the following notion.
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Definition 3.5. A quadratic g-expectation Eg is called “regular” if

{ξ + zBτ : ξ ∈ L∞(FT ), z ∈ Rd , τ ∈ M0,T } ⊆ Dom(Eg).

Correspondingly, a (semi-)quadratic F-expectation is called “regular” if it is dominated by
regular quadratic g-expectation in the sense of Definition 3.3.

Example 3.4 shows the existence of the regular quadratic g-expectations. But it is worth
pointing out that because of special form of the set L ∞

T , the class of regular quadratic g-
expectations is much larger. To see this, let us consider any quadratic BSDE with g satisfying
(H1) and (H2),

Yt = ξ + zBτ +

∫ T

t
g(s, Zs)ds −

∫ T

t
ZsdBs, t ∈ [0, T ], (3.4)

where ξ ∈ L∞(FT ), z ∈ Rd , and τ ∈ M0,T . Now, if we set Ỹt = Yt − zBt∧τ , Z̃ t = Z t − z1{t≤τ },
then (3.4) becomes

Ỹt = ξ +

∫ T

t
g(s, Z̃s + z1{s≤τ })ds −

∫ T

t
Z̃sdBs, ∀t ∈ [0, T ]. (3.5)

Since ξ ∈ L∞(FT ), the BSDE (3.5) is uniquely solvable whenever g satisfies (H1) and (H2). In
other words, any g satisfying (H1) and (H2) can generate a regular g-expectation!

Remark 3.6. For any generator g satisfying (H1) and (H2), one can deduce like for (3.4) and
(3.5) that

L̃ ∞

T
4
=

{
ξ +

∫ T

0
ζsdBs : ξ ∈ L∞(FT ), ζ ∈ L∞

F ([0, T ]; Rd)

}
⊂ Dom(Eg). (3.6)

Therefore, it follows from Definition 3.3 that L̃ ∞

T ⊂ Dom(Eg1)∩Dom(Eg2) ⊂ Dom(E), as both
g1 and g2 satisfy (H1) and (H2). The set L̃ ∞

T is very important for the proof of the representation
theorem in the last section. �

3.1. Domination of quadratic F-expectations

In the theory of nonlinear expectations, especially in the proofs of decomposition and
representation theorems (cf. [6] and [14]), the notion of “domination” for the difference of
two values of F-expectations plays a central role. To be more precise, it was assumed that the
following property holds for an F-expectation E : for some g-expectation Eg , it holds for any
X, Y ∈ L2(FT ) that

E(X + Y )− E(X) ≤ Eg(Y ). (3.7)

In the case when g is Lipschitz, this definition of domination is very natural (especially when
g = g(z) = µ|z|, µ > 0). However, this notion becomes very ill-posed in the quadratic case. We
explain this in the following simple example.

Example 3.7. Consider the simplest quadratic case: g = g(z) =
1
2 |z|2, and take E = Eg . We

show that even such a simple quadratic g-expectation cannot find a domination in the sense of
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(3.7). Indeed, note that

Eg(X + Y ) = X + Y +
1
2

∫ T

0
|Z (1)s |

2ds −

∫ T

0
Z (1)s dBs;

Eg(X) = X +
1
2

∫ T

0
|Z (2)s |

2ds −

∫ T

0
Z (2)s dBs .

Defining Z = Z (1) − Z (2) we have

Eg(X + Y )− Eg(X) = Y +
1
2

∫ T

0
(|Z (2)s + Zs |

2
− |Z (2)s |

2)ds −

∫ T

0
ZsdBs .

But in the above the drift 1
2 (|Z

(2)
s + Zs |

2
− |Z (2)s |

2) ≤ |Zs |
2
+

1
2 |Z (2)s |

2 cannot be dominated by
any g satisfying (H1) and (H2). �

Since finding a general domination rule in the quadratic case is a formidable task, we are now
trying to find a reasonable replacement that can serve our purpose. It turns out that the following
definition of domination is sufficient for our purpose.

Definition 3.8. (1) A regular quadratic F-expectation E is said to satisfy the “L p-domination”
if for any K , R > 0, there exist constants p = p(K , R) > 0 and C = CR > 0 such that for
any two stopping times 0 ≤ τ2 ≤ τ1 ≤ T , any ξi ∈ L∞

τi
with ‖ξi‖∞ ≤ K , i = 1, 2, and any

z ∈ Rd with |z| ≤ R, it holds for each t ∈ [0, T ] that

‖(E{ξ1 + zBτ1 |Ft } − zBt∧τ1)− (E{ξ2 + zBτ2 |Ft } − zBt∧τ2)‖p

≤ 3‖ξ1 − ξ2‖p + CR‖τ1 − τ2‖p. (3.8)

(2) A regular quadratic F-expectation E is said to satisfy the “L∞-domination” if for any
stopping time τ ∈ M0,T , any ξi ∈ L∞(FT ), i = 1, 2, and any z ∈ Rd , the process
{E{ξi + zBτ |Ft } − zBt∧τ , t ∈ [0, T ]} ∈ L∞

F ([0, T ]), i = 1, 2, and

‖E{ξ1 + zBτ |Ft } − E{ξ2 + zBτ |Ft }‖∞ ≤ ‖ξ1 − ξ2‖∞, ∀t ∈ [0, T ]. (3.9)

(3) A regular quadratic F-expectation E is said to satisfy the “one-sided g-domination” if for
any K , R > 0, there are constants J = J (K , R) > 0 and α = α(K , R) > 0 such that for
any stopping time τ ∈ M0,T , ξ ∈ L∞(FT ) with ‖ξ‖∞ ≤ K , and any z ∈ Rd with |z| ≤ R,

there is a γ ∈ BMO with ‖γ ‖
2
BMO ≤ J (K , R) and a function gα(z)

4
= α(K , R)|z|2, z ∈ Rd ,

such that for any η ∈ L∞(FT ), it holds that

E[η + ξ + zBτ |Ft ] − E[ξ + zBτ |Ft ] ≤ Egα
γ [η|Ft ], ∀t ∈ [0, T ], Pγ -a.s. (3.10)

Here, Pγ is defined by dPγ /dP = E (γ • B)T , and Egα
γ is the gα-martingale on the

probability space (Ω ,F, Pγ ), and with Brownian motion Bγ . �

The following theorem more or less justifies the ideas of these “dominations”.

Theorem 3.9. Assume that g is a random field satisfying (H1) and (H2), and that it satisfies
g|z=0 = 0. Then the quadratic g-expectation Eg satisfies both L p- and L∞-dominations (3.8)
and (3.9).

Furthermore, if g also satisfies that |
∂2g
∂z2 | ≤ `′ for some `′ > 0, then Eg also satisfies the

one-sided g-domination (3.10) with α(K , R) ≡ `′/2.
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Proof. (1) We first show that the L p-domination holds. Let (Y i , Z i ), i = 1, 2, be the unique

solutions of BSDE (3.4) for ξi + zBτi , i = 1, 2, respectively. Define U i
t

4
= Y i

t − zBt∧τi ,
V i

t = Z i
t − z1{t≤τi }, 1Ut = U 1

− U 2, and 1V = V 1
− V 2. Then, in the light of (3.4) and

(3.5) one can easily check that

1Ut = ξ1 − ξ2 +

∫ t∨τ1

t∨τ2

g(s, z)ds +

∫ T

t
〈γs,1Vs〉ds −

∫ T

t
1VsdBs, ∀t ∈ [0, T ],

(3.11)

where γt
4
= 1{t≤τ1}

∫ 1
0
∂g
∂z (t, V 2

t + θ1Vt + z)dθ . In what follows we shall denote all the constants
depending only on T and ` in (H2) by a generic one C > 0, which may vary from line to line.
Applying Proposition 2.3 and Corollary 2.2 of [10] we see that both V 1 and V 2 are BMO with

‖V i
‖

2
BMO ≤ C exp{C(1 + |z|2)[1 + |z|2 + ‖ξi‖∞]}.

Thus, by definition of γ we have, for any K , R > 0, with ‖ξ1
‖∞ ∨ ‖ξ2

‖∞ ≤ K and |z| ≤ R,

‖γ ‖
2
BMO ≤ C[1 + |z|2 + ‖V 1

‖
2
BMO + ‖V 2

‖
2
BMO]

≤ C(1 + |z|2)+ C exp{C(1 + |z|2)[‖ξ1‖∞ ∨ ‖ξ2‖∞ + 1 + |z|2]}

≤ C(1 + R2)+ C exp{C(1 + R2)[1 + K + R2
]}

4
= J (K , R). (3.12)

Let us now define E (γ )ts
4
=

E (γ •B)t
E (γ •B)s

= exp{
∫ t

s γr dBr −
1
2

∫ t
s |γs |

2ds}, for 0 ≤ s ≤ t , and define

a new probability measure Pγ by dPγ /dP
4
= E (γ )T0 . Since γ is BMO, applying the Girsanov

theorem we derive from (3.11) that

1Ut = Eγ
{
ξ1 − ξ2 +

∫ t∨τ1

t∨τ2

g(s, z)ds|Ft

}
= E

{(
ξ1 − ξ2 +

∫ t∨τ1

t∨τ2

g(s, z)ds

)
E (γ )Tt |Ft

}
, (3.13)

for all t ∈ [0, T ]. Since g satisfies (H2), applying the Hölder inequality we have, for any p, q > 1
with 1/p + 1/q = 1,

|1Ut |
p

≤ E{[|ξ1 − ξ2| + `(1 + |z|2)|τ1 − τ2|]
p
|Ft }E{[E (γ )Tt ]

q
|Ft }

p/q .

Now recall the function φα defined by (2.9). Let α = 3 and q = q(K , R) > 1 so that
φ3(q) = J (K , R). Applying the reverse Hölder inequality (2.10) we obtain, for p = p(K , R) =

q/(q − 1),

|1Ut |
p

≤ 3p E{[|ξ1 − ξ2| + `(1 + |z|2)|τ1 − τ2|]
p
|Ft }.

Taking the expectation, defining CR = 3`(1 + R2), and recalling the definition of U , we have

‖(Eg
[ξ1 + zBτ1 |Ft ] − zBt∧τ1)− (Eg

[ξ2 + zBτ2 |Ft ] − zBt∧τ2)‖p

≤ 3‖ξ1 − ξ2‖p + CR‖τ1 − τ2‖p,

for all t ∈ [0, T ], proving (3.8).
(2) The proof of “L∞-domination” (3.9) is similar but much easier. Again we let (Y i , Z i )

be the solution of (3.4) for ξi + zBτ , i = 1, 2, respectively. Defining 1Y = Y 1
− Y 2 and
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1Z = Z1
− Z2, we have

1Yt = 1ξ +

∫ T

t
〈γs,1Zs〉ds −

∫ T

t
1ZsdBs, ∀t ∈ [0, T ],

where γt
4
=
∫ 1

0
∂g
∂z (t, λZ1

t +(1−λ)Z2
t )dλ ∈ BMO. Applying Girsanov’s theorem again we obtain

that, under some equivalent probability measure Pγ , it holds that

1Yt = Eγ [1ξ |Ft ], ∀t ∈ [0, T ], P-a.s.

The estimate (3.9) then follows immediately.
(3) We now prove the one-sided g-domination (3.10). This time we let (Y 1, Z1) and (Y 2, Z2)

be the solutions of BSDE (3.4) with terminal conditions η+ ξ + zBτ and ξ + zBτ , respectively.
Then (3.5) implies that, for all t ∈ [0, T ],

1Yt = 1Ỹt = η +

∫ T

t
(g(s, Z̃1

s + z1{s≤τ })− g(s, Z̃2
s + z1{s≤τ }))ds −

∫ T

t
1Z̃sdBs

= η +

∫ T

t

〈∫ 1

0

∂g

∂z
(s, λ1Z̃s + Z̃2

s + z1{s≤τ })dλ,1Z̃s

〉
ds −

∫ T

t
1Z̃sdBs,

where Ỹ i
t

4
= Y i

t − zBt∧τ and Z̃ i
t

4
= Z i

t − z1{t≤τ }, i = 1, 2. Since Z̃ i
∈ BMO, i = 1, 2, thanks to

Proposition 2.3, it is easy to check that γ·

4
=

∂g
∂z (·, Z2

· ) ∈ BMO as well, and the estimate (3.12)
remains true. It is worth noting that γ is independent of η since Z2 is so. By Girsanov’s theorem,

1Yt = η +

∫ T

t

〈∫ 1

0

(
∂g

∂z
(s, λ1Z̃s + Z̃2

s + z1{s≤τ })

−
∂g

∂z
(s, Z̃2

s + z1{s≤τ })

)
dλ,1Z̃s

〉
ds −

∫ T

t
1Z̃sdBγs , ∀t ∈ [0, T ],

where Pγ is the equivalent probability measure as before. Now with the extra assumption on the

boundedness of ∂
2g
∂z2 we conclude that, with α(K , R) ≡ `′/2,∣∣∣∣∣

〈∫ 1

0

(
∂g

∂z
(s, λ1Z̃s + Z̃2

s + z1{s≤τ })−
∂g

∂z
(s, Z̃2

s + z1{s≤τ })

)
dλ,1Z̃s

〉∣∣∣∣∣
≤ α(K , R)|1Z̃s |

2.

The comparison theorem of quadratic BSDEs (cf. [10, Theorem 2.6]) then leads to

Eg
[η + ξ + zBτ |Ft ] − Eg

[ξ + zBτ |Ft ] ≤ Egα
γ [η|Ft ], ∀t ∈ [0, T ],

proving (3.10), whence the theorem. �

4. Properties of quadratic F -expectations

In this section, we assume that E is a translation invariant semi-quadratic F-expectation
dominated by a quadratic g-expectation Eg with g satisfying (H1) and (H2). Clearly E is regular.
We also assume that E satisfies both the L p-domination (3.8) and the L∞-domination (3.9).

We first give a path regularity result for E-martingales, which will be very useful in our future
discussion.
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Proposition 4.1. For any τ ∈ M0,T , ξ ∈ L∞(Fτ ), and z ∈ Rd , the process E[ξ + zBτ |Ft ],
t ∈ [0, T ] admits a càdlàg modification.

Proof. We first assume that E is an upper semi-quadratic F-expectation first. By the L∞-

domination, X ·

4
= E[ξ + zBτ |F·] − zB·∧τ ∈ L∞

F ([0, T ]), which implies that |X t | ≤ ‖X‖∞,
P-a.s. for any t ∈ [0, T ] except a null set T . We may assume that there is a dense set D of
[0, T ] \ T such that |X t | ≤ ‖X‖∞, ∀t ∈ D, P-a.s. Now we define a new generator

ĝ(t, ω, ζ )
4
= g(t, ω, ζ + 1{t≤τ }z)− g(t, ω, 1{t≤τ }z), ∀(t, ω, ζ ) ∈ [0, T ] × Ω × Rd .

(4.1)

For any 0 ≤ s ≤ t ≤ T and any η ∈ L∞(Ft ), it is easy to check that P-a.s.

Eg
[η + zBt∧τ |Fs] − zBs∧τ +

∫ s

0
g(r, 1{r≤τ }z)dr = E ĝ

[
η +

∫ t

0
g(r, 1{r≤τ }z)dr |Fs

]
.

(4.2)

In particular, by the definition and the properties of upper semi-quadratic F-expectation, letting
η = X t in (4.2) shows that P-a.s.

E[ξ + zBτ |Fs] = E[E[ξ + zBτ |Ft ]|Fs] = E[X t + zBt∧τ |Fs] ≤ Eg
[X t + zBt∧τ |Fs]

= E ĝ
{

X t +

∫ t

0
g(r, 1{r≤τ }z)dr |Fs

}
+ zBs∧τ −

∫ s

0
g(r, 1{r≤τ }z)dr.

In other words, the process t 7→ X t +
∫ t

0 g(r, 1{r≤τ }z)dr is in fact a ĝ-submartingale. Thus by
Theorem 2.1 we can define a càdlàg process

Yt
4
= lim

r↘t,r∈D
Xr , ∀t ∈ [0, T ) and YT

4
= XT = ξ.

Clearly, Y ∈ D∞

F ([0, T ]). Moreover, the constant-preserving property of E and “zero–one law”
imply that

E[ξ ′
|Ft ] ∈ Ft∧τ , ∀ξ ′

∈ Λτ ,∀t ∈ [0, T ]. (4.3)

To see this, one needs only to note that for any s ∈ [0, t),

1{t∧τ≤s}E[ξ ′
|Ft ] = 1{τ≤s}E[ξ ′

|Ft ] = E[1{τ≤s}ξ
′
|Ft ] = 1{τ≤s}ξ

′
∈ Fs .

Thus X t ∈ Ft∧τ ,∀t ∈ [0, T ], and so is Y by the right-continuity of the filtration F. Now, for any
t ∈ [0, T ) and r ∈ (t, T ] ∩D, we write

X t − Yt = E[ξ + zBτ |Ft ] − zBt∧τ − Yt = E[Xr + zBr∧τ |Ft ] − E[Yt + zBt∧τ |Ft ].

Then applying (3.8) with K = ‖X‖∞ and R = |z| we can find a p = p(K , R) such that

‖X t − Yt‖p ≤ 3‖Xr − Yt‖p + CR‖r ∧ τ − t ∧ τ‖p ≤ 3‖Xr − Yt‖p + CR(r − t).

Letting r ↘ t in the above, the bounded convergence theorem then implies that X t = Yt , P-a.s.
To wit, the process Yt + zBt∧τ , t ∈ [0, T ] is a càdlàg modification of E[ξ + zBτ |Ft ], t ∈ [0, T ].

The case when E is lower semi-quadratic can be argued similarly. The proof is complete. �
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Next, we prove the “optional sampling theorem” for the quadratic F-expectation. To begin
with, we recall that the nonlinear conditional expectation E[·|Fσ ] is defined as follows. If

ξ ∈ Dom(E), define Yt
4
= E[ξ |Ft ], t ∈ [0, T ]; then for any σ ∈ M0,T , we define

E[ξ |Fσ ]
4
= Yσ , P-a.s. (4.4)

The following properties of E[·|Fσ ] are important.

Proposition 4.2. For any τ, σ ∈ M0,T , ξ, η ∈ L∞(Fτ ), and z ∈ Rd , it holds that

(i) E[ξ + zBτ |Fσ ] ≤ E[η + zBτ |Fσ ], P-a.s., if ξ ≤ η P-a.s.;
(ii) E[ξ + zBτ |Fτ ] = ξ + zBτ , P-a.s.;

(iii) 1AE[ξ + zBτ |Fσ ] = 1AE[1Aξ + zBτ |Fσ ], P-a.s., ∀A ∈ Fτ∧σ ;
(iv) if further η ∈ L∞(Fτ∧σ ), the following “translation invariance” property holds:

E[ξ + zBτ + η|Fσ ] = E[ξ + zBτ |Fσ ] + η, P-a.s.

Proof. (i) is a direct consequence of the monotonicity of E and Proposition 4.1.
To see (ii), we first assume that τ takes values in a finite set: 0 ≤ t1 < · · · < tn ≤ T . Actually,

for any ξ ′
∈ Λτ , the constant-preserving of E and “zero–one law” imply that

E[ξ ′
|Fτ ] =

n∑
j=1

1{τ=t j }E[ξ ′
|Ft j ] =

n∑
j=1

E[1{τ=t j }ξ
′
|Ft j ] =

n∑
j=1

1{τ=t j }ξ
′
= ξ ′, P-a.s.

For general stopping time τ , we first choose a sequence of finite-valued stopping times {τn} such
that τn ↘ τ , P-a.s. Since for each n it holds that

E[ξ + zBτ |Fτn ] = ξ + zBτ , P-a.s., n = 1, 2, . . . ,

letting n → ∞ and applying Proposition 4.1 we obtain that E[ξ + zBτ |Fτ ] = ξ + zBτ , P-a.s.,
proving (ii).

We now prove (iii). Again, we assume first that σ takes finite values in 0 ≤ t1 < · · · < tn ≤ T .
For any A ∈ Fτ∧σ , let A j = A ∩ {σ = t j } ∈ Ft j , 1 ≤ j ≤ n. Then it holds P-a.s. that

1AE[1Aξ + zBτ |Fσ ] =

n∑
j=1

1A j E[1Aξ + zBτ |Ft j ] =

n∑
j=1

E[1A j ξ + 1A j zBτ |Ft j ]

=

n∑
j=1

1A j E[ξ + zBτ |Ft j ] = 1AE[ξ + zBτ |Fσ ].

For general stopping time σ , we again approximate σ from above by a sequence of finite-valued
stopping times {σn}n≥0. Then for any A ∈ Fτ∧σ ⊂ Fτ∧σn , ∀n ∈ N, we have

1AE[ξ + zBτ |Fσn ] = 1AE[1Aξ + zBτ |Fσn ], P-a.s.,∀n ∈ N.

Letting n → ∞ and applying Proposition 4.1 again we can prove (iii).
(iv) The proof is quite similar; thus we shall only consider the case where σ takes values in a

finite set 0 ≤ t1 < · · · < tn ≤ T . In this case we have

E[ξ + zBτ + η|Fσ ] =

n∑
j=1

1{σ=t j }E[ξ + zBτ + η|Ft j ]
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=

n∑
j=1

E[1{σ=t j }(ξ + zBτ )+ 1{σ=t j }η|Ft j ]

=

n∑
j=1

{E[1{σ=t j }(ξ + zBτ )|Ft j ] + 1{σ=t j }η}

=

n∑
j=1

1{σ=t j }E[ξ + zBτ |Ft j ] +

n∑
j=1

1{σ=t j }η = E[ξ + zBτ |Fσ ] + η.

