Available online at www.sciencedirect.com

CQk ScienceDirect Procedia

Computer Science

ELSEVIER Procedia Computer Science 52 (2015) 1010 — 1015

International Workshop on Big Data and Data Mining Challenges on IoT and Pervasive Systems
(BigDh2M 2015)

An Outlier Detect Algorithm using Big Data Processing and Internet
of Things Architecture

Alberto M. C. Souza?, José R. A. Amazonas’

4Escola Politécnica, University of Sdo Paulo - USP and BANDTEC College, St. Estela - 268, Sdo Paulo 04011-001, Brazil
bFEscola Politécnica, University of Sdo Paulo - USP, Av. Prof. Luciano Gualberto, 380, Sdo Paulo, 05508-010, Brazil

Abstract

Data management in the Internet of Things is a crucial aspect. Considering a world of interconnected objects which constantly
exchange many kinds of information, the volume of generated data and involved processes, implies that data management becomes
critical. The aim of this paper is to propose an outlier detection procedure using the K-means algorithm and Big Data processing
using the Hadoop platform and Mahout implementation integrated with our chosen Internet of Things architecture.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Conference Program Chairs

Keywords: Internet of Things, Big Data, Architecture, Outlier

1. Introduction

The Internet of Things (IoT) is a new communication paradigm in which the Internet is extended from the virtual
world to interface and interact with objects of the physical world. A huge amount of applications and services can
then be developed and simultaneously an immense set of challenges must be overcome to make the IoT come true.
IoT involves different areas of knowledge as pervasive computing, network communication, object identification and,
in special, data processing. In this context we introduce pattern recognition mechanisms in the IoT architecture .

The focus of the paper is the implementation of an algorithm to detect outliers using Big Data processing, to
integrate it in the chosen and implemented IoT architecture. The modular architecture implementation enables an
easy introduction of other algorithms according to the needs of new applications and services.

The paper is organised as follows: after this brief Introduction, in Section 2 we describe the main IoT concepts, the
K-means algorithm and Big Data technology. The proposed architecture, its implementation details and experimental
validation are shown in Section 3. Conclusions and future works are presented in Section 4.

* Corresponding author. Tel.: +55-11-5574-6844; fax: +55-11-5574-6844.
E-mail address: alberto.souza@bandtec.com.br

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the Conference Program Chairs

doi:10.1016/j.procs.2015.05.095

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.05.095&domain=pdf

Alberto M.C. Souza and José R.A. Amazonas / Procedia Computer Science 52 (2015) 1010 — 1015 1011

2. Background

In this section we review the main concepts related to the paper: Internet of Things, K-means algorithm and Big
Data.

2.1. The Internet of Things concept

As stated in?, Internet of Things is a global network infrastructure, linking physical and virtual objects through
the exploitation of automatic identification, data capture and communication capabilities. This infrastructure includes
the existing and evolving Internet and other network developments. It will offer specific object-identification, sen-
sor and connection capability as the basis for the development of independent federated services and applications.
These will be characterized by a high degree of autonomous data capture, event transfer, network connectivity and
interoperability, actuation and control.

According to the CASAGRAS inclusive model, a real-world object has its identification ID and associated infor-
mation stored on some kind of item-attendant data carrier as, for example, on a RFID tag. It is important to realize that
the identification technology is not restricted to RFID. Biometry and bar codes are other examples of ID technology
that can be employed. The information is retrieved from the object by means of an interrogator that acts as a gateway
device and sends it to be stored in a host management system. The Internet is used both to allow access to the retrieved
information and to search for further information and associated applications and services. The end result is that an
action will take place either displaying new information and/or acting upon the object and/or the environment?. The
whole process is context-aware and the final action depends on the object itself and its present status in the current
environment.

2.2. The K-means algorithm

The K-means algorithm, proposed by MacQueen in*, is a clustering algorithm based on a similarity measure
between objects. It works as follow: the algorithm receives a parameter indicating the number k of clusters and
represented by their centroids s;, 1 < i < k; it also receives N random objects or observations. In each iteration,
each object is allocated to a cluster determined by the shortest distance between the object and all centroids. After
each iteration the algorithm relocates the centroids by minimizing the mean distance of all objects in the cluster to its
centroid. When the centroids positions have stabilized the algorithm has converged.

2.3. Big Data processing with Hadoop and Mahout

Sun and Heller in> mention that Big Data refers to large datasets that are difficult to store, search, view, represent
and analyze. Smith in® states that Big Data refers to extremely large datasets that cannot be processed and/or ana-
lyzed by conventional tools. Big Data requires large computational power to efficiently process such large datasets
within reasonable times. This technology involves massive parallel processing databases (MPP), data mining grids,
distributed file systems, cloud computing, the Internet and scalable store systems.

Hadoop is the term used to refer to a family of related projects that fall under the umbrella of infrastructure
for distributed computing and large-scale data processing. According to White in’, Hadoop is best known for its
implementation of MapReduce and its distributed file system implementation.

The MapReduce is a distributed data processing model and execution environment that runs on large clusters of
commodity machines. The MapReduce breaks the processing into map and reduce phases and each phase is based
on key/value pairs used as input and output. The programmer also specifies two functions, the map and the reduce
functions, to be used in the specific implementation”.

Hadoop comes with a Hadoop Distributed File System called HDFS that is a file system designed to store very
large files with streaming data access patterns, running on clusters of commodity or common hardware platforms’.
The MapReduce and HDFS have an application programming interface to enable developments and use of their
functionalities.

Other relevant project to this paper is the Mahout, that is an open source machine learning library from Apache.
According to Owen et al. in®, Mahout aims to be the machine learning tool of choice when the collection of data to

1012 Alberto M.C. Souza and José R.A. Amazonas / Procedia Computer Science 52 (2015) 1010 — 1015

be processed is very large, perhaps far too large for a single machine. Mahout’s implementation is written in Java and
built upon Apache’s Hadoop distributed computation project.

Mahout has several algorithms implementations of classification and clustering, being its K-means implementation
the one of interest to our work.

3. Outlier detection algorithm with Big Data processing and Internet of Things architecture

According to Tan et al. in°, proximity-based approaches can be used in anomaly detection. Angiulli and Basta
n'0 Leietal. in!', Jiang et al. in'? used clustering algorithms in outlier detection. In our implementation we adopt
this approach to propose the outlier detection algorithm associated with Big Data processing.

Our implementation has 5 steps:

. The application inputs the raw data to create a clustering model.

. Run the Canopy Clustering algorithm ' on the initial data to propose an initial value of the number K of centroids,
using the Mahout’s implementation proposed in®.

3. Run the K-means algorithm, starting with the centroids proposed by the Canopy algorithm, to create a model of

clusters also using the Mahout’s implementation proposed in®.

4. Get the information about the clusters and their centroids and radii generated by the K-means execution;

5. With these values the method isQutLier can be used. This implementation calculates the Euclidean '# distance of

the instance parameter to all centroids, and if is greater then each radius, this instance is classified as an outlier.

N =

Figure 1 illustrates the proposed approach.

3 T T T T T

25F E

1 15 2 25 3 35 4

Fig. 1. Outlier detection: three clusters along their radii are shown and two outlier points were detected.

In Figure 1 three clusters have been generated: cluster (a) represented by red circles, cluster (b) represented by
green diamonds and cluster (c) represented by blue stars, and two outliers points represented by magenta plus, as they
are outside the clusters’ circles defined by the clusters’ radii.

3.1. The Outlier algorithm and Internet of Things middleware

To integrate the implemented algorithm, we extend the LinkSmart Internet of Things middleware, developed in
the Hydