
Modularity in Coalgebra

Corina Cı̂rstea
1 ,2

University of Southampton, UK

Abstract

This paper gives an overview of recent results concerning the modular derivation of (i) modal specification
logics, (ii) notions of simulation together with logical characterisations, and (iii) sound and complete ax-
iomatisations, for systems modelled as coalgebras of functors on Set. Our approach applies directly to an
inductively-defined class of coalgebraic types, which subsumes several types of discrete state-based systems,
including (probabilistic) transition systems, probabilistic automata and spatial transition systems.

Keywords: Coalgebra, modularity, simulation, modal logic, expressiveness, soundness, completeness.

1 Introduction

Following Rutten’s seminal paper on universal coalgebra [18], the use of coalgebras

as a general, uniform framework for modelling and reasoning about state-based,

dynamical systems has become an established field of research. Early work in this

area focused on developing the theory of coalgebras at a level of generality that

is parametric in the coalgebraic type of interest, with coalgebraic bisimulation, its

associated corecursion/coinduction principles, and the study of logics able to ex-

press bisimulation-invariant properties of coalgebraic models being central to this

work. In contrast, much of the recent and ongoing work is concerned with ex-

ploiting/adapting coalgebraic concepts and techniques in order to provide semantic

models, logics and reasoning principles for particular classes of systems, including

concurrent, probabilistic and mobile systems.

These two different perspectives in the study of coalgebraic models are perhaps

most apparent when investigating the relationship between coalgebras and modal

logic. On the one hand, the coalgebraic logic of Moss [15] provides a uniform way of

defining an expressive, if infinitary logic for coalgebras, while imposing essentially

no restrictions on the coalgebraic type under consideration. On the other hand, in

1 Partially supported by EPSRC research grant EP/D000033/1.
2 Email: cc2@ecs.soton.ac.uk

Electronic Notes in Theoretical Computer Science 164 (2006) 3–26

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.06.002
 Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82230317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cc2@ecs.soton.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

practical applications, one typically looks for finitary specification logics which are

closer in spirit to, say, Hennessy-Milner logic, and which admit complete axioma-

tisations. Similarly, the coalgebraic notion of bisimulation and the related notion

of behavioural equivalence, both defined uniformly on coalgebraic types, turn out

to be too restrictive when attempting to capture concrete process equivalences, as

employed by existing process calculi. Alternative, more ad hoc notions of simulation

are needed to account for the various degrees of observability present in semantic

models for such calculi, while the associated reasoning principles and the logics

capable of characterising these notions become less canonical.

The approach presented here advocates a modular, systematic approach to the

process of deriving (i) coalgebraic notions of process equivalence/refinement which

are closer to the needs of concrete specification formalisms, (ii) modal logics which

characterise these notions, and (iii) sound and complete axiomatisations for these

logics. Our approach involves breaking the uniformity in the underlying functor,

and exploiting the structure of the functor in order to derive useful notions of

refinement/simulation and suitable specification logics in a modular fashion. Mod-

ularity is therefore understood at the meta-level of system types: we first consider

a number of simple coalgebraic types, modelling basic aspects of systems such as

(non-)deterministic or probabilistic behaviour, with varying degrees of observability,

and subsequently provide uniform methodologies for dealing with types obtained by

applying a number of type-building operators to these basic coalgebraic types.

Specifically, we show that coalgebraic type-building operators including carte-

sian products, coproducts and functor composition can naturally be lifted to a

relational as well as a logical level, ultimately allowing the derivation of notions

of simulation and of corresponding logics for (coalgebras of) functor combinations,

from similar notions and logics for the functors being combined. Furthermore, rel-

evant properties of the resulting logics, including expressiveness w.r.t. a particular

notion of simulation and the existence of a sound and complete axiomatisation,

can themselves be derived in the same modular fashion. The key idea here is to

regard the observable behaviour of a system as the successive unfolding of its one-

step behaviour, and to restrict attention to this one-step behaviour when lifting the

various type-building operators to a relational/logical level, and when formulating

conditions that guarantee the existence of logical characterisations and of suitable

axiomatisations.

Our results can be used to derive observational equivalences/preorders, together

with logical characterisations and complete axiomatisations, for an inductively-

defined class of coalgebraic types which is sufficiently general to account for (com-

binations of) non-deterministic and probabilistic behaviour, as well as for spatial

and epistemic aspects of systems. A consequence of our modular approach is that,

in order to define a notion of process equivalence together with a logic which char-

acterises it and admits a complete axiomatisation, it suffices to treat each of the

individual features of the systems being modelled in isolation, and specify, for each

such feature: (i) what it means for a system to simulate the one-step behaviour of

another system, and (ii) how such one-step behaviours can be logically characterised

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–264

and axiomatised.

This paper gathers results from previous work [3,4,6,5] concerning the modular

derivation of notions of simulation and modal logics, as well as of expressiveness

results and of sound and complete axiomatisations, for systems modelled as coal-

gebras. The paper is structured as follows: Section 2 recalls some basic coalgebraic

concepts, illustrating their relevance to the modelling of state-based, dynamical sys-

tems. Section 3 reviews existing work in the study of modal logics for coalgebras,

and subsequently describes a modular approach to deriving such logics, which sub-

sumes all previously-reviewed approaches. Section 4 summarises existing results

on modularly deriving notions of simulation, while Section 5 focuses on modularly

deriving logical characterisations for these notions. Next, Section 6 shows how

sound and complete axiomatisations for modularly-defined logics can themselves be

obtained in a modular fashion. Ongoing and future work are discussed in Section 7.

Acknowledgement

The work described in Section 6 of this paper was carried out jointly with Dirk

Pattinson.

2 Preliminaries

In the coalgebraic approach to modelling systems, functors T : Set → Set are used

to structure the information that can be observed about the states of (a certain

type of) dynamical systems 3 . A T-coalgebra, modelling a particular such system, is

given by a pair (C, γ), with C a set (the carrier of the coalgebra) and γ : C → TC

a function (the coalgebra map). The carrier of the coalgebra models the state space

of the system, whereas the coalgebra map gives, for each state, its immediate (one-

step) behaviour. A coalgebra morphism between T-coalgebras (C, γ) and (D, δ) is

given by a map f : C → D which is structure-preserving, that is, Tf ◦ γ = δ ◦ f .

The category of T-coalgebras and coalgebra morphisms is denoted Coalg(T).

Throughout the paper, T : Set → Set will denote a (weak-pullback preserving 4)

endofunctor on the category of sets. Since T-coalgebras constitute the object of

our study, we will often refer to such functors as coalgebraic types. The restric-

tion to weak-pullback preserving functors will only be required to derive logical

characterisation results for coalgebraic (bi)simulations. However, as shown in [8],

weak-pullback preservation is a reasonable assumption on coalgebraic types; in its

absence, the resulting notion of bisimulation lacks many desirable properties, such

as preservation under relational composition.

Coalgebraic bisimulation provides a canonical notion of observational equiva-

lence, which can be defined uniformly on coalgebraic types. Here we give a re-

formulation of its original definition [1], which uses the lifting of the functor T to

3 Endofunctors on categories other than Set are also considered in the general theory of coalgebras. How-
ever, in this paper we restrict ourselves to endofunctors on Set.
4 That is, T transforms pullback diagrams into weak-pullback diagrams.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 5

a category of relations. To this end, we let Rel denote the category having tu-

ples (A,B,R) with A,B ∈ |Set| and R ⊆ A × B as objects, and pairs (f, g) with

f : A → C and g : B → D being such that aR b implies f(a)S g(d), as arrows

from (A,B,R) to (C,D, S). For a relation R ⊆ A × B, we write πR
1 : R → A

and πR
2 : R → B for the corresponding projection maps. In this setting, re-

lational composition can be defined using a pullback construction in Set. The

lifting ΓT : Rel → Rel of the functor T to the category Rel is then defined by

ΓT(A,B,R) = (TA, TB,S), where S ⊆ TA×TB is the image of TR under the map

〈TπR
1 , TπR

2 〉 : TR → TA × TB. An immediate property of ΓT is the preservation of

equality relations and of relational composition.

A (coalgebraic) bisimulation between two T-coalgebras (C, γ) and (D, δ) can

now be defined simply as a ΓT-coalgebra having the pair (γ, δ) as a coalgebra map.

Thus, a T-bisimulation between (C, γ) and (D, δ) is given by a map in Rel of the

form ρ : (C,D,R) → (TC, TD,ΓTR), or equivalently, by a relation R ⊆ C×D which

is preserved by the coalgebra maps γ and δ. The largest bisimulation between (C, γ)

and (D, δ), obtained as the union of all such bisimulations, is denoted by � and is

called T-bisimilarity.

Of great importance in the study of coalgebraic models are final coalgebras, the

carriers of which can typically be obtained via a limit construction. For a functor

T : C → C on a complete category C, the final sequence of T is an ordinal-indexed

sequence (Zα) of C-objects, together with a family (pα
β : Zα → Zβ)β≤α of C-arrows,

defined by:

• Z0 = 1, with 1 denoting a final object in C,

• pα
0 : Zα → 1 is the unique such arrow,

• Zα+1 = TZα,

• pα+1
β+1 = Tpα

β for β ≤ α,

• pα
α = 1Zα

,

• pα
γ = p

β
γ ◦ pα

β for γ ≤ β ≤ α,

• if α is a limit ordinal, the cone Zα, (pα
β)β<α for (pβ

γ)γ≤β<α is limiting.

If T : C → C is an accessible, monic-preserving functor on a locally presentable

category, then the final sequence of T stabilises at some α 5 , and moreover, Zα

is the carrier of a final T-coalgebra (see [21]). In what follows, this result will be

instantiated with endofunctors T on the categories Set and Rel.

Each T-coalgebra (C, γ) determines a cone (γα : C → Zα) over the final sequence

of T. This is defined by letting (i) γ0 : C → 1 to be the unique such map, (ii)

γα+1 = Tγα ◦ γ, and (iii) γα to be the unique map satisfying pα
β ◦ γα = γβ for each

β < α, if α is a limit ordinal. For an ordinal α, the α-element of the final sequence

of T describes all the possible T-behaviours observable through α unfoldings of the

coalgebra map, while the map γα : C → Zα takes states of the coalgebra to their

partial behaviour observable in α steps.

5 That is, pα+1
α : Zα+1 → Zα is an isomorphism.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–266

For weak-pullback preserving endofunctors T whose final sequence stabilises, it

is possible to give a characterisation of T-bisimulation between two T-coalgebras

(C, γ) and (D, δ) in terms of these partial observable behaviours. Specifically, �
can be characterised as

⋂
α�α, where the α-step observability relation �α ⊆ C ×D

is defined by: c �α d iff γα(c) = δα(d), for c ∈ C and d ∈ D. (Details can be found

e.g. in [6].)

By considering an inductively-defined class of endofunctors on Set, one can re-

cover, as T-coalgebras, many interesting types of systems, including (probabilistic)

transition systems, (probabilistic) automata, spatial and epistemic models (with or

without update). The focus of this paper is on coalgebraic types T constructed

from a small number of basic types (modelling deterministic, non-deterministic and

probabilistic behaviour), using a small number of type-building operators. The re-

sults in this paper thus apply directly to coalgebras of functors T generated by the

following syntax:

T ::= C | Id | Pω | D | S | T × T | T + T | TA | T ◦ T (1)

where C denotes the constant functor mapping any set to the set C, Id is the identity

functor, Pω is the finite powerset functor, D (resp. S) is the finite (sub-)probability

distribution functor, mapping a set to the set of finite (sub-)probability distributions

over it, and × , + , ()A, and ◦ denote product, coproduct, exponentiation with

fixed exponent A and composition (of functors). However, the general techniques

developed here do not rely on the particular shape of these functors, and are easily

extendable to more general classes of inductively-defined coalgebraic types.

Example 2.1 (i) Deterministic systems can be modelled as coalgebras of the

functor IdA.

(ii) Image-finite labelled transition systems are in one-to-one correspondence with

coalgebras of the functor Pω
A.

(iii) Probabilistic transition systems are in one-to-one correspondence with (1+D)A-

coalgebras. They can alternatively be modelled as SA-coalgebras.

(iv) Probabilistic automata are the same as (Pω ◦ D)A-coalgebras. They can alter-

natively be modelled as (Pω ◦ S)A-coalgebras.

(v) Spatial transition systems can be modelled as coalgebras of the functor Pω
A ×

Pω(Id × Id).

(vi) Epistemic systems can be modelled as coalgebras of the functor (1 + Id)Ac ×
Pω

Ag ×Pω(At), for some fixed sets Ac of epistemic actions, Ag of agents, and

At of atomic facts.

3 Modular Logics for Coalgebras

In this section, we describe a modular approach to defining expressive modal logics

for T-coalgebras. We begin with a brief overview of existing work on modal logics

for coalgebras.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 7

This direction of work was initiated by Moss [15], who defined a modal logic for

coalgebras of an inclusion- and weak-pullback preserving functor T : Set → Set, by

using the functor T itself to derive the syntax of a language, and the lifting ΓT of T

to Rel to provide a coalgebraic semantics for this language. Apart from infinitary

conjunctions, the only logical operator in Moss’s language is a modal operator, here

denoted Δ, whose arity depends on the functor T: if L is a set of formulas of the

language and Φ ∈ TL, then ΔΦ is itself a formula of the language. The semantics of

the language thus obtained is defined by structural induction on formulas: having

defined a satisfaction relation |=γ ⊆ C × L for a T-coalgebra (C, γ) and a subset L

of the language, the semantics of formulas of form ΔΦ is derived using the relation

(ΓT |=γ) ⊆ TC×TL together with the coalgebra structure γ; infinitary conjunctions

are interpreted in the standard way.

The approach in [15] yields an abstract, infinitary logic, called coalgebraic logic,

for each endofunctor T. This logic characterises bisimulation, that is, the logical

equivalence relation between the sets of states of two T-coalgebras coincides with

the bisimilarity relation between the coalgebras. However, for most functors T, this

logic is not suitable for use as a specification logic: even for simple functors such

as the finite powerset functor, the size of the set of sub-formulas of a given formula

grows exponentially with the rank of the formula (defined as the maximal degree of

nesting of modal operators).

In order to achieve a compromise between uniformity in the functor and suit-

ability for use as a specification logic, several authors have proposed less canonical

modal logics for coalgebras, which often still enjoy expressiveness properties similar

to those of coalgebraic logic. For instance, Rößiger [17], Kurz [14] and Jacobs [11]

have focused on inductively-defined classes of functors, similar to the one consid-

ered here but lacking the (sub-)probability distribution functor as a basic coalge-

braic type, whereas Pattinson [16] has developed an approach for defining logics for

coalgebras of arbitrary functors on Set from specified sets of modal operators.

In [17,11], the structure of the functor T is exploited in order to define a multi-

sorted logic which characterises bisimulation and admits a sound and complete

axiomatisation. The sorts of formulas in the modal language of [17,11] correspond to

the ingredients of T (the intermediary functors used in the inductive definition of T).

As mentioned above, the (sub-)probability distribution functor was not considered

in loc. cit.; moreover, this functor can not be straightforwardly incorporated in

this approach, since the proofs of the main results in loc. cit. can not be suitably

extended to include this functor.

Instead of considering an inductively-defined class of endofunctors, and deriving

the modal operators of the associated language by structural induction on the func-

tor, the approach of Pattinson [16] is to define a logic for T-coalgebras by directly

providing a set of unary modal operators, together with sufficient information to

interpret these operators over T-coalgebras. Predicate liftings are defined in [16]

as natural transformations of the form λ : P̂ ⇒ P̂T, with P̂ : Set → Set denoting

the contravariant powerset functor. Each predicate lifting λ gives rise to a modal

operator [λ]. Writing �ϕ�C for the set of states of a T-coalgebra (C, γ) satisfying

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–268

the formula ϕ, the formula [λ]ϕ is defined to hold in a state c of the same coalgebra

precisely when γ(c) ∈ λC(�ϕ�C).

While the approach in [16] can be applied to arbitrary functors on Set, this

approach does not make use of the structure of the underlying functor. This makes

it difficult to exhibit a suitable choice of predicate liftings as the functor becomes

more complex. Moreover, this approach is not compositional, in that if the functors

T1 and T2 admit sets of predicate liftings for which the resulting logics characterise

bisimulation, this is not necessarily the case for their composition T1 ◦ T2 – an

example here is the functor Pω ◦ Pω. This drawback has been overcome in the

work of Schröder [19], who shows that by considering a generalisation of predicate

liftings giving rise to modal operators of arbitrary (including infinitary) arities, any

functor on Set admits a set of such polyadic predicate liftings, with the property

that the resulting logic is expressive for bisimulation. The problem now is that, in

general, an infinite number of modalities, including infinitary modalities, appear to

be needed.