The third equality is due to the “translation invariance” of E and 1{σ=t j }η ∈ L∞(Ft j ). The rest
of the proof can be carried out in a similar way to other cases; we leave it to the interested reader.
The proof is complete. �

We now prove an important property of E{·|Ft }, which we shall refer to as the “optional
sampling theorem” in the future.

Theorem 4.3. For any X ∈ L∞

F ([0, T ]) and z ∈ Rd such that t 7→ X t + zBt is a right-
continuous E-submartingale (resp. E-supermartingale or E-martingale), then for any stopping
times τ, σ ∈ [0, T ], it holds that

E[Xτ + zBτ |Fσ ] ≥ (resp. ≤ or =)Xτ∧σ + zBτ∧σ , P-a.s.

Proof. We shall consider only the E-submartingale case, as the other cases can be deduced easily
by standard arguments. To begin with, we assume that σ ≡ t ∈ [0, T ] and assume that τ takes
finite values in 0 ≤ t1 < · · · < tN ≤ T . Note that if t ≥ tN , then Xτ + zBτ ∈ Ft and τ ∧ t = τ ;
thus

E[Xτ + zBτ |Ft ] = Xτ + zBτ = Xτ∧t + zBτ∧t , P-a.s.,

thanks to the constant-preserving property of E . We can then argue inductively to show that the
statement holds for t ≥ tm , for all 1 ≤ m ≤ N . In fact, assume that for m ∈ {2, . . . N }

E[Xτ + zBτ |Ft ] ≥ Xτ∧t + zBτ∧t , P-a.s. ∀t ≥ tm . (4.5)

Then, again using the translatability and the “zero–one” law, one shows that for any t ∈

[tm−1, tm), it holds P-a.s. that

E[Xτ + zBτ |Ft ] = E[E[Xτ + zBτ |Ftm ]|Ft ] ≥ E[Xτ∧tm + zBτ∧tm |Ft ]

= E[1{τ≤tm−1}(Xτ∧t + zBτ∧t )+ 1{τ≥tm }(X tm + zBtm )|Ft ]

= 1{τ≤tm−1}(Xτ∧t + zBτ∧t )+ 1{τ≥tm }E[X tm + zBtm |Ft ]

≥ 1{τ≤tm−1}(Xτ∧t + zBτ∧t )+ 1{τ≥tm }(X t + zBt )

= Xτ∧t + zBτ∧t .

Namely (4.5) also holds for any t ≥ tm−1. This completes the inductive step. Thus (4.5) holds
for all finite-valued stopping times.

Now let τ be a general stopping time; we still choose {τn} to be a sequence of finite-valued
stopping times such that τn ↘ τ , P-a.s. Then (4.5) holds for all τn’s. Now let K = ‖X‖∞,
R = |z|, and p = p(K , R). Applying the L p-domination (3.8) for E we see that for any n ∈ N,

‖E[Xτn + zBτn |Ft ] − E[Xτ + zBτ |Ft ]‖p

≤ ‖(E[Xτn + zBτn |Ft ] − zBτn∧t )− (E[Xτ + zBτ |Ft ] − zBτ∧t )‖p
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+ R‖Bτn∧t − Bτ∧t‖p

≤ 3‖Xτn − Xτ‖p + CR‖τn − τ‖p + R‖Bτn∧t − Bτ∧t‖p. (4.6)

Since X is a bounded càdlàg process, we can then apply the bounded convergence theorem
to conclude that the first and second terms on the right hand side of (4.6) tend to 0, as n →

∞. Furthermore, applying the Burkholder–Davis–Gundy inequality and bounded convergence
theorem, we conclude that the last term on the right hand side of (4.6) also goes to 0. Thus,
possibly along a subsequence, we see that for any t ∈ [0, T ]

E[Xτ + zBτ |Ft ] = lim
n→∞

E[Xτn + zBτn |Ft ] ≥ lim
n→∞

(Xτn∧t + zBτn∧t )

= Xτ∧t + zBτ∧t , P-a.s.

Thus we obtain (4.5) again.
Finally, let us consider the case when σ is also a general stopping time. Following the previous

argument, with the help of Proposition 4.1, we have, P-a.s.

E[Xτ + zBτ |Ft ] ≥ Xτ∧t + zBτ∧t , ∀t ∈ [0, T ].

Consequently, we obtain that E[Xτ + zBτ |Fσ ] ≥ Xτ∧σ + zBτ∧σ , P-a.s., proving the theorem.
�

To end this section we consider a special BSDE involving the quadratic F-expectation E ,
which will be very useful in the rest of the paper:

Yt + zBt +

∫ t

0
f (s, Ys)ds = E

{
ξ + zBT +

∫ T

0
f (s, Ys)ds|Ft

}
, ∀t ∈ [0, T ], (4.7)

where f : [0, T ] × Ω × R → R is a measurable function such that it satisfies the following
assumption:

(H3) The function f is uniformly Lipschitz in y with Lipschitz constant κ > 0, uniform in
(t, ω), such that

∫ T
0 | f (t, ·, 0)|dt ∈ L∞(FT ).

We have the following existence and uniqueness result for the BSDE (4.7).

Proposition 4.4. Assume (H3). Then for any ξ ∈ L∞(FT ) and any z ∈ Rd , the BSDE (4.7)
admits a unique solution in D∞

F ([0, T ]).

Proof. We first consider the case when T ≤ 1/2κ , where κ is the Lipschitz constant of f in
(H3). For any Y ∈ D∞

F ([0, T ]), and t ∈ [0, T ], using (H3) we have∥∥∥∥∫ t

0
f (s, Ys)ds

∥∥∥∥
∞

≤

∥∥∥∥∫ T

0
| f (s, 0)|ds

∥∥∥∥
∞

+ κt‖Y‖∞ < ∞.

In particular, we have ξ +
∫ T

0 f (s, Ys)ds ∈ L∞(FT ) so that E{ξ + zBT +
∫ T

0 f (s, Ys)ds|Ft } is
well defined, and we can define a mapping Φ : D∞

F ([0, T ]) 7→ D∞

F ([0, T ]) by

Φt (Y )
4
= E

{
ξ + zBT +

∫ T

0
f (s, Ys)ds|Ft

}
− zBt −

∫ t

0
f (s, Ys)ds, t ∈ [0, T ]. (4.8)
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We claim that Φ is a contraction. Indeed, since E satisfies the L∞-domination, for any
Y, Ŷ ∈ D∞

F ([0, T ]), (3.9) implies that for any t ∈ [0, T ], it holds P-a.s. that

|Φt (Y )− Φt (Ŷ )| =

∣∣∣∣E [ξ + zBT +

∫ T

t
f (s, Ys)ds|Ft

]
− E

[
ξ + zBT

+

∫ T

t
f (s, Ŷs)ds|Ft

]∣∣∣∣ ≤

∥∥∥∥∫ T

t
( f (s, Ys)− f (s, Ŷs))ds

∥∥∥∥
∞

≤ κ(T − t)‖Y − Ŷ‖∞ ≤
1
2
‖Y − Ŷ‖∞. (4.9)

Since the process t 7→ Φt (Y ) is càdlàg , thanks to Proposition 4.1, we conclude that ‖Φ(Y ) −

Φ(Ŷ )‖∞ ≤
1
2‖Y − Ŷ‖∞. Thus Φ is a contraction, and the lemma holds in this case.

The general case can now be argued using a standard “patching-up” method. Namely we take
a partition of [0, T ]: 0 = t0 < t1 < · · · < tN = T , such that max |tn − tn−1| < 1/2κ . We first
solve the BSDE (4.7) on [tN−1, tN ] to get a solution Y N . We then solve (4.7) on [tN−2, tN−1] to
get Y N−1, satisfying the terminal condition Y N−1

tN−1
= Y N

tN−1
, and so on, thanks to the result proved

in the first part. Denoting the solution on [tn−1, tn] by Y n , we can then define a new process by

Yt
4
= Y n

t , t ∈ [tn−1, tn], n = 1, . . . , N , and prove that Y solves (4.7) over [0, T ] by induction.
To see this, we first note that Y ∈ D∞

F ([0, T ]). Now assuming that Y solves (4.7) on [tn, T ],
we show that it solves (4.7) on [tn−1, T ] as well. Indeed, for any t ∈ [tn−1, tn], we have

Yt + zBt +

∫ t

0
f (s, Ys)ds = Y n

t + zBt +

∫ t

tn−1

f (s, Y n
s )ds +

∫ tn−1

0
f (s, Ys)ds

= E
{

Y n
tn + zBtn +

∫ tn

tn−1

f (s, Y n
s )ds|Ft

}
+

∫ tn−1

0
f (s, Ys)ds

= E
{

Ytn + zBtn +

∫ tn

0
f (s, Ys)ds|Ft

}
= E

{
E
{
ξ + zBT +

∫ T

0
f (s, Ys)ds|Ftn

}
|Ft

}
= E

{
ξ + zBT +

∫ T

0
f (s, Ys)ds|Ft

}
.

In the above the second equality is due to the fact that Y n solves (4.7) on [tn−1, tn]; the third
equality is due to the “translation invariance” of E{·|Ft }; the fourth equality is because of
the inductional hypothesis that Y solves (4.7) on [tn, T ]; and the last equality is the “time-
consistency” property of E{·|Ft }. This shows that Y solves (4.7) on [tn−1, T ], whence the
existence.

The uniqueness can be argued in a similar way. First note that the BSDE (4.7) can be written
in a “local” form: for n = 1, 2, . . . , N ,

Yt + zBt = E
{

Ytn + zBtn +

∫ tn

t
f (s, Ys)ds|Ft

}
, t ∈ [tn−1, tn], (4.10)

thanks to the translation invariance property of E{·|Ft }. Assume that Ŷ ∈ D∞

F ([0, T ]) is another
solution of (4.7). Then it must satisfy (4.10) on [tN−1, T ]. The fixed point argument in the first
part then shows that Y = Ŷ in D∞

F ([tN−1, T ]); thus YtN−1 = ŶtN−1 , P-a.s. We can repeat the
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same argument for [tN−2, tN−1], and so on to conclude after finitely many steps that Y and Ŷ are
indistinguishable over the whole interval [0, T ]. The proof is now complete. �

5. Doob–Meyer decomposition of quadratic F -martingales

In this section we prove a Doob–Meyer type decomposition theorem for quadratic F-
martingales. We shall assume that E is a translation invariant quadratic F-expectation dominated
by two quadratic g-expectations Eg1 and Eg2 from below and above, and both g1 and g2 satisfy
(H1) and (H2) with the same ` > 0. We also assume that E satisfies both the L p-domination
(3.8) and the L∞-domination (3.9).

The following proposition will play an essential role in the rest of this paper.

Proposition 5.1. For any τ ∈ M0,T , ξ ∈ L∞(Fτ ), and z ∈ Rd , define Yt
4
= E[ξ + zBτ |Ft ],

t ∈ [0, T ]. Then there exists a unique pair (h, Z) ∈ L1
F([0, T ])×H2

F([0, T ]; Rd) such that

−`(|Z t | + |Z t |
2) ≤ g1(t, Z t ) ≤ ht ≤ g2(t, Z t ) ≤ `(|Z t | + |Z t |

2), dt × dP-a.s., (5.1)

and (Y, Z) satisfies the BSDE

Yt = YT +

∫ T

t
hsds −

∫ T

t
ZsdBs, ∀t ∈ [0, T ]. (5.2)

Moreover, if we assume that E also satisfies the one-sided g-domination (3.10), with K ≥ ‖ξ‖∞,
R ≥ |z|, α = α(K , R), J = J (K , R) and ‖γ ‖

2
BMO ≤ J , then for any η ∈ L∞(Fτ ), the pair

(ĥ, Ẑ) corresponding to the process E{η + zBτ |Ft }, t ∈ [0, T ], satisfies

ĥt − ht ≤ α|Ẑ t − Z t |
2
+ 〈γt , Ẑ t − Z t 〉, dt × dP-a.s. (5.3)

Proof. For each z ∈ Rd , define a process Ỹt
4
= Yt − zBt∧τ , t ∈ [0, T ] and a new generator

gz
i (t, ω, ζ )

4
= gi (t, ω, ζ + 1{t≤τ }z), ∀(t, ω, ζ ) ∈ [0, T ] × Ω × Rd , i = 1, 2.

By the definition of the L∞-domination (see Definition 3.8(2)) and the fact (4.3) we see that
Ỹ ∈ L∞

F ([0, T ]) and Ỹt ∈ Ft∧τ , ∀t ∈ [0, T ]. It is easy to check that for 0 ≤ s ≤ t ≤ T and any
η ∈ L∞(Ft ),

Egi [η + zBt∧τ |Fs] = Egz
i [η|Fs] + zBs∧τ , P-a.s. i = 1, 2.

Thus the upper domination of E by Eg1 and the time-consistency of E imply that, P-a.s.,

Egz
1 [Ỹt |Fs] = Eg1 [Ỹt + zBt∧τ |Fs] − zBs∧τ = Eg1 [E[ξ + zBτ |Ft ]|Fs] − zBs∧τ

≤ E[E[ξ + zBτ |Ft ]|Fs] − zBs∧τ = E[ξ + zBτ |Fs] − zBs∧τ = Ỹs .

Namely, Ỹ is both a gz
1-supermartingale and a gz

2-submartingale. Applying Theorem 2.1 we
obtain two increasing processes A1 and A2 (we may assume that both are càdlàg and null at
0) and two processes Z̃1, Z̃2

∈ H2
F (R

d), such that

Ỹt = ỸT +

∫ T

t
gz

i (s, Z̃ i
s)ds + (−1)i (Ai

t − Ai
T )−

∫ T

t
Z̃ i

sdBs, t ∈ [0, T ], i = 1, 2.

Letting Z i
t = Z̃ i

t + 1{t≤τ }z we have, for i = 1, 2,
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Yt = YT +

∫ T

t
gi (s, Z i

s)ds + (−1)i (Ai
t − Ai

T )−

∫ T

t
Z i

sdBs, ∀t ∈ [0, T ]. (5.4)

By comparing the martingale parts and bounded variation parts of two BSDEs in (5.4), one has

Z1
t ≡ Z2

t , and − g1(t, Z1
t )dt − dA1

t ≡ −g2(t, Z2
t )dt + dA2

t , t ∈ [0, T ], P-a.s.

Consequently, we have that dA1
t + dA2

t ≡ (g2(t, Z1
t )− g1(t, Z1

t ))dt , which implies that both A1

and A2 are absolutely continuous and dAi
t = ai

t dt with ai
t ≥ 0, i = 1, 2. The conclusion follows

by setting Z t
4
= Z1

t and ht
4
= g1(t, Z t )+ a1

t .
Moreover, if E also satisfies the one-sided g-domination (3.10), then for any η ∈ L∞(Fτ ),

we can set Ŷt
4
= E[η + zBτ |Ft ], ∀t ∈ [0, T ] and let (ĥ, Ẑ) be the corresponding pair. Applying

the L∞-domination (3.9) for E , we see that Ŷ − Y ∈ L∞

F ([0, T ]) under P , whence under Pγ . In
fact, Ŷ − Y is a gα-submartingale under Pγ : for 0 ≤ s ≤ t ≤ T ,

Ŷs − Ys = E[Ŷt |Fs] − E[ξ + zBτ |Fs]

= E[Ŷt − Yt + E[ξ + zBτ |Ft ]|Fs] − E[ξ + zBτ |Fs]

= E[Ŷt − Yt + ξ + zBτ |Fs] − E[ξ + zBτ |Fs] ≤ Egα
γ [Ŷt − Yt |Fs], Pγ -a.s.

Applying Theorem 2.1 again, we can find an increasing càdlàg process A null at 0 and a process
Z̄ ∈ H2

F([0, T ]; Rd) such that

Ŷt − Yt = η − ξ +

∫ T

t
α|Z̄s |

2ds − AT + At −

∫ T

t
Z̄sdBγs , ∀t ∈ [0, T ], Pγ -a.s.,

which, in the light of the Girsanov theorem, is equivalent to

Ŷt − Yt = η − ξ +

∫ T

t
(α|Z̄s |

2
+ 〈γs, Z̄s〉)ds − AT + At

−

∫ T

t
Z̄sdBs, ∀t ∈ [0, T ], P-a.s.

On the other hand, we also have

Ŷt − Yt = η − ξ +

∫ T

t
(ĥs − hs)ds −

∫ T

t
(Ẑs − Zs)dBs, ∀t ∈ [0, T ], P-a.s.

Thus by comparing the martingale parts and the bounded variation parts, one has

Ẑ t − Z t ≡ Z̄ t and (ĥt − ht )dt ≡ (α|Z̄ t |
2
+ 〈γt , Z̄ t 〉)dt − dAt ,

which implies that A is absolutely continuous and dAt = at dt with at ≥ 0. Consequently,

ĥt − ht = α|Ẑ t − Z t |
2
+ 〈γt , Ẑ t − Z t 〉 − at

≤ α|Ẑ t − Z t |
2
+ 〈γt , Ẑ t − Z t 〉, dt × dP-a.s.

This proves the proposition. �

We remark that one of the consequences of Proposition 5.1, especially the representation (5.2),
is that the “càdlàg modification” that we found in Proposition 4.1 is actually continuous. In other
words, the unique solution of BSDE (4.7) should belong to C∞

F ([0, T ]).
We now turn our attention to a comparison theorem for the solutions to the BSDE (4.7).

To begin with, let us note that if f satisfies (H3), then for any φ ∈ L∞

F ([0, T ]), the function
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f φ(t, ω, y)
4
= f (t, ω, y) + φ(t, ω), ∀(t, ω, y) ∈ [0, T ] × Ω × R, also satisfies (H3). Thus for

any ξ ′
∈ L∞(FT ) and z ∈ Rd , the BSDE

Yt + zBt +

∫ t

0
[ f (s, Ys)+ φs]ds = E

{
ξ ′

+ zBT +

∫ T

0
[ f (s, Ys)+ φs]ds|Ft

}
,

t ∈ [0, T ], (5.5)

admits a unique solution in C∞

F ([0, T ]). We shall denote this solution by Y ′.

Theorem 5.2 (Comparison Theorem). Assume that f satisfies (H3). For fixed z ∈ Rd , let Y ,
Y ′

∈ C∞

F ([0, T ]) be the unique solutions of (4.7) and (5.5) respectively. Suppose that

ξ ′
≥ ξ, P-a.s. and φ ≥ 0, dt × dP-a.s.;

then it holds P-a.s. that Y ′
t ≥ Yt , ∀t ∈ [0, T ].

Proof. We first assume φt ≡ 0. For any δ ∈ Q+, define two stopping times

σ δ
4
= inf{t ∈ [0, T )|Y ′

t ≤ Yt − δ} and τ δ
4
= inf{t ∈ [σ δ, T ]|Y ′

t ≥ Yt }.

Here we use the convention that inf ∅
4
= T . Since Y ′

T = ξ ′
≥ ξ = YT , P-a.s., we must have

σ δ ≤ τ δ ≤ T , P-a.s. Further, since both Y and Y ′ have continuous paths, we know that on

Gδ 4
= {σ δ < T }, it holds that

Y ′

σ δ
= Yσ δ − δ, Y ′

τ δ
= Yτ δ , P-a.s. (5.6)

Next, for a given t ∈ [0, T ], we define a stopping time t̂
4
= t ∨ σ δ ∧ τ δ . Then, applying

Theorem 4.3 and Proposition 4.2(iv) we have, P-a.s.,

Yt̂ + zBt̂ +

∫ t̂

0
f (s, Ys)ds = E

{
Yτ δ + zBτ δ +

∫ τ δ

t̂
f (s, Ys)ds|Ft̂

}

+

∫ t̂

0
f (s, Ys)ds, P-a.s.

Moreover, since Gδ
∈ Fσ δ ⊂ Ft̂ , we can deduce from Proposition 4.2(iii) that

1GδE
{

1GδYτ δ + zBτ δ +

∫ τ δ

t̂
1Gδ f (s, 1GδYŝ)ds|Ft̂

}

= 1GδE
{

1GδYτ δ + zBτ δ +

∫ τ δ

t̂
1Gδ f (s, Ys)ds|Ft̂

}

= 1GδE
{

Yτ δ + zBτ δ +

∫ τ δ

t̂
f (s, Ys)ds|Ft̂

}
= 1GδYt̂ + 1Gδ zBt̂ . (5.7)

By using the L∞-domination (3.9) for E and Proposition 4.1 one shows that P-a.s.∣∣∣∣∣E
{

1GδY ′

τ δ
+ zBτ δ +

∫ τ δ

t̂
1Gδ f (s, 1GδY ′

ŝ)ds|Fr

}
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− E
{

1GδYτ δ + zBτ δ +

∫ τ δ

t̂
1Gδ f (s, 1GδYŝ)ds|Fr

}∣∣∣∣∣
≤

∥∥∥∥∥
∫ τ δ

t̂
1Gδ [ f (s, 1GδY ′

ŝ)− f (s, 1GδYŝ)]ds

∥∥∥∥∥
∞

≤ κ

∫ T

t
‖1GδY ′

ŝ − 1GδYŝ‖∞ds, ∀r ∈ [0, T ].

Setting r = t̂ in the above and using (5.7) we obtain that

‖1GδY ′

t̂ − 1GδYt̂‖∞ ≤ κ

∫ T

t
‖1GδY ′

ŝ − 1GδYŝ‖∞ds.