The work described in the following represents an alternative approach to de-

riving modal logics for coalgebras, which subsumes all previously-mentioned ap-

proaches. The results presented apply directly to the class of functors defined in

(1), but the approach is more general, as it also incorporates the coalgebraic logic

of Moss, and logics arising from polyadic predicate liftings. Thus, this approach

can be regarded as a unifying framework for modal logics for coalgebras over Set.

At the same time, the approach is modular: logics for (coalgebras of) functor com-

binations can be automatically derived from logics for (coalgebras of) the functors

being combined, once a suitable formulation of the logics being put together has

been obtained. Furthermore, relevant properties of the resulting logics, including

expressiveness and the existence of suitable axiomatisations, can themselves be de-

rived in a modular fashion.

The notions of syntax constructor and associated one-step semantics [3,6] are

central to this approach. They allow the definition of a modal logic for T-coalgebras

by specifying a modal syntax (typically a set of modal operators with finite arities),

which is subsequently interpreted over T-coalgebras by only carrying out a one-step

unfolding of the respective coalgebra maps.

Definition 3.1 A syntax constructor is an inclusion-preserving, ω-accessible endo-

functor S : Set → Set. The language L(S) induced by S is the least set F of formulas

such that

• ff ∈ F ,

• ϕ → ψ ∈ F whenever ϕ,ψ ∈ F ,

• σ ∈ F whenever σ ∈ SΦ for some (finite) Φ ⊆ F .

A syntax constructor S specifies the modal operators which need to be added

to the basic propositional language in order to obtain a language for T-coalgebras.

The language induced by S is then obtained as the least set of formulas which is

closed under the application of boolean operators (first two of the above clauses),

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 9

and of the modal operators specified by S (last clause).

A variation of the notion of language induced by a syntax constructor S can

be obtained by choosing a different set of boolean operators. While ff and → are

sufficient to recover all other boolean operators, including negation, conjunction

and disjunction, in certain situations (e.g. when looking to logically characterise

preorders that are not equivalences) one is interested in a language without nega-

tion. In those cases, using tt, ff, ∧ and ∨ as a choice of boolean operators is more

appropriate. In what follows, and particularly in Section 5, we will also refer to the

language LΣ(S) induced by a syntax constructor S and a set of boolean operators

Σ ⊆ {tt,ff,∧,∨,¬,→}.

The language of standard modal logic can be retrieved by taking S : Set → Set

to be given by SL = {�ϕ | ϕ ∈ L }. Similarly, the language of Hennessy-Milner

logic can be obtained by taking SL = { [a]ϕ | ϕ ∈ L, a ∈ A } with A a set (of labels).

We also note that the ω-accessibility requirement prevents syntax constructors from

specifying modal operators of infinitary arities.

Each of the basic functors in (1) can be associated a syntax constructor in a

natural way:

Example 3.2 (i) For T := C, let SCL = C. The induced language L(SC) is the

set of propositional formulas over the set C of atoms.

(ii) for T := Pω, let SPω
L = {�ϕ | ϕ ∈ L }. The induced language L(SPω

) is the

language of standard modal logic over an empty set of atoms.

(iii) For T := Id, let SIdL = {◦ϕ | ϕ ∈ L }. The induced language L(SId) is

similar to the language of standard modal logic. However, this language will

be interpreted over Id-coalgebras (which provide a trivial model of deterministic

systems), and will therefore have a different semantics from that of the standard

modal language.

(iv) For T = D, let SDL = {�pϕ | ϕ ∈ L, p ∈ Q ∩ [0, 1] }. The induced language

L(SD) is the language commonly used to specify properties of discrete prob-

abilistic systems, including probabilistic transition systems and probabilistic

automata (see e.g. [13]); it employs a countable number of unary modalities,

with formulas of form �pϕ being read as ”the probability of ϕ holding in the

next state is at least p”. For T = S, the same syntax constructor can be used.

A syntax constructor S has yet no direct relationship to a coalgebraic type

T. A link between the two is established by providing sufficient information to

interpret the induced language L(S) over T-coalgebras. In the case of Pω-coalgebras,

a coalgebraic semantics for L(SPω
) can be obtained by choosing a suitable predicate

lifting to interpret �. The notion of one-step semantics [3,6] generalises this to

arbitrary syntax constructors.

If L and X are sets (of formulas and points, respectively), we call a function

d : L → PX an interpretation of L over X. We write Int for the category whose

objects are interpretations, and whose morphisms between d : L → PX and d′ :

L′ → PX ′ are given by pairs (t, f) with t : L → L′ and f : X ′ → X being such that

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2610

d′ ◦ t = f−1 ◦ d. Finally, we let V : Int → Set (W : Int → Setop) take d : L → PX

to L (respectively X), and (t, f) to t (respectively f).

Definition 3.3 A one-step semantics �S�T for a syntax constructor S w.r.t. an

endofunctor T is a functor �S�T : Int → Int such that V ◦�S�T = S◦V and W ◦�S�T =

Top ◦ W :

Set
S �� Set

Int
�S�T

��

W
��

V

��

Int

W
��

V

��

Set
T

op
�� Set

Thus, a one-step semantics �S�T for S w.r.t. T maps interpretations of L over

X to interpretations of SL over TX, and moreover, this mapping is functorial.

In other words, a one-step semantics describes how to interpret a formula in SL,

containing a modal operator at the outer-most level, over TX, provided one has

an interpretation of all the sub-formulas to which the modal operator is applied,

over X. Some examples of one-step semantics will be given shortly. For simplicity

of notation, the superscript in �S�T will be omitted whenever T is clear from the

context.

A one-step semantics �S�T for S w.r.t. T induces a coalgebraic semantics for

L(S):

Definition 3.4 The interpretation of a formula ϕ ∈ L(S) over a T-coalgebra (C, γ),

denoted �ϕ�C ⊆ C, is defined by structural induction on ϕ:

• �ff�C = ∅

• �ϕ → ψ�C = (C \ �ϕ�C) ∪ �ψ�C

• �σ�C = γ−1(�S�T(dΦ)(σ)) for σ ∈ SΦ

where, for Φ ⊆ L(S), dΦ : Φ → PC gathers the already-defined interpretations �ϕ�C

of formulas ϕ ∈ Φ. We write s |=C ϕ whenever s ∈ �ϕ�C .

Each of the syntax constructors in Example 3.2 can be associated a one-step

semantics, essentially by choosing a suitable predicate lifting for each of the modal

operators used in their definition.

Example 3.5 For d : L → PX and ϕ ∈ L, define:

(i) �SC�(d)(c) = {c}

(ii) �SId�(d)(◦ϕ) = {x ∈ X | x ∈ d(ϕ)}

(iii) �SPω
�(d)(�ϕ) = {x ∈ PωX | x ⊆ d(ϕ)}

(iv) �SD�(d)(�pϕ) = {μ ∈ DX |
∑

x∈d(ϕ) μ(x) ≥ p}

The coalgebraic semantics induced by the above one-step semantics can now be

described by:

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 11

(i) s |=C c iff γ(s) = c

(ii) s |=C ◦ϕ iff γ(s) |=C ϕ

(iii) s |=C �ϕ iff t |=C ϕ for all t ∈ γ(s)

(iv) s |=C �pϕ iff
∑

t∈�ϕ�
C

γ(s)(t) ≥ p

where s denotes a state of a T-coalgebra (C, γ).

A finitary variant of Moss’s coalgebraic logic [15] can also be derived using a

suitable choice of syntax constructor and associated one-step semantics.

Example 3.6 If T is an inclusion-preserving, weak-pullback preserving and ω-

accessible endofunctor, then letting STL = {ΔΦ | Φ ∈ TL } gives rise to a language

L(ST) whose only modal operator is the modality of coalgebraic logic. Also, letting

�ST� : Int → Int be given by

�ST�(d) : STL → PTX �ST�(d)(Φ) = {t ∈ TX | t (ΓT |=d)Φ}

for d : L → PX and Φ ∈ TL, where the relation |=d ⊆ X × L is given by

x |=d ϕ iff x ∈ d(ϕ)

gives rise to a language for T-coalgebras whose syntax and semantics are finitary

versions of Moss’s coalgebraic logic.

A consequence of the fact that any syntax constructor S is inclusion-preserving

and ω-accessible is that the induced language L(S) can alternatively be given an

inductive definition.