The Gronwall inequality then leads to that ‖1GδY ′

t̂
− 1GδYt̂‖∞ = 0 for any t ∈ [0, T ]. In

particular, for t = 0, we obtain that 1GδY ′

σ δ
= 1GδYσ δ , P-a.s., which, together with (i), shows

that Gδ
= {σ δ < T } is a null set. Since Y ′

T ≥ YT , P-a.s., and {Y ′
t ≥ Yt ,∀t ∈ [0, T )}c

⊂⋃
δ∈Q+{σ δ < T }, we conclude that

Y ′
t ≥ Yt , ∀t ∈ [0, T ], P-a.s. (5.8)

We now consider the case when φt ≥ 0, dt × dP-a.s. We proceed as follows. For any n ∈ N, let

tn
j

4
=

j
n T , j = 0, 1, . . . , n, be a partition of [0, T ], and define recursively a sequence of BSDEs:

Y j,n
t + zBt +

∫ t

0
f (s, Y j,n

s )ds = E
{

Xn
j +

∫ tn
j

tn
j−1

φsds + zBtn
j
+

∫ tn
j

0
f (s, Y j,n

s )ds|Ft

}
,

t ∈ [0, tn
j ],

where {Xn
j } j≥0 are defined recursively by Xn

n = ξ ′, and Xn
j−1

4
= Y j,n

tn
j−1

, for j = n, . . . , 1. Now,

applying the result for φ = 0 (similar to (5.8)) with ξn
j

4
= Xn

j +
∫ tn

j

tn
j−1
φsds, we can then show

by induction that for each 1 ≤ j ≤ n, it holds that Y j,n
t ≥ Yt , t ∈ [0, tn

j ], P-a.s. We now

define a new process by Y n
t

4
= Y j,n

t , t ∈ [tn
j−1, tn

j ], j = 1, . . . , n. It is easy to check that for any
j = 1, . . . , n and any t ∈ [tn

j−1, tn
j ),

Y n
t + zBt = E

{
ξ ′

+

∫ T

tn
j−1

φsds + zBT +

∫ T

t
f (s, Y n

s )ds|Ft

}
, P-a.s.

Applying L∞-domination (3.9) for E we see that for any j = 1, . . . , n and any t ∈ [tn
j−1, tn

j )

‖Y n
t − Y ′

t ‖∞ =

∥∥∥∥∥E
{
ξ ′

+

∫ T

tn
j−1

φsds + zBT +

∫ T

t
f (s, Y n

s )ds|Ft

}

− E
{
ξ ′

+ zBT +

∫ T

t
[ f (s, Y ′

s)+ φs]ds|Ft

}∥∥∥∥∥
∞

≤

∥∥∥∥∥
∫ t

tn
j−1

φsds +

∫ T

t
( f (s, Y n

s )− f (s, Y ′
s))ds

∥∥∥∥∥
∞
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≤
T

n
‖φ‖∞ + κ

∫ T

t
‖Y n

s − Y ′
s‖∞ds.

First applying Gronwall’s inequality and then letting n → ∞ we see that Y n
t converges to Y ′

t in
L∞(Ft ), for each t ∈ [0, T ]. Since both Y and Y ′ are continuous, we conclude that Y ′

t ≥ Yt ,
∀t ∈ [0, T ], P-a.s. The proof is now complete. �

We can now follow the scheme of [6,14] to derive the Doob–Meyer decomposition. For any
Y ∈ D∞

F ([0, T ]) and z ∈ Rd , we define

f n(t, ω, y)
4
= n(Y (t, ω)− y), ∀(t, ω, y) ∈ [0, T ] × Ω × R,∀n ∈ N.

It is easy to check that each f n satisfies (H3); thus the BSDE

yn
t + zBt +

∫ t

0
f n(s, yn

s )ds = E
{

YT + zBT +

∫ T

0
f n(s, yn

s )ds|Ft

}
, ∀t ∈ [0, T ],

(5.9)

admits a unique solution yn
∈ C∞

F ([0, T ]). We have the following lemma.

Lemma 5.3. Assume (H3), and let yn be the solution of (5.9), n ≥ 1. Suppose that for a given
Y ∈ D∞

F ([0, T ]) and z ∈ Rd , the process Yt + zBt , t ∈ [0, T ], is an E-submartingale (resp.
E-supermartingale); then it holds that

yn
t ≥ (resp. ≤)yn+1

t ≥ (resp. ≤)Yt , t ∈ [0, T ], n ∈ N, P-a.s.

Proof. We shall prove only the submartingale case; the supermartingale case is similar. For any
n ∈ N and any δ ∈ Q+, let us define two stopping times

σ n,δ 4
= inf{t ∈ [0, T )|yn

t ≤ Yt − δ} and τ n,δ 4
= inf{t ∈ [σ n,δ, T ]|yn

t ≥ Yt }.

It is easy to see that σ n,δ
≤ τ n,δ

≤ T , P-a.s. Then the right-continuity of yn and Y leads to that

yn
σ n,δ ≤ Yσ n,δ − δ, P-a.s. on {σ n,δ < T }, and yn

τ n,δ ≥ Yτ n,δ , P-a.s. (5.10)

Applying Proposition 4.2(iv) and Theorem 4.3, one has

yn
σ n,δ + zBσ n,δ = E

[
yn
τ n,δ + zBτ n,δ +

∫ τ n,δ

σ n,δ
n(Ys − yn

s )ds|Fσ n,δ

]
, P-a.s.

Using (5.10) we deduce that
∫ τ n,δ

σ n,δ n(Ys − yn
s )ds ≥ 0, P-a.s., and combining this with

Proposition 4.2(i) and Theorem 4.3, we obtain that

yn
σ n,δ + zBσ n,δ ≥ E[Yτ n,δ + zBτ n,δ |Fσ n,δ ] ≥ Yσ n,δ + zBσ n,δ .

This implies that {yn
σ n,δ ≤ Yσ n,δ − δ} is a null set; thus so is {σ n,δ < T }. Furthermore, since

{yn
t ≥ Yt , t ∈ [0, T ), n ∈ N}

c
⊂

⋃
n∈N

⋃
δ∈Q+

{σ n,δ < T } and yn
T ≥ YT , n ∈ N,

it holds that P{yn
t ≥ Yt , t ∈ [0, T ], n ∈ N} = 1. Consequently, we have that P-a.s.

f n(t, yn
t ) = n(Yt − yn

t ) ≥ (n + 1)(Yt − yn
t ) = f n+1(t, yn

t ), ∀t ∈ [0, T ],∀n ∈ N.
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It then follows from Theorem 5.2 that P-a.s. yn
t ≥ yn+1

t ≥ Yt , for all t ∈ [0, T ] and n ∈ N. This
completes the proof. �

We should note that Lemma 5.3 indicates that if Y· + zB· is an E-submartingale, then all
the processes An

t =
∫ t

0 n(yn
s − Ys)ds, t ≥ 0, are increasing (or decreasing if Y is a E-

supermartingale), ‖yn
‖∞ ≤ ‖Y‖∞ ∨ ‖y1

‖∞, and yn
t − An

t + zBt , t ≥ 0 is an E-martingale.
Thus, Proposition 5.1 implies that there is a unique pair (hn, Zn) ∈ L1

F([0, T ])×H2
F([0, T ]; Rd)

such that

yn
t − An

t + zBt = yn
T − An

T + zBT +

∫ T

t
hn

s ds −

∫ T

t
Zn

s dBs, t ∈ [0, T ], (5.11)

and the following estimates hold:

−`(|Zn
t | + |Zn

t |
2) ≤ g1(t, Zn

t ) ≤ hn
t ≤ g2(t, Zn

t ) ≤ `(|Zn
t | + |Zn

t |
2), dt × dP-a.s.

(5.12)

We shall prove that both {Zn
}n∈N and {An

T }n∈N are bounded in a very strong sense.

Lemma 5.4. Let the process Yt + zBt , t ∈ [0, T ], be either an E-submartingale or an E-
supermartingale like those in Lemma 5.3, and let {An

} and {Zn
} be processes defined in (5.11).

Then, for any p > 0, {Zn
}n∈N is bounded in Mp(Rd) and {An

T }n∈N is bounded in L p(FT ).

Proof. We shall only prove the submartingale case. That is, we assume that An is increasing.
From BSDE (5.11) we see that

An
T = yn

T − yn
0 +

∫ T

0
hn

s ds −

∫ T

0
(Zn

s − z)dBs, P-a.s.

Let M
4
= ‖Y‖∞ ∨ ‖y1

‖∞ and use the domination (5.12) of hn ; we have

|An
T | ≤ 2M + `T + 2`

∫ T

0
|Zn

s |
2ds + sup

0≤t≤T

∣∣∣∣∫ t

0
(Zn

s − z)dBs

∣∣∣∣ , P-a.s. (5.13)

In what follows for each p > 0 we define C p > 0 to be a generic constant depending
only on p, as well as `, T,M, |z|, which may vary from line to line. Using (5.13) and the
Burkholder–Davis–Gundy inequality one shows that

E |An
T |

p
≤ C p

{
1 + E

[∫ T

0
|Zn

s |
2ds

]p

+ E

[∫ T

0
|Zn

s − z|2ds

]p/2}

≤ C p

{
1 + E

[∫ T

0
|Zn

s − z|2ds

]p}
.

Thus it suffices to show that supn∈N E(
∫ T

0 |Zn
s − z|2ds)p < ∞. For any α > 0, we apply Itô’s

formula to eαyn
t to get

eαyn
0 +

α2

2

∫ T

0
eαyn

s |Zn
s − z|2ds

= eαyn
T + α

[∫ T

0
eαyn

s hn
s ds −

∫ T

0
eαyn

s dAn
s −

∫ T

0
eαyn

s (Zn
s − z)dBs

]
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≤ eαyn
T + α`

∫ T

0
eαyn

s ds + 4α`
∫ T

0
eαyn

s |Zn
s − z|2ds + 4α`

∫ T

0
eαyn

s |z|2ds

−α

∫ T

0
eαyn

s (Zn
s − z)dBs . (5.14)

Note that the last inequality is due to the fact that An is increasing. It then follows that(
α2

2
− 4α`

)∫ T

0
eαyn

s |Zn
s − z|2ds ≤ C p + α sup

0≤t≤T

∣∣∣∣∫ t

0
eαyn

s (Zn
s − z)dBs

∣∣∣∣ .
Choose α > 8`; applying the Burkholder–Davis–Gundy inequality again we obtain that

E

(∫ T

0
eαyn

s |Zn
s − z|2ds

)p

≤ C p + C p E

(∫ T

0
e2αyn

s |Zn
s − z|2ds

)p/2

≤ C p + C pepMα/2 E

(∫ T

0
eαyn

s |Zn
s − z|2ds

)p/2

≤ C p +
1
2

E

(∫ T

0
eαyn

s |Zn
s − z|2ds

)p

,

which implies that E(
∫ T

0 eαyn
s |Zn

s − z|2ds)p is dominated by a constant independent of n. This
proves the lemma in the submartingale case. The supermartingale case can be proved in the same
way except that in (5.14) Itô’s formula should be applied to e−αyn

t . The proof is now complete.
�

We are now ready to prove the Doob–Meyer decomposition theorem.