Definition 3.7 For n ∈ ω, the set Ln(S) of formulas of rank at most n is defined

inductively by:

• L0(S) = B ∅,

• Ln+1(S) = B SLn(S) for n ∈ ω

where B : Set → Set takes a set (of atoms) to the carrier of its closure under the

boolean operators ff and →.

Proposition 3.8 (Inductive definition of L(S), [6]) For a syntax constructor

S : Set → Set, we have Ln(S) ⊆ Ln+1(S) and L(S) =
⋃

n∈ω Ln(S).

The coalgebraic semantics of L(S) can itself be given an inductive definition.

This is a consequence of the fact that at most n unfoldings of the coalgebra map

are required to determine the denotation of a formula of rank at most n in a T-

coalgebra. Following [16], we first interpret formulas of rank n as subsets of Tn1,

with Tn denoting the n-fold application of T. Specifically, we define interpretations

dn : Ln(S) → PTn1 with n ∈ ω by induction on n:

• d0 : L0(S) → P1 is the only interpretation that maps ff to ∅ and ϕ → ψ to

(1 \ d0(ϕ)) ∪ d0(ψ),

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2612

• dn+1 : Ln+1(S) → PTn+11 is the natural extension of �S�(dn) to formulas con-

taining boolean operators, for n ∈ ω.

Now recall that any T-coalgebra (C, γ) induces a cone over the final sequence of T.

In particular, one obtains maps of form γn : C → Tn1 with n ∈ ω.

Proposition 3.9 (Inductive definition of coalgebraic semantics) The coal-

gebraic semantics of L(S) can alternatively be defined by �ϕ�C = γ−1
n (dn(ϕ)) for

ϕ ∈ Ln(S).

An important property of the coalgebraic semantics of L(S) is that bisimilar

states can not be distinguished by formulas of L(S). This constitutes an adequacy

result for L(S) w.r.t. T-bisimulation:

Proposition 3.10 (Adequacy of L(S)) Let (C, γ) and (D, δ) denote T-coalgebras,

and let c ∈ C and d ∈ D. If c � d, then c |=C ϕ iff d |=D ϕ.

The proof of this result makes use of Proposition 3.9, and of the characterisation

of bisimilarity in terms of the relations �α, with α ranging over all ordinals (see

Section 2). Proposition 3.9 will be exploited again in the next section, when deriving

logical characterisation results w.r.t. (bi)simulations.

Examples 3.2 and 3.5 only account for unlabelled (probabilistic) transition sys-

tems, and for two more, rather trivial coalgebraic types; more complex types, similar

to the ones of Example 2.1, remain to be dealt with. Since all these more complex

types also belong to the inductive class defined in (1), one can attempt to derive

syntax constructors and one-step semantics for them in a modular fashion. The

remainder of this section is dedicated to this topic.

If L1, L2 are sets (of formulas), we define:

L1 ⊗ L2 = {[πi]ϕi | ϕi ∈ Li, i = 1, 2}

L1 ⊕ L2 = {〈κi〉ϕi | ϕi ∈ Li, i = 1, 2}

L1 � A = {[a]ϕ | ϕ ∈ L1, a ∈ A}

where A is an arbitrary set. These operations can be lifted to operations on syntax

constructors [3,6], as shown next.

Definition 3.11 For syntax constructors S1,S2, we define

(S1 ⊗ S2)L = B S1L ⊗ B S2L (S1 ⊕ S2)L = B S1L ⊕ B S2L

(S1 � A)L = B S1L � A (S1 � S2)L = S1B S2L.

The above definition extends naturally to functors S1⊗S2,S1�A,S1⊕S2,S1�S2 :

Set → Set. Moreover, the resulting operations on functors preserve the properties

of being inclusion-preserving and ω-accessible, and therefore S1 ⊗ S2,S1 ⊕ S2,S1 �
A,S1 � S2 also define syntax constructors.

The above combinations of syntax constructors are intended to give rise to

modal languages for combinations of coalgebraic types, of the form T1 × T2, T1 +

T2, TA
1 , T1 ◦ T2. This is achieved by adding modal operators that mirror the two

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 13

projections in the case of T1 ×T2, the two injections in the case of T1 +T2, and the

exponentiation with constant exponent A in the case of (T1)
A. No additional modal

operator is required for T1 ◦T2. The presence of the functor B in Definition 3.11 is

needed to ensure that the resulting languages enjoy logical characterisation results

w.r.t. (bi)simulation (see [3,4,6] for details). We also note that the presence of B

results in an interleaving of modal operators (either from S1 or S2, or of the form

[πi], 〈κi〉 or [a]), with boolean operators. For illustration, we examine the language

induced by the composition S1 � S2. Suppose SiL = {�iϕ | ϕ ∈ L} for i = 1, 2.

Then, the language L = L(S1 � S2) can be described by the following grammar:

L � ϕ,ψ ::= ff | ϕ → ψ | �1ρ (ρ ∈ L′)

L′ � ρ, σ ::= ff | σ → ρ | �2ϕ (ϕ ∈ L)

Thus, the formulas of L(S1 � S2) alternate between applications of the modal op-

erators �1 and �2, and can additionally contain boolean operators at any level.

Assuming that S1 and S2 specify languages for T1- and T2-coalgebras, respectively,

the above language can automatically be endowed with a semantics w.r.t. T1 ◦ T2-

coalgebras. This can be achieved by defining ways to combine a one-step semantics

for S1 w.r.t T1 with a one-step semantics for S2 w.r.t T2, in order to obtain a one-

step semantics for S1 � S2 w.r.t. T1 ◦ T2. More generally, all four operations on

syntax constructors have a counterpart at the level of one-step semantics [3,6]:

If d1 : L1 → PX1 and d2 : L2 → PX2 are interpretations of L1 and L2 over X1

and X2, respectively, we define

d1 ⊗ d2 :L1 ⊗ L2 → P(X1 × X2), [πi]ϕi �→ {(x1, x2) | xi ∈ di(ϕi)}

d1 ⊕ d2 :L1 ⊕ L2 → P(X1 + X2), 〈κi〉ϕi �→ {ιi(xi) | xi ∈ di(ϕi)}

d1 � A :L1 � A → P(XA), [a]ϕ �→ {f : A → X | f(a) ∈ d1(ϕ)}.

Definition 3.12 If �Si�
Ti is a one-step semantics for Si w.r.t. Ti, for i = 1, 2, we

define one-step semantics for S1 ⊗ S2, S1 ⊕ S2, S1 �A, S1 � S2 w.r.t. T1 × T2, T1 +

T2, TA
1 , T1 ◦ T2, respectively, as follows:

�S1 ⊗ S2�(d) = �S1�(d)� ⊗ �S2�(d)� �S1 ⊕ S2�(d) = �S1�(d)� ⊕ �S2�(d)�

�S1 � A� = �S1�(d)� � A �S1 � S2�(d) = �S1�(�S2�(d)�)

where d : L → PX, and d� : B L → PX denotes the natural extension of d to

formulas containing boolean operators.

It follows easily that if �Si� is a one-step semantics for Si w.r.t. Ti, for i = 1, 2,

then �S1 ⊗ S2�, �S1 ⊕ S2�, �S1 �A� and �S1 � S2� are one-step semantics for S1 ⊗ S2,

S1 ⊕ S2, S1 �A and S1 � S2 w.r.t. T1 × T2, T1 + T2, T1
A and T1 ◦T2, respectively.

Example 3.13 The language L1 = L((SPω
�SD)�A) induced by the combination

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2614

of syntax constructors (SPω
� SD) � A can be described by the grammar:

L1 � ϕ ::= ff | ϕ → ϕ′ | [a]ψ (ψ ∈ L2)

L2 � ψ ::= ff | ψ → ψ′ | �ξ (ξ ∈ L3)

L3 � ξ ::= ff | ξ → ξ′ | �pϕ (ϕ ∈ L1)

A semantics for this language w.r.t. (Pω ◦D)A-coalgebras is automatically obtained

as the coalgebraic semantics induced by the combination of one-step semantics

�(SPω
� SD) � A�. The resulting logic for probabilistic automata is essentially the

same as the probabilistic modal logic of [13].

Example 3.14 The language L1 = L((SPω
� A) ⊗ (SPω

� (SId ⊗ SId))) can be

described by the grammar:

L1 � ϕ ::= ff | ϕ → ϕ′ | [π1]ψ | [π2]χ (ψ ∈ L2, χ ∈ L4)

L2 � ψ ::= ff | ψ → ψ′ | [a]ξ (ξ ∈ L3)

L3 � ξ ::= ff | ξ → ξ′ | �ϕ (ϕ ∈ L1)

L4 � χ ::= ff | χ → χ′ | �ζ (ζ ∈ L5)

L5 � ζ ::= ff | ζ → ζ ′ | [π1]ϕ | [π2]ϕ (ϕ ∈ L1)

The following grammar defines a sub-language of the above language:

L1 � ϕ ::= ff | ϕ → ϕ′ | �a ϕ | ϕ ‖ ϕ′

where we have used the following abbreviations: �a ϕ ::= [π1][a]�ϕ, ϕ ‖ ϕ′ ::=

[π2](¬�¬([π1]ϕ∧[π2]ϕ
′)), with boolean negation ¬ and boolean conjunction ∧ being

defined in the standard way in terms of ff and →. This sub-language involves an

A-indexed set of action modalities similar to those of Hennessy-Milner logic, as

well as a spatial modality as found in various spatial logics for concurrency. In

particular, we note that the definition of the (binary) spatial modality requires an

interleaving between modal operators (of different sorts) and boolean operators,

which is not expressible in a language induced by a set of unary predicate liftings.

The language L((SPω
� A) ⊗ (SPω

� (SId ⊗ SId))) can be automatically interpreted

over Pω
A ×Pω(Id× Id)-coalgebras (modelling spatial transition systems), using the

modular techniques described in this section. The resulting coalgebraic semantics

agrees with the standard interpretation of action and spatial modalities. Moreover,

since the modal operators [πi] and [a] distribute over all boolean operators, one can

show that the sub-language described above is as expressive as the original language

L1.

4 Coalgebraic Simulations

We now describe similar techniques for deriving notions of simulation for the induc-

tive class of coalgebraic types defined in (1). The results presented in this section are

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 15

taken from [3,4], and build on earlier work on coalgebraic simulations as described

in [10,2,12].

Several notions of simulation for coalgebras of a functor T can be derived by

weakening the definition of bisimulation, namely by replacing the lifting ΓT of T

to Rel (as defined in Section 2), with a so-called T-relator. We begin by noting

that the lifting ΓT : Rel → Rel of a weak-pullback preserving functor T : Set → Set

preserves equality relations and relational composition. The notion of T-relator [10]

is obtained by weakening the first condition.

Definition 4.1 Let T : Set → Set. A T-relator is an endofunctor Γ : Rel → Rel

additionally satisfying:

(i) U ◦ Γ = (T × T) ◦ U; that is, Γ lifts T;

(ii) Γ(=A) ⊇=TA, where =A ⊆ A × A denotes the equality relation on A;

(iii) Γ(S ◦ R) = Γ(S) ◦ Γ(R) for any R ⊆ A × B and S ⊆ B × C.

Any T-relator induces a notion of simulation between T-coalgebras [10,12,4]:

Definition 4.2 Let Γ : Rel → Rel be a T-relator. A Γ-simulation between T-

coalgebras (C, γ) and (D, δ) is a Γ-coalgebra having the pair (γ, δ) as a coalgebra

map. The largest Γ-simulation between (C, γ) and (D, δ) is called Γ-similarity and

is denoted �Γ. If c ∈ C, d ∈ D are such that c �Γ d, we say that c simulates d.

A Γ-simulation (R, (γ, δ)) between (C, γ) and (D, δ) is thus given by a relation

R ⊆ C × D such that cR d implies γ(c) Γ(R) δ(d) for any c ∈ C and d ∈ D.

If T preserves weak pullbacks, then its lifting ΓT to Rel is a T-relator, and

moreover, this relator is minimal among all T-relators; that is, ΓTR ⊆ ΓR for any

T-relator Γ and any relation R (see [10,2] for details). Throughout this section, we

assume that the endofunctor T preserves weak pullbacks.

By considering the minimal T-relator in the definition of simulation, one recov-

ers the notion of T-bisimulation. Then, by weakening the conditions defining the

minimal T-relator, one can derive weaker notions of simulation, capturing various

notions of refinement between states of T-coalgebras.

Example 4.3 Several notions of simulation for (unlabelled) transition systems can

be derived from suitable choices of Pω-relators. Here we consider two such choices,

namely Γ⊇,ΓR
⊇ : Rel → Rel, defined respectively by

X Γ⊇(R)Y iff ∀ y ∈ Y .∃x ∈ X .x R y

X ΓR
⊇(R)Y iff X Γ⊇(R)Y and (Y = ∅ ⇒ X = ∅)

with R ⊆ A×B, X ∈ PωA and Y ∈ PωB. Now if (S,→) and (T,→) are unlabelled

transition systems (i.e. Pω-coalgebras), then a Γ⊇-simulation between them is given

by a relation R ⊆ S × T with the property that whenever s R t and t → t′ in

(T,→), there exists a transition s → s′ in (S,→) such that s′ R t′. The notion of

simulation induced by ΓR
⊇ additionally requires that if t �→ in (T,→), then also the

corresponding s �→ in (S,→). Thus, the former notion of simulation coincides with

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2616

standard transition system simulation, whereas the latter captures ready simulation

[20].

Example 4.4 In order to define a notion of simulation for (unlabelled) probabilistic

transition systems, it is more convenient to model these as S-coalgebras, where S
is the finite sub-probability distribution functor; this allows one not to distinguish

between the absence of transitions from a given state, and the existence of transitions

from that state, with the associated probabilities adding up to 1. We now define an

S-relator ΓP : Rel → Rel by

μ (ΓP R) ν iff μ[X] ≥ ν[Y] for any X ⊆ A and Y ⊆ B s.t.

(πR
1)−1(X) ⊇ (πR

2)−1(Y)

with R ⊆ A × B, μ ∈ SA and ν ∈ SB. It is shown in [4] that ΓP is well-defined

(as a functor on Rel whose action on arrows is defined via T) and moreover, that

ΓP defines an S-relator. The notion of simulation induced by ΓP turns out to

coincide with the standard notion of simulation for probabilistic transition systems,

as defined e.g. in [7] (see [4] for details).

Again, so far we have only considered unlabelled (probabilistic) transition sys-

tems. In the following, we show how to derive T-relators , and hence notions of

simulation, for functors T belonging to the inductive class defined in (1).

We begin by defining relators for the other two basic coalgebraic types considered

in (1), namely the constant and identity functors. Specifically, for T := C, we let

ΓC : Rel → Rel map a relation R ⊆ A × B to the equality relation on C. Also, for

T = Id, we let ΓId be the identity functor on Rel. (These relators are in fact the

minimal ones.)

Next, we show how to combine a T1- and a T2-relator, Γ1 and Γ2, in order to

obtain a T-relator, with T being a combination of the functors T1 and T2.

Definition 4.5 Let Γ1 and Γ2 be T1- and T2-relators, respectively. Define Γ1 ⊕
Γ2 , Γ1 ⊗ Γ2 , (Γ1)

A : Rel → Rel by:

• R ⊆ X× Y
� Γ1⊕Γ2 �� Γ1(R) + Γ2(R) ⊆ (T1+T2)X× (T1+T2)Y

• R ⊆ X× Y
� Γ1⊗Γ2 �� Γ1(R) × Γ2(R) ⊆ (T1×T2)X× (T1×T2)Y

• R ⊆ X× Y
� (Γ1)A

�� Γ1(R)A ⊆ (T1X)A× (T1Y)A

where, given two relations R1 and R2, we write R1 × R2 and R1 + R2 for their

product and respectively coproduct in Rel, and (R1)
A for the point-wise extension

of R1 to functions with domain A.

It follows easily (see also [4]) that the above operations yield relators for T1+T2,

T1 × T2 and (T1)
A, respectively. Finally, a T1 ◦ T2-relator can be obtained from a

T1-relator Γ1 and a T2-relator Γ2 by simply composing them, that is, by considering

the T1 ◦ T2-relator Γ1 ◦ Γ2. As a result, we are now able to derive relators for all

the coalgebraic types specified in (1).

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 17

By combining the relators given in Examples 4.3 and 4.4, one can automatically

derive notions of simulation for labelled (probabilistic) transition systems, as well

as for more complex types such as probabilistic automata.