Theorem 5.5. Assume that E is a regular quadratic F-expectation satisfying the one-sided g-
domination (3.10). For any Y ∈ C∞

F ([0, T ]) and any z ∈ Rd , if the process Yt + zBt , t ∈ [0, T ],
is an E-submartingale (resp. E-supermartingale), then there exists a continuous increasing (resp.
decreasing) process A null at 0 such that Yt − At + zBt , t ≥ 0, is a local E-martingale.
Furthermore, if A is bounded, then Yt − At + zBt , t ≥ 0, is an E-martingale.

Proof. We again prove only the submartingale case, as the submartingale case is similar. To

begin with, let yn be the solutions to (5.9), n = 1, 2, . . . , and still have M
4
= ‖Y‖∞ ∨ ‖y1

‖∞.
Since yn

≥ Y , by the definition of processes An and Lemma 5.3, we see that

E
∫ T

0
|yn

s − Ys |ds =
1
n

E[|An
T |] ≤

1
n

sup
n∈N

‖An
T ‖1 → 0,

as n → ∞. Moreover, since the yn’s converge decreasingly to Y , and Y is continuous, we can
further conclude, in the light of Dini’s theorem, that P-a.s.

lim
n→∞

sup
t∈[0,T ]

(yn
t − Yt ) = 0, thus lim

m,n→∞
sup

t∈[0,T ]

|ym
t − yn

t | = 0. (5.15)

We first show that there exists a subsequence of {An
}, still denoted by {An

}, such that the
sequence {An

T }n∈N is uniformly integrable. To see this, we claim that the processes Zn converge
to some process Z in H2

F([0, T ]; Rd), as n → ∞. In fact, applying Itô’s formula to |ym
t − yn

t |
2



1542 Y. Hu et al. / Stochastic Processes and their Applications 118 (2008) 1518–1551

on [0, T ] we obtain

|ym
0 − yn

0 |
2
+

∫ T

0
|Zm

s − Zn
s |

2ds

= |ym
T − yn

T |
2
+ 2

∫ T

0
(ym

s − yn
s )[(h

m
s − hn

s )ds − (dAm
s − dAn

s )− (Zm
s − Zn

s )dBs]

≤ |ym
T − yn

T |
2
+ 2 sup

s∈[0,T ]

|ym
s − yn

s |

{∫ T

0
2`(1 + |Zm

s |
2
+ |Zn

s |
2)ds + Am

T + An
T

}

− 2
∫ T

0
(ym

s − yn
s )(Z

m
s − Zn

s )dBs . (5.16)

Taking the expectation on both sides of (5.16) and applying Hölder’s inequality one has

E

{∫ T

0
|Zm

s − Zn
s |

2ds

}
≤ E

{
sup

s∈[0,T ]

|ym
s − yn

s |
2

}

+ 2

{
E

[
sup

s∈[0,T ]

|ym
s − yn

s |
2

]
E

[∫ T

0
2`(1 + |Zm

s |
2
+ |Zn

s |
2)ds + Am

T + An
T

]2}1/2

≤ E

{
sup

s∈[0,T ]

|ym
s − yn

s |
2

}
+ C

{
E

[
sup

s∈[0,T ]

|ym
s − yn

s |
2

]}1/2

×

[
1 + sup

k∈N
‖Z k

‖
2
M4 + sup

k∈N
‖Ak

T ‖L2(FT )

]
,

where C > 0 is a constant depending only on ` and T . This, together with Lemma 5.4, implies
that {Zn

}n∈N is a Cauchy sequence inH2
F([0, T ]; Rd), and hence has a limit Z ∈ H2

F([0, T ]; Rd).
A simple application of the Burkholder–Davis–Gundy inequality leads to that

sup
t∈[0,T ]

∣∣∣∣∫ t

0
(Zn

s − Zs)dBs

∣∣∣∣ → 0 in L2(FT ), as n → ∞. (5.17)

Applying [10, Lemma 2.5] we can find a subsequence of {Zn
}n∈N, still denoted by {Zn

}n∈N,
such that supn |Zn

| ∈ H2
F([0, T ]; Rd) and that supn |

∫ T
0 (Z

n
s − z)dBs | ∈ L2(FT ). Then in the

light of (5.12) and (5.11), it holds P-a.s. that for any n ∈ N

An
T = yn

T − yn
0 +

∫ T

0
hn

s ds −

∫ T

0
(Zn

s − z)dBs

≤ 2M + `T + 2`
∫ T

0
sup

n
|Zn

s |
2ds + sup

n

∣∣∣∣∫ T

0
(Zn

s − z)dBs

∣∣∣∣ ∈ L1(FT ).

We can then deduce that supn∈N An
T ∈ L1(FT ), which implies that, P-almost surely, An

t ≤

E[supn∈N An
T |Ft ], for all t ∈ [0, T ], n ∈ N. Now let us define a sequence of stopping times

τk
4
= inf

{
t ∈ [0, T ] : E

[
sup
n∈N

An
T |Ft

]
> k

}
∧ T, k ∈ N. (5.18)

Clearly, τk ↗ T , P-a.s., as k → ∞. Furthermore, let us define pk
4
= p(k + M, |z|),

Jk
4
= J (k + M, |z|) and αk

4
= α(k + M, |z|), and define Y k

t
4
= Yt∧τk , yn,k

t
4
= yn

t∧τk
, An,k

t
4
= An

t∧τk
,



Y. Hu et al. / Stochastic Processes and their Applications 118 (2008) 1518–1551 1543

t ∈ [0, T ]. We will show that for any k ∈ N, there exists a subsequence of {An
}n∈N, denoted

again by {An
}n∈N itself, such that for all k ∈ N, it holds that limn→∞ An,k

t = Ãk
t , t ∈ [0, T ],

P-a.s. for some continuous, increasing process Ãk .
To see this, let us first fix k ∈ N. For each n ∈ N, applying Theorem 4.3 and Proposition 4.1

we have

yn,k
t − An,k

t + zBt∧τk = E[yn
τk

− An
τk

+ zBτk |Ft ], ∀t ∈ [0, T ].

Applying Proposition 5.1, we can find a unique pair (hn,k, Zn,k) ∈ L1
F([0, T ])×H2

F([0, T ]; Rd)

such that

yn,k
t − An,k

t = yn,k
T − An,k

T +

∫ T

t
hn,k

s ds −

∫ T

t
(Zn,k

s − 1{s≤τk }z)dBs, ∀t ∈ [0, T ].

(5.19)

On the other hand, by (5.11) we have

yn,k
t − An,k

t = yn,k
T − An,k

T +

∫ T

t
1{s≤τk }h

n
s ds −

∫ T

t
1{s≤τk }(Z

n
s − z)dBs, ∀t ∈ [0, T ].

(5.20)

Thus by comparing the martingale parts and the bounded variation parts of (5.19) and (5.20), one
has hn,k

t ≡ 1{t≤τk }h
n
t and Zn,k

t ≡ 1{t≤τk }Zn
t . Moreover, it also follows from Proposition 5.1 that

there is a BMO process γ n,k with ‖γ n,k
‖

2
BMO ≤ Jk such that

−αk |Z
m,k
t − Zn,k

t |
2
+ 〈γ

m,k
t , Zm,k

t − Zn,k
t 〉 ≤ hm,k

t − hn,k
t

≤ αk |Z
m,k
t − Zn,k

t |
2
+ 〈γ

n,k
t , Zm,k

t − Zn,k
t 〉, dt × dP-a.s. (5.21)

Note that (5.21) implies that for any m, n ∈ N,

E
∫ τk

0
|hm

s − hn
s |ds ≤ E

∫ τk

0
[αk |Z

m
s − Zn

s |
2
+ (|γm,k

s | ∨ |γ n,k
s |)|Zm

s − Zn
s |]ds

≤ αk E
∫ T

0
|Zm

s − Zn
s |

2ds +

{
E
∫ T

0
(|γm,k

s |
2
+ |γ n,k

s |
2)ds E

∫ T

0
|Zm

s − Zn
s |

2ds

} 1
2

.

Hence, one can deduce from the convergence of Zn in H2
F([0, T ]; Rd) that {1{·∧τk }h

n
· }n∈N is a

Cauchy sequence in L1
F([0, T ]). Let h̃k be its limit in L1

F([0, T ]); it then follows that

sup
t∈[0,T ]

∣∣∣∣∫ t∧τk

0
(hn

s − h̃k
s )ds

∣∣∣∣ → 0 in L2(Fτk ), as n → ∞. (5.22)

Now let us define Ãk
t

4
= Y k

t − Y k
0 +

∫ t∧τk
0 h̃k

s ds −
∫ t∧τk

0 (Zs − z)dBs , t ∈ [0, T ]. Clearly, Ãk

is continuous. Furthermore, since

An,k
t = yn,k

t − yn,k
0 +

∫ t∧τk

0
hn

s ds −

∫ t∧τk

0
(Zn

s − z)dBs, ∀t ∈ [0, T ],∀n ∈ N,

applying the bounded convergence theorem as well as (5.15), (5.17) and (5.22), one shows
that supt∈[0,T ] |A

n,k
t − Ãk

t | converges to 0 in L1(Fτk ), as n → ∞. Therefore, we can find a
subsequence of {An

}n∈N, still denoted by {An
}n∈N, such that

lim
n→∞

An,k
t = Ãk

t , ∀t ∈ [0, T ], P-a.s. (5.23)



1544 Y. Hu et al. / Stochastic Processes and their Applications 118 (2008) 1518–1551

We note that (5.23) indicates that Ãk is an increasing process. Furthermore, applying the Helly
selection theorem if necessary, we can assume that the convergence in (5.23) holds true for all
k ∈ N for this subsequence.

We can now complete the proof. By the definition of τk (5.18) and the continuity of An , one
can deduce that for any k, n ∈ N, An

τk
≤ k, P-a.s.

Hence for any k ∈ N, (5.23) implies that P-a.s.

| Ãk
t | ≤ k, ∀t ∈ [0, T ] and Ãk

t ≡ Ãk
τk
, ∀t ∈ [τk, T ].

Note that Ãk
t = limn→∞ An,k

t = limn→∞ An,k+1
t∧τk

= Ak+1
t∧τk

, t ∈ [0, T ], P-a.s., we can define a

continuous, increasing process At
4
= Ãk

t , t ∈ [0, τk], k ∈ N. Clearly, A is null at 0. For fixed
k ∈ N, and t ∈ [0, T ], applying the L pk -domination (3.8) of E yields that

‖E[yn
τk

− An
τk

+ zBτk |Ft ] − E[Yτk − Aτk + zBτk |Ft ]‖pk

≤ 3‖yn
τk

− Yτk ‖pk + 3‖An
τk

− Aτk ‖pk .