Example 4.6 The notions of simulation induced by the Pω
A-relators (Γ⊇)A and

(ΓR
⊇)A coincide with standard, respectively ready simulation on labelled transition

systems. The notion of simulation induced by the SA-relator (ΓP)A coincides with

standard simulation on labelled probabilistic transition systems.

Example 4.7 As mentioned in Example 2.1, probabilistic automata can be mod-

elled as coalgebras of the functor (Pω ◦ S)A. Here we derive a notion of simulation

for (Pω ◦ S)A-coalgebras by combining the Pω-relator Γ⊇ and the S-relator ΓP .

Specifically, we consider the (Pω ◦ S)A-relator (Γ⊇ ◦ ΓP)A. A relation R ⊆ C × D

is a (Γ⊇ ◦ ΓP)A-simulation between (Pω ◦ S)A-coalgebras (C, γ) and (D, δ) iff cR d

implies:

∀ a ∈ A . ∀ ν ∈ δ(d)(a) . ∃μ ∈ γ(c)(a) . (μ[X] ≥ ν[Y] whenever

(πR
1)−1(X) ⊇ (πR

2)−1(Y))

We will show later that the above notion of simulation coincides with the notion

of strong simulation on probabilistic automata [13], defined as follows: Given two

probabilistic automata (S,→) and (T,→) (with the transition relations now defin-

ing, for each label a, a binary relation between states and probability distributions

over states), a strong simulation between them is a relation R ⊆ S×T with the prop-

erty that whenever t
a �� ν in (T,→), there exists a transition s a �� μ in (S,→)

such that μ R̃ ν, where the relation R̃ denotes the lifting of R to probability distri-

butions 6 [13]. We conclude by noting that other known notions of simulation for

probabilistic automata, including probabilistic simulation as defined in [13], can be

recovered by using a different choice of (Pω ◦ S)A-relator (see [4]).

5 Logical Characterisations

We now proceed to formulating conditions under which the notion of simulation

induced by a T-relator Γ can be characterised using the language induced by a

syntax constructor S and associated one-step semantics. Since Γ-similarity relations

are not, in general, equivalence relations, we will attempt to logically characterise

them using languages of the form LΣ(S), with Σ ⊆ {tt,ff,∧,∨,¬,→}. Throughout

this section, Σ will denote a fixed such set of boolean operators, which typically

will not include negation, while B Σ : Set → Set will denote the functor taking a

set (of atoms) to the carrier of its closure under the boolean operators in Σ. Our

approach will be based on some well-behavedness properties of Γ-similarity, and on a

characterisation of the Γ-similarity relation on the final T-coalgebra, as summarised

below.

6 This is defined by: μ R̃ ν iff there exists a probability distribution α on S × T such that α(s, T) = μ(s)
for s ∈ S, α(S, t) = ν(t) for t ∈ T , and α(s, t) = 0 for (s, t) /∈ R.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2618

Proposition 5.1 ([12]) The following hold for a T-relator Γ : Rel → Rel:

(i) Γ-similarity on a T-coalgebra (C, γ) is a preorder on C;

(ii) given T-coalgebra morphisms f : (A,α) → (B,β) and g : (C, γ) → (D, δ),

a �Γ c iff f(a) �Γ g(c), for a ∈ A and c ∈ C;

(iii) Γ-similarity on the final T-coalgebra is a final Γ-coalgebra.

By taking f and g in (ii) of Proposition 5.1 to be the unique morphisms !α :

(A,α) → (Z, ζ) and !γ : (C, γ) → (Z, ζ) into the final T-coalgebra, we obtain that

Γ-similarity between (A,α) and (C, γ) can be derived from the Γ-similarity relation

on the final T-coalgebra. Also, the adequacy of logics induced by syntax construc-

tors (Proposition 3.10) results in the satisfaction of formulas being preserved and

reflected by coalgebra morphisms. These two observations allow us to restrict at-

tention to logically characterising the Γ-similarity relation on the final T-coalgebra.

For this, we make use of (iii) of Proposition 5.1.

We let Preord denote the category of preorders and monotonic maps. Then,

Preord is (isomorphic to) a sub-category of Rel, and moreover, any T-relator Γ re-

stricts to an endofunctor on Preord (itself denoted Γ). Motivated by (iii) of Propo-

sition 5.1, we now investigate the final sequence of Γ, which we denote by (�α
Γ).

It follows easily that this sequence belongs to Preord. Moreover, its underlying

Set-sequence is the final sequence of T.

Now recall from Section 3 that a syntax constructor S and choice of one-step

semantics for S w.r.t. T give rise to a sequence of interpretations dn : Ln
Σ(S) → PTn1,

with n ∈ ω. The sequence (dn)n∈ω can be naturally extended to an ordinal-indexed

sequence of interpretations (dα), with dα : LΣ(S) → PTα1 for each α ≥ ω 7 .

To obtain a logical characterisation of Γ-similarity on the final T-coalgebra, we

assume that the final sequence of Γ stabilises at α. Since the final sequence of T

underlies the final sequence of Γ, this sequence must also stabilise at, or before, α.

The fact that LΣ(S) characterises �α
Γ = �Γ will now follow by induction over the

final sequence of Γ, using the notion of one-step expressiveness [4] of a one-step

semantics w.r.t. a given relator.

If d : L → PX is an interpretation, then for x, y ∈ X, we write y ≥L x if

x ∈ d(ϕ) implies y ∈ d(ϕ), for any ϕ ∈ L. Then, d is called adequate for a preorder

R ⊆ X × X if R ⊆≥L, and expressive for R if, in addition, R ⊇≥L.

Definition 5.2 A one-step semantics �S� for S w.r.t. T is called one-step expressive

w.r.t. Γ if it maps an interpretation d : L → PX which is expressive for R ⊆ X ×X

to an interpretation d′ : SL → PTX which is expressive for ΓR ⊆ TX × TX.

One-step expressiveness of �S� w.r.t. Γ ensures that the interpretations dα are

expressive w.r.t. the relations �α
Γ in the final sequence of Γ:

Theorem 5.3 ([4]) Let �S� : Int → Int be a one-step semantics for S w.r.t. T. If

�S� is one-step expressive w.r.t. Γ, then dα : Lα → PZα is expressive for �α ⊆

7 Note that, while the final sequence of T might not stabilise at ω, applying S followed by BΣ to LΣ(S)
does not produce any new formulas. This is the reason for the domains of the interpretations dα with α ≥ ω
being equal to LΣ(S).

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 19

Zα × Zα, for any ordinal α.

Finally, we are able to formulate sufficient conditions for the language induced

by S to characterise Γ-similarity:

Corollary 5.4 (Logical characterisation of simulation, [4]) Let �S� : Int →
Int be a one-step semantics for S w.r.t. T. If �S� is one-step expressive w.r.t. Γ, and

if the final sequence of Γ stabilises, then the language LΣ(S) characterises �Γ.

The reader might wonder why a stronger requirement on the final sequence of

Γ (such as requiring that this sequence stabilises at ω, or at ω + ω) is not needed

for the above result. In fact, from the one-step expressiveness of �S� w.r.t. Γ, and

under the additional assumption that T is ω-accessible, one can prove that the final

sequence of Γ stabilises at, or before, ω + ω (see [4]). We also note that all the

functors defined in (1) are ω-accessible.

The previous result allows us to derive logics which characterise Γ-similarity,

from one-step semantics which are one-step expressive w.r.t. Γ. We now derive

some concrete logical characterisability results, as instances of Corollary 5.4.

Example 5.5 For unlabelled transition systems, letting Σ = {tt,∧}, SS
Pω

: Set →
Set be given by SS

Pω
L = {�ϕ | ϕ ∈ L}, and �SS

Pω
� : Int → Int be given by

�SS
Pω

�(d)(�ϕ) = {x ∈ PωX | x ∩ d(ϕ) �= ∅} for d : L → PX and ϕ ∈ L yields

a one-step semantics for SS
Pω

which is one-step expressive w.r.t. Γ⊇, and conse-

quently a language LΣ(SS
Pω

) which characterises Γ⊇-simulation (see [4] for details).

In particular, we note that disjunctions are not needed to logically characterise stan-

dard simulation on transition systems. To obtain a logical characterisation of ready

simulation (on unlabelled transition systems at this point), we enrich the syntax

constructor SS
Pω

to SR
Pω

: Set → Set given by SR
Pω

L = {�ϕ | ϕ ∈ L}∪{Δ}; thus, SR
Pω

specifies an additional propositional constant. A one-step semantics �SR
Pω

� for SR
Pω

is obtained by letting �SR
Pω

�(d)(�ϕ) = �SS
Pω

�(d)(�ϕ) and �SR
Pω

�(d)(Δ) = {∅}, for

d : L → PX and ϕ ∈ L. Again, it is shown in [4] that �SR
Pω

� is one-step expressive

w.r.t. ΓR
⊇, and therefore LΣ(SR

Pω
) characterises ready simulation.