By considering a subsequence, we have, P-a.s.,

Yt∧τk − At∧τk + zBt∧τk = lim
n→∞

(yn,k
t∧τk

− An,k
t∧τk

+ zBt∧τk )

= lim
n→∞

E[yn,k
τk

− An,k
τk

+ zBτk |Ft ] = E[Yτk − Aτk + zBτk |Ft ].

Then, Proposition 4.1, together with the continuity of Y and A, implies that P-a.s.

Yt∧τk − At∧τk + zBt∧τk = E[Yτk − Aτk + zBτk |Ft ], ∀t ∈ [0, T ]. (5.24)

In other words, Yt − At + zBt , t ≥ 0 is a local E-martingale, proving the first part of the theorem.
To see the last part of the theorem, we assume further that A is bounded. Let K =

‖Y‖∞ + ‖A‖∞, R = |z| and p = p(K , R). Fix a t ∈ [0, T ]; applying L p-domination (3.8)
again we obtain that for any k ∈ N,

‖E[Yτk − Aτk + zBτk |Ft ] − E[YT − AT + zBT |Ft ]‖p

≤ R‖Bt∧τk − Bt‖p + 3‖Yτk − YT ‖p + 3‖Aτk − AT ‖p + CR‖T − τk‖p.

Clearly, the right hand side above converges to 0 as k → ∞, thanks to the
Burkholder–Davis–Gundy inequality and the bounded convergence theorem. Thus, taking a
subsequence if necessary, we may assume that E[Yτk − Aτk + zBτk |Ft ] converges P-a.s. to
E[YT − AT + zBT |Ft ]. Letting k → ∞ in (5.24), the continuity of Y and A imply that

Yt − At + zBt = E[YT − AT + zBT |Ft ], P-a.s.

Eventually, applying Proposition 4.1 and using the continuity of Y and A again we have P-a.s.

Yt − At + zBt = E[YT − AT + zBT |Ft ], ∀t ∈ [0, T ],

which means that Yt − At + zBt , t ≥ 0, is an E-martingale. The proof is now complete. �

6. Representation theorem of quadratic F -expectations

In this section we prove the representation theorem for quadratic F-expectations. We
assume that E is a translation invariant quadratic F-expectation dominated by two quadratic
g-expectations Eg1 and Eg2 from below and above, and both g1 and g2 satisfy (H1) and (H2)
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with the same constant ` > 0. We also assume that E satisfies the L p-domination (3.8), the
L∞-domination (3.9), and the one-sided g-domination (3.10).

We begin our discussion by considering the following special semi-martingale:

Y z
t

4
= `(|z| + |z|2)t + zBt , ∀t ∈ [0, T ], z ∈ Rd . (6.1)

By the comparison theorem of BSDEs, it is easy to see that Y z is an Eg1 -submartingale, whence
an E-submartingale. Then, by the Doob–Meyer decomposition (Theorem 5.5) there exists a
continuous, increasing process Az null at 0 such that Y z

− Az is a local E-martingale. We claim
that Az

T ∈ L∞(Ω), and hence Y z
− Az is a true E-martingale. Indeed, let {τ z

n }n≥1 be a sequence
of “reducing” stopping times, that is, τ z

n ↗ T , P-a.s., such that

Y z,n
t − Az,n

t = E[Y z,n
T − Az,n

T |Ft ], ∀t ∈ [0, T ], P-a.s., (6.2)

where Y z,n
t

4
= Y z

t∧τ z
n
, Az,n

t
4
= Az

t∧τ z
n
, ∀t ∈ [0, T ]. For any n ∈ N, we know from Proposition 5.1

that there is a unique pair (hz,n, Z z,n) ∈ L1
F([0, T ])×H2

F([0, T ]; Rd) such that

Y z,n
t = Y z,n

T − Az,n
T + Az,n

t +

∫ T

t
hz,n

s ds −

∫ T

t
Z z,n

s dBs, ∀t ∈ [0, T ], (6.3)

such that the generator h satisfies the following estimate:

−`(|Z z,n
t | + |Z z,n

t |
2) ≤ g1(t, Z z,n

t ) ≤ hz,n
t ≤ g2(t, Z z,n

t )

≤ `(|Z z,n
t | + |Z z,n

t |
2), dt × dP-a.s. (6.4)

Comparing (6.1) and (6.3) we see that

dAz,n
t − hz,n

t dt ≡ 1{t≤τ z
n }`(|z| + |z|2)dt and Z z,n

t ≡ 1{t≤τ z
n }z. (6.5)

This, together with (6.4), implies that P-a.s.

Az,n
T =

∫ T

0
hz,n

t dt +

∫ T

0
1{t≤τ z

n }`(|z| + |z|2)dt ≤ 2`(|z| + |z|2)T .

Letting n → ∞ we obtain that Az
T is bounded by 2`(|z| + |z|2)T , proving the claim.

Now, in the light of Proposition 5.1, we can assume that there exists a unique pair (hz, Z z) ∈

L1
F([0, T ])×H2

F([0, T ]; Rd) such that (6.3)–(6.5) hold. In other words, defining

g(t, ω, z)
4
= hz

t (ω), (t, ω, z) ∈ [0, T ] × Ω × Rd , (6.6)

it holds that

Y z
t − Az

t = Y z
T − Az

T +

∫ T

t
g(s, z)ds −

∫ T

t
zdBs, t ∈ [0, T ], (6.7)

−`(|z| + |z|2) ≤ g1(t, z) ≤ g(t, z) ≤ g2(t, z) ≤ `(|z| + |z|2), dt × dP-a.s., (6.8)

dAz
t = g(t, z)dt + `(|z| + |z|2)dt, t ∈ [0, T ]. (6.9)

We shall show that g is the desired representation generator of the quadratic F-expectation E .
To begin with, let us define, for any z, z′

∈ Rd , a function

gz,z′

` (v)
4
= `(1 + |z| + |z′

|)|v|, ∀v ∈ Rd , (6.10)
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and denote the corresponding gz,z′

` -expectation by E z,z′

` (·). It is worth noting that E z,z′

` (·) is a
Lipschitz g-expectation studied in [3,14]. We should note here that if g is a quadratic generator
satisfying (H1) and (H2), then it must satisfy a “local Lipschitz property” which can be written
as

|g(t, z)− g(t, z′)| ≤ `(1 + |z| + |z′
|)|z − z′

| = gz,z′

` (|z − z′
|), ∀z, z′

∈ Rd . (6.11)

Now let g be a given deterministic quadratic generator satisfying (H1) and (H2). For fixed

z ∈ Rd , consider the process Y g,z
t

4
= Eg

{zBT |Ft }, t ≥ 0. Since zBT ∈ L ∞

T , we know that
(recall the BSDEs (3.4) and (3.5)) Y g,z

t must have the following explicit expression:

Y g,z
t = zBt +

∫ T

t
g(s, z)ds, t ∈ [0, T ]. (6.12)

Let us fix z, z′
∈ Rd , and define Ê z,z′

t
4
= Y g,z

t − Y g,z′

t = (z − z′)Bt +
∫ T

t (g(s, z)− g(s, z′))ds,
t ≥ 0. We have the following lemma.

Lemma 6.1. Assume that g is a deterministic function satisfying (H1) and (H2). Then the

process ξt
4
= Ê z,z′

t , t ≥ 0, is an E z,z′

` -submartingale.

Proof. For any s ≤ t , define

Ỹs
4
= E z,z′

` {Ê z,z′

t |Fs} =

[
(z − z′)Bt +

∫ T

t
(g(r, z)− g(r, z′))dr

]
+

∫ t

s
µ(1 + |z| + |z′

|)|Z̃r |dr −

∫ t

s
Z̃r dBr . (6.13)

Since g is deterministic, the BSDE (6.13) has a unique solution (Ŷ , Ẑ), where

Ŷs
4
= (z − z′)Bs +

∫ T

t
(g(r, z)− g(r, z′))dr +

∫ t

s
µ(1 + |z| + |z′

|)|z − z′
|dr,

and Ẑ ≡ z − z′. Thus, defining δg(r)
4
= g(r, z)− g(r, z′), we have

Ỹs = Ŷs = (z − z′)Bs +

∫ T

t
δg(r)dr +

∫ t

s
µ(1 + |z| + |z′

|)|z − z′
|dr

= (z − z′)Bs +

∫ T

s
δg(r)dr +

∫ t

s
{µ(1 + |z| + |z′

|)|z − z′
| − δg(r)}dr

≥ (z − z′)Bs +

∫ T

s
δg(r)dr.

But by definition of Ê z,z′

we see that the right hand side above is exactly Ê z,z′

s = ξs . This,
combined with (6.13), shows that ξ = Ê z,z′

is an E z,z′

` -submartingale. �

We now introduce some extra assumptions on the quadratic F-expectation E , which will be
useful in the study of the representation theorem. The first one is motivated by Lemma 6.1.

(H4) There exists a constant µ > 0 such that for any fixed z, z′, it holds that

E{zBT |Ft } − E{z′ BT |Ft } ≤ E z,z′

µ {(z − z′)BT |Ft }. (6.14)
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The next assumption extends the “translation invariance” of the nonlinear expectation E .

(H5) For any z ∈ Rd , τ ∈ M0,T , 0 ≤ t < t̃ ≤ T , and ξ ∈ L∞(Ft̃∧τ ), it holds that

E[ξ + zBt̃∧τ − zBt∧τ |Ft ] = E[ξ + zBt̃∧τ |Ft ] − zBt∧τ , P-a.s. (6.15)

We note that the assumption (H5) is not a consequence of Proposition 4.2(iv), since the
random variable zBt is not bounded(!). However, the left hand side of (6.15) is well defined,
since ξ + zBt̃∧τ − zBt∧τ = ξ +

∫ t̃
t z1{s≤τ }dBs ∈ L̃ ∞

T ⊂ Dom(E) (see Remark 3.6).
Finally, we give an assumption that essentially states that the process {zBt }t≥0 has the

“independent increments” property under the nonlinear expectation E .

(H6) For any z ∈ Rd , and any 0 ≤ s ≤ t ≤ T , it holds that

E[z(Bt − Bs)|Fs] = E[z(Bt − Bs)], P-a.s. (6.16)

The following lemma is more or less motivated by the assumption (H6), and it will play an
important role in the proof of the representation theorem.

Lemma 6.2. Assume that E is a regular quadratic F-expectation satisfying (H6). Then the
random function g defined in (6.6) is deterministic, and it holds that

g(t, z) = lim
h→0

E{z(Bt+h − Bt )}

h
, P-a.s.,∀(t, z) ∈ [0, T ] × Rd . (6.17)

Moreover, if in addition E satisfies (H4), then g is local Lipschitz continuous.

Proof. We first show that g is deterministic. To this end, we fix z ∈ Rd . For any 0 ≤ t < t + h ≤

T , one can deduce from (6.7) that

z(Bt+h − zBt )−

∫ t+h

t
g(s, z)ds = Y z

t+h − Az
t+h − (Y z

t − Az
t ), P-a.s.

Since Y z
t − Az

t − zBt ∈ L∞(Ft ), using the assumption (H5) one can check that

E
{

z(Bt+h − Bt )−

∫ t+h

t
g(s, z)ds|Ft

}
= E{Y z

t+h − Az
t+h |Ft }

− (Y z
t − Az

t ) = 0, P-a.s. (6.18)

Therefore, applying (6.16) we have

hg(t, z) = E
{

z(Bt+h − Bt )−

∫ t+h

t
(g(s, z)− g(t, z))ds|Ft

}
= E[z(Bt+h − Bt )|Ft ] + v(t, h) = E[z(Bt+h − Bt )] + v(t, h),

where

v(t, h)
4
= E

{
z(Bt+h − Bt )−

∫ t+h

t
(g(s, z)− g(t, z))ds|Ft

}
− E[z(Bt+h − Bt )|Ft ]

= E
{

zBt+h −

∫ t+h

t
(g(s, z)− g(t, z))ds|Ft

}
− E[zBt+h |Ft ].
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Now, applying L p-domination (3.8) for the F-expectation E with p = p(2‖
∫ T

0 |g(s, z)|ds‖∞,

|z|), we obtain that

E

{
1

h p |v(t, h)|p
}

= ‖v(t, h)‖p
p ≤ 3p

∥∥∥∥∫ t+h

t
|g(s, z)− g(t, z)|ds

∥∥∥∥p

p

≤ 3p E

{
1
h

∫ t+h

t
|g(s, z)− g(t, z)|ds

}p

.

Since z ∈ Rd is fixed, thus by the Lebesgue differentiation theorem, P-almost surely one has

1
h

∫ t+h

t
|g(s, z)− g(t, z)|ds → 0, for a.e. t ∈ [0, T ].

The dominated convergence theorem then implies that

E

{∫ T

0

[
1
h

|v(t, h)|

]p

dt

}
≤ 3p E

{∫ T

0

[
1
h

∫ t+h

t
|g(s, z)− g(t, z)|ds

]p

dt

}
→ 0.

In other words, we have proved that v(t, h) = o(h) in Hp
F([0, T ]). Thus

g(t, z) = lim
h→0

E[z(Bt+h − Bt )]

h
, P-a.s.,

and it follows that g is deterministic.
Now assume that E also satisfies (H4); we show that g is local Lipschitz continuous. To

see this, taking t + h = T in (6.18) and applying (H5) with t̃ = τ = T we obtain
that E{zBT −

∫ T
t g(s, z)ds|Ft } = zBt , P-a.s. Since g is deterministic, this implies that∫ T

t g(s, z)ds = E{zBT |Ft } − zBt . Similarly, one has
∫ T

t g(s, z′)ds = E{z′ BT |Ft } − z′ Bt .
Combining, we have∫ T

t
[g(s, z′)− g(s, z)]ds = E{zBT |Ft } − E{z′ BT |Ft } − (z − z′)Bt

≤ E z,z′

µ {(z − z′)BT |Ft } − (z − z′)Bt .

Note that for gz,z′

µ (v)
4
= µ(1 + |z| + |z′

|)|v|, one has

E z,z′

µ {(z − z′)BT |Ft } = (z − z′)Bt +

∫ T

t
µ(1 + |z| + |z′

|)|z − z′
|ds.

We deduce that∫ T

t
[g(s, z′)− g(s, z)]ds ≤

∫ T

t
µ(1 + |z| + |z′

|)|z − z′
|ds.

Replacing T by an arbitrary t ′ ∈ (0, T ] in the above, we can then deduce that for any t ′ ∈ (0, T ],
it holds that

|g(t ′, z)− g(t ′, z′)| ≤ µ(1 + |z| + |z′
|)|z − z′

|,

proving the local Lipschitz property of g. �

The main result of this paper is the following representation theorem.
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Theorem 6.3. Assume that E is a regular quadratic F-expectation that satisfies (H4)–(H6).
Then, there exists a local Lipschitz continuous function g(t, z) : [0, T ] × Rd

7→ R such that
for any z ∈ Rd ,

g1(t, ω, z) ≤ g(t, z) ≤ g2(t, ω, z), dt × dP-a.s., (6.19)

and that for any ξ ∈ L∞(FT ), it holds P-a.s. that

E[ξ |Ft ] = Eg
[ξ |Ft ], ∀t ∈ [0, T ].

Proof. Let g be the random field defined in (6.6). We know from Lemma 6.2 that g is
deterministic and local Lipschitz continuous. Then (6.19) follows from (6.8) and we see that
g|z=0 = 0. For any ξ ∈ L∞(FT ), we can apply the result of [10, Theorem 2.3] to conclude
that BSDE(ξ, g) admits a solution (Ŷ , Ẑ) ∈ C∞

F ([0, T ]) × H2
F([0, T ]; Rd). Furthermore, by

virtue of (6.11), it follows from [12] (or [8]) that the solution is unique. (We remark that the
result of [10] cannot be applied here since g is not necessarily differentiable.) Let {Ψn

}n∈N
be a sequence of simple processes that approximates Ẑ in H2

F([0, T ]; Rd). Then it holds that
supt∈[0,T ] |

∫ t
0 (Ψ

n
s −Ẑs)dBs | → 0 in L2(FT ), thanks to the Burkholder–Davis–Gundy inequality.

Applying [10, Lemma 2.5] we can find a subsequence of {Ψn
}n∈N, still denoted by {Ψn

}n∈N,
such that

Ψn
t → Ẑ t , dt × dP-a.s. and sup

t∈[0,T ]

∣∣∣∣∫ t

0
(Ψn

s − Ẑs)dBs

∣∣∣∣ → 0, P-a.s. (6.20)

with supn∈N |Ψn
t | ∈ H2

F([0, T ]) and supn∈N supt∈[0,T ] |
∫ t

0 (Ψ
n
s − Ẑs)dBs | ∈ L2(FT ). We define

stopping times

σk
4
= inf

{
t ∈ [0, T ] :

∫ t

0
sup
n∈N

|Ψn
s |

2ds + sup
n∈N

sup
s∈[0,t]

∣∣∣∣∫ s

0
Ψn

r dBr

∣∣∣∣ > k

}
∧ T, ∀k ∈ N.

(6.21)

It is easy to see that σk ↗ T , P-a.s.
For any z ∈ Rd , 0 ≤ t < t̃ ≤ T and τ ∈ M0,T , it follows from (6.18) and (H6) that

E
{∫ t̃

t
1{s≤τ }[−g(s, z)ds + zdBs]|Ft

}
= 0, P-a.s. (6.22)

Let Ψ be any member of {Ψn
}n∈N. Without loss of generality we assume that Ψ is in the form

of

Ψt (t, ω) =

m∑
i=0

ni∑
j=1

zi
j 1[si ,si+1)×E i

j
(t, w), ∀(t, ω) ∈ [0, T ] × Ω ,

where 0 = s0 < s1 < · · · < sm < sm+1 = T , {E i
j }

ni
j=1 is an Fsi -measurable partition of Ω for

i = 0, 1 . . . ,m, and each zi
j ∈ Rd .

Now fix k ∈ N; for any t ∈ [0, T ], there exist α ∈ {0, 1, . . . ,m} such that t ∈ [sα, sα+1). By
refining the partition if necessary we may assume that t = sα . Since the quadratic F-expectation
E is “translation invariant” and satisfies the “zero–one law”, using (6.22) one can show that P-a.s.

E
{∫ T

t
1{s≤σk }[−g(s,Ψs)ds + ΨsdBs]|Ft

}
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= E
{

m∑
i=α

ni∑
j=1

1E i
j

∫ si+1

si

1{s≤σk }[−g(s, zi
j )ds + zi

j dBs]|Ft

}

= E
{

m−1∑
i=α

ni∑
j=1

1E i
j

∫ si+1

si

1{s≤σk }[−g(s, zi
j )ds + zi

j dBs]

+

nm∑
j=1

1Em
j
E
[∫ T

sm

1{s≤σk }[−g(s, zm
j )ds + zm

j dBs]|Fsm

]∣∣∣∣∣Ft

}

= E
{

m−1∑
i=α

ni∑
j=1

1E i
j

∫ si+1

si

1{s≤σk }[−g(s, zi
j )ds + zi

j dBs]|Ft

}
· · ·

= E
{

nα∑
j=1

1Eαj

∫ sα+1

t
1{s≤σk }[−g(s, zαj )ds + zαj dBs]|Ft

}

=

nα∑
j=1

1Eαj
E
{∫ sα+1

t
1{s≤σk }[−g(s, zαj )ds + zαj dBs]|Ft

}
= 0. (6.23)

For any k ∈ N, since g is continuous and has quadratic growth in z, using (6.20) and applying the
dominated convergence theorem we deduce that

∫ T
t 1{s≤σk }[−g(s,Ψn

s )ds + Ψn
s dBs] converges

to
∫ T

t 1{s≤σk }[−g(s, Ẑs)ds + ẐsdBs] almost surely. We also see from the definition of σk (6.21)
that ∣∣∣∣∫ T

t
1{s≤σk }[−g(s,Ψn

s )ds + Ψn
s dBs]

∣∣∣∣ ≤ `T + 2(1 + `)k, P-a.s.,∀n ∈ N.

Let K = `T + 2(1 + `)k and p
4
= p(K , 0); applying L p-domination of E and using (6.23)

for each Ψn one can then deduce that E{
∫ T

t 1{s≤σk }[−g(s, Ẑs)ds + ẐsdBs]|Ft } = 0, P-a.s. The
“translation invariance” of E then implies that

E[Ŷσk |Ft ] = E
{

Ŷt∧σk +

∫ T

t
1{s≤σk }[−g(s, Ẑs)ds + ẐsdBs]|Ft

}
= Ŷt∧σk , P-a.s.

Letting p
4
= p(‖Ŷ‖∞, 0) and applying Theorem 4.3 as well as L p-domination for E again, we

obtain that

‖Ŷt∧σk − E[ξ |Ft ]‖p = ‖E[Ŷσk |Ft ] − E[ξ |Ft ]‖p ≤ 3‖Ŷσk − ξ‖p.

Since σk ↗ T , P-a.s. and Ŷ is continuous, Ŷσk converges P-a.s. to ξ and Ŷt∧σk converges P-
a.s. to Ŷt . These two convergences are even in the L p sense, thanks to the Lebesgue dominated
convergence theorem. Thus E[ξ |Ft ] = Ŷt = Eg

[ξ |Ft ], P-a.s. The conclusion then follows from
Proposition 4.1 and the continuity of Ŷ . �
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