Example 5.6 Moving to probabilistic transition systems, and keeping Σ as above,

the one-step semantics defined in Section 3 for the syntax constructor SD is one-step

expressive w.r.t. the relator ΓP ; as a result, the language induced by SD characterises

ΓP -simulation on S-coalgebras (see [4]).

Finally, one expects the one-step expressiveness condition required to derive

logical characterisations of simulations to be preserved by the various combinations

of one-step semantics and of relators. This is indeed the case:

Theorem 5.7 (Preservation of one-step expressiveness, [4]) If �Si� is one-

step expressive w.r.t. Γi, for i = 1, 2, then �S1⊗S2�, �S1⊕S2�, �S1�A� and �S1�S2�

are one-step expressive w.r.t. Γ1 ⊗ Γ2, Γ1 ⊕ Γ2, (Γ1)
A and Γ1 ◦ Γ2, respectively.

As a result, expressive logics for simulation can be derived in a modular fash-

ion. In particular, one automatically obtains logical characterisations of standard

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2620

and ready simulation on (image-finite) labelled transition systems, of simulation

on probabilistic transition systems, and of (Γ⊇ ◦ ΓP)A-simulation on probabilistic

automata. We now return to Example 4.7, and note that the notion of strong sim-

ulation described there has been shown in [13] to be logically characterisable by

essentially the same logic as L((SS
Pω

� SD) � A) 8 . Since (Γ⊇ ◦ ΓP)A-simulation is

also characterised by this logic, it follows (indirectly) that (Γ⊇ ◦ ΓP)A-simulation

coincides with strong simulation on probabilistic automata.

We conclude this section by noting that Hennessy-Milner-style results, providing

logical characterisations of T-bisimulation, can be obtained by instantiating the T-

relator Γ of Corollary 5.4 with the minimal relator ΓT, and appropriately choosing

a syntax constructor S, an associated one-step semantics �S� w.r.t. T, and a set

of boolean operators Σ. A more direct approach to deriving expressive logics for

bisimulation, not involving T-relators, is described in [3,6]. The approach in loc. cit.

uses a similar one-step expressiveness condition, but this time the definition of

expressiveness of an interpretation does not depend on a choice of a T-relator.

6 Sound and Complete Axiomatisations of Coalgebraic

Logics

This section describes modular techniques for deriving sound and complete ax-

iomatisations for logics induced by syntax constructors, by summarising the results

presented in [6,5]. The section concludes with (part of) a complete axiomatisation

for the logic derived earlier for spatial transition systems.

The key idea in defining a proof system for a language of the form L(S), with

S a syntax constructor, is to specify how theorems of rank (at most) n + 1 can

be inferred from already-proved theorems of rank (at most) n. This is achieved

through the notion of proof system constructor [6,5], which typically specifies a set

of axioms of rank 1, together with a set of inference rules with premises of rank 0

and conclusion of rank 1.

We use the notion of boolean theory to refer to a set of theorems. A boolean

theory is defined as a pair (A,ΦA), with A a set (of atoms) and ΦA ⊆ BΣ A a set (of

theorems over A). We write � ϕ for ϕ ∈ ΦA whenever ΦA is clear from the context,

and BTh for the category of boolean theories and morphisms between them (with

the latter being given by functions between the corresponding sets of atoms, whose

unique extensions to BΣ -morphisms preserve theorems).

Definition 6.1 A proof system constructor for a syntax constructor S is an ω-

accessible functor P : BTh → BTh that satisfies S ◦ BΣ ◦ Π1 = Π1 ◦ P, with Π1 :

BTh → Set denoting the first projection functor.

A proof system constructor for S lifts the functor S ◦ BΣ , i.e. it maps sets of

theorems over A to sets of theorems over SBΣ A. The requirement that P is ω-

8 The logic in [13] is a one-sorted fragment of L((SS

Pω

� SD)
 A), but one can show that it is equally

expressive, that is, any formula of L((SS

Pω

�SD)
A) is semantically equivalent to a formula in this fragment.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 21

accessible generalises a standard requirement in proof systems that inference rules

can only contain a finite number of premises. The next example gives proof system

constructors for the syntax constructors defined in Example 3.2.

Example 6.2 (i) A proof system constructor PPω
: BTh → BTh for the syntax

constructor SPω
can be defined by mapping (A,Φ) to (SPω

BΣ A,Φ′), where Φ′

is generated by the following axioms and rules:

�′
�tt �′

�ϕ ∧ �ψ → �(ϕ ∧ ψ)
� ϕ → ψ

�′
�ϕ → �ψ

PPω
encodes the axioms and rules of standard modal logic.

(ii) A proof system constructor for SD can be defined using a similar, but larger,

set of axioms and rules (see [5] for details).

(iii) A proof system constructor PC : BTh → BTh for the syntax constructor SC is

given by PC(A,Φ) = (C,Φ′), with Φ′ being generated by the axioms:

�′
∨

c∈C

c (only if C finite) �′ ¬(c ∧ c′) (c �= c′ ∈ C)

(iv) A proof system constructor PId : BTh → BTh for the syntax constructor SId is

given by PId(A,Φ) = (SIdBΣ A,Φ′), with Φ′ being generated by the following

axioms and rules:

�′ ◦ff → ff �′ ◦(ϕ → ψ) ↔ (◦ϕ → ◦ψ)
� ϕ → ψ

�′ ◦ϕ → ◦ψ

Every proof system constructor P for S induces a boolean theory over L(S),

which contains all the theorems that can be inferred through the application of (the

axioms and rules specified by) P, together with the axioms and rules of propositional

logic [6,5].

Definition 6.3 The theory induced by P is defined as (L(S),ΦP), where ΦP is the

least subset Φ of BΣ L(S) = L(S) with the following properties:

• P(A,Ψ) ⊆ (L(S),Φ) for any (A,Ψ) ⊆ (L(S),Φ) with A and Ψ finite,

• (L(S),Φ) contains all instances of propositional tautologies, and is closed under

modus ponens.

We write �P ϕ for ϕ ∈ ΦP.

As in the case of syntax constructors, the ω-accessibility requirement on a

proof system constructor P results in an alternative inductive definition of the

theory induced by P. This involves defining an ω-indexed set of boolean theo-

ries (An(S),Φn
P
)n∈ω, with (A0(S),Φ0

P
) being the closure of the empty theory over

an empty set of atoms under instances of tautologies and modus ponens, and with

(An+1(S),Φn+1
P

) being obtained by applying P to (An(S),Φn
P
) and subsequently clos-

ing the resulting boolean theory under instances of tautologies and modus ponens.

Details can be found in [5].

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2622

A consequence of the inductive definition of (L(S),ΦP) is the availability of

induction for proving properties (e.g. soundness and completeness) of (L(S),ΦP).

Similarly to our approach to deriving logical characterisations of simulation rela-

tions, we define notions of one-step soundness and one-step completeness of a proof

system constructor w.r.t. a one-step semantics, and use them to prove soundness

and completeness of the induced boolean theory w.r.t. the coalgebraic semantics of

L(S).

Given a boolean theory (A,�), we write Cl(A,�) for the boolean theory obtained

by adding all propositional tautologies over A to �, and subsequently closing the

resulting set of formulas under modus ponens. We call a boolean theory (A,�)

sound (complete) w.r.t. an interpretation d : A → PX if � ϕ implies d�(ϕ) = X

(respectively d�(ϕ) = X implies � ϕ) for any ϕ ∈ BΣ A.

Definition 6.4 A proof system constructor P for S is one-step sound (one-step

complete) w.r.t. a one-step semantics �S�T if (Cl ◦ P)(A,�) is sound (complete)

w.r.t. �S�T(d�) : SBΣ A → PTX whenever (A,�) is sound (respectively complete)

w.r.t. d : A → PX.

Theorem 6.5 (Soundness and completeness, [5]) If the proof system con-

structor P for S is one-step sound (complete) w.r.t. �S�T, then (L(S),�P) is sound

(respectively complete) w.r.t. the coalgebraic semantics of L(S), that is, |=T ϕ iff

�P ϕ for all ϕ ∈ L(S) (where |=T ϕ stands for c |=C ϕ for any T-coalgebra (C, γ)

and any c ∈ C).

As shown in [5], each of the proof system constructors in Example 6.2 is one-

step sound and complete. The proofs are straightforward, except for the case of the

probability distribution functor, where a version of the theorem of the alternative for

vector spaces is used, following an existing completeness proof in [9]. (A complete

proof is given in [5].)

Finally, we show that proof system constructors for different coalgebraic types

can be combined, and that these combinations preserve one-step soundness and one-

step completeness. As in previous sections, we define operations ⊗ , ⊕ , �A,

� on proof system constructors, which lift the corresponding operations on syntax

constructors. In the case of the first three operations, additional axioms and rules,

axiomatising cartesian products, coproducts and exponents, are required in order

to derive completeness results. For example, in the case of products, assuming that

P1 and P2 are proof system constructors for S1 and S2, a proof system constructor

P1 ⊗ P2 for S1 ⊗ S2 is defined by:

(P1 ⊗ P2)(A,�) = (Cl ◦ P1)(A,�) ⊗ (Cl ◦ P2)(A,�)

where the operation ⊗ on proof systems is defined by

(A1,�1) ⊗ (A2,�2) = (BΣ A1 ⊗ BΣ A2,�⊗)

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 23

with �⊗ being generated by the following axioms and rules:

�⊗ [πi]ff → ff �⊗ [πi](ϕ → ψ) ↔ ([πi]ϕ → [πi]ψ)
�i ϕ → ψ

�⊗ [πi]ϕ → [πi]ψ

The definition of P1 �A is similar to that of P1 ⊗P2 – the modal operators [a] with

a ∈ A have similar properties to those of [πi], whereas the definition of P1 ⊕ P2 is

given in terms of the dual modalities [κi] of 〈κi〉, and includes axioms capturing the

distributivity of [κi] over conjunctions and non-empty disjunctions, some additional

properties of coproducts, and an inference rule similar to the one for P1⊗P2. Finally,

as P1 � P2 one can simply consider P1 ◦ Cl ◦ P2, similarly to the definition of � on

syntax constructors.

Theorem 6.6 (Preservation of one-step completeness, [5]) If Pi is a proof

system constructor for Si, for i = 1, 2, then P1 ⊗ P2, P1 ⊕ P2, P1 � A and P1 � P2

are proof system constructors for S1 ⊗ S2, S1 ⊕ S2, S1 �A and S1 � S2, respectively.

Moreover, if P1 and P2 are one-step sound (complete) w.r.t. �S1� and �S2�, respec-

tively, then P1 ⊗ P2, P1 ⊕ P2, P1 � A and P1 � P2 are one-step sound (respectively

complete) w.r.t. �S1 ⊗ S2�, �S1 ⊕ S2�, �S1 � A� and �S1 � S2�, respectively.

Theorem 6.6 together with the earlier observation that all the basic proof system

constructors are one-step sound and complete yield sound and complete axiomati-

sations for all the coalgebraic types defined in (1), including probabilistic automata

and spatial transition systems. A complete axiomatisation for the language L((SPω
�

SD) � A), as described in Example 3.13, is given in [5]. Below we give part of the

complete axiomatisation obtained for the language L((SPω
�A)⊗(SPω

�(SId⊗SId)))

described in Example 3.14:

• Axioms and rules for all �i:

�i ϕ (ϕ instance of tautology)
�i ϕ �i ϕ → ψ

�i ψ

• Axioms and rules for �1 (ψ,ψ′ ∈ L2, χ, χ′ ∈ L4):

�1 [π1]tt �1 [π1]ψ ∧ [π1]ψ
′ → [π1](ψ ∧ ψ′)

�2 ψ → ψ′

�1 [π1]ψ → [π1]ψ′

�1 [π2]tt �1 [π2]χ ∧ [π2]χ
′ → [π2](χ ∧ χ′)

�4 χ → χ′

�1 [π2]χ → [π2]χ′

• Axioms and rules for �3 (ϕ,ϕ′ ∈ L1):

�3 �tt �3 �ϕ ∧ �ϕ′ → �(ϕ ∧ ϕ′)
�1 ϕ → ϕ′

�3 �ϕ → �ϕ′

7 Concluding Remarks

This paper has focused on an inductively-defined class of coalgebraic types, which

subsumes many types of interest in the modelling of state-based systems, as it ac-

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2624

counts for combinations of (non-)deterministic and probabilistic behaviour, as well

as for spatial and epistemic aspects of systems. The techniques described here allow

the automatic derivation of modal logics, notions of simulation, logical characterisa-

tions, and sound and complete axiomatisations for each of these coalgebraic model

types. Many of the results formulated still hold when the finite powerset functor in

(1) is replaced with its unbounded version (see [5]) – the restriction to finite power-

sets (and image-finite transition systems) is only required to logically characterise

(bi)simulation relations.

Other basic coalgebraic types such as the list functor (mapping a set to the set

of lists with elements from that set), as well as further combinations of coalgebraic

types, e.g. arising from categorical constructs such as pullbacks or pushouts, could

also be added to the inductive class defined in (1).

Ongoing work includes (i) extending the results on modularly deriving modal

logics to temporal logics for coalgebras, and (ii) developing modular model-based

verification methodologies for coalgebraic models.

References

[1] P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt et al, editor, Category Theory and
Computer Science, volume 389 of Lecture Notes in Computer Science. Springer, 1989.

[2] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Coalgebraic Methods in Computer
Science, volume 33 of Electronic Notes in Theoretical Computer Science. Elsevier, 2000.

[3] C. Ĉırstea. A compositional approach to defining logics for coalgebras. Theoretical Computer Science,
327:45–69, 2004.

[4] C. Ĉırstea. A modular approach to defining and characterising notions of simulation. Information and
Computation, 204(4):468–502, 2006.

[5] C. Ĉırstea and D. Pattinson. Modular construction of complete coalgebraic logics. Draft available from
http://www.ecs.soton.ac.uk/~cc2/ .

[6] C. Ĉırstea and D. Pattinson. Modular construction of modal logics. In Proceedings of CONCUR 2004,
volume 3170 of Lecture Notes in Computer Science, pages 258–275. Springer, 2004.

[7] J. Desharnais. Logical characterisation of simulation for Markov chains. In Proceedings of
PROBMIV’99, pages 33–48. University of Birmingham, 1999.

[8] H.P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra Universalis, 53:229–252, 2005.

[9] A. Heifetz and P. Mongin. Probability logic for type spaces. Games and Economic Behaviour, 35,
2001.

[10] W.H. Hesselink and A. Thijs. Fixpoint semantics and simulation. Theoretical Computer Science,
238:275–311, 2000.

[11] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Informatics and
Applications, 35(1):31–59, 2001.

[12] B. Jacobs and J. Hughes. Simulations in coalgebra. In H.P. Gumm, editor, Coalgebraic Methods in
Computer Science, volume 82.1 of Electronic Notes in Theoretical Computer Science. Elsevier, 2003.

[13] B. Jonsson, K.G. Larsen, and W. Yi. Probabilistic extensions of process algebras. In J.A. Bergstra
et al, editor, Handbook of Process Algebra, pages 685–710. Elsevier, 2001.

[14] A. Kurz. Specifying coalgebras with modal logic. Theoretical Computer Science, 260:119–138, 2001.

[15] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.

[16] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame Journal
of Formal Logic, 45(1):19–33, 2004.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–26 25

http://www.ecs.soton.ac.uk/~cc2/

[17] M. Rößiger. From modal logic to terminal coalgebras. Theoretical Computer Science, 260:209–228,
2001.

[18] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,
2000.

[19] L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. In Proceedings of
FOSSACS 2005, volume 3441 of Lecture Notes in COmputer Science, pages 440–454. Springer, 2004.

[20] R.J. van Glabbeek. The linear time – branching time spectrum I; the semantics of concrete, sequential
processes. In J.A. Bergstra et al, editor, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier,
2001.

[21] J. Worrell. On the final sequence of a finitary set functor. Theoretical Computer Science, 338(184–199),
2005.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 164 (2006) 3–2626

	Introduction
	Acknowledgement
	Preliminaries
	Modular Logics for Coalgebras
	Coalgebraic Simulations
	Logical Characterisations
	Sound and Complete Axiomatisations of Coalgebraic Logics
	Concluding Remarks
	References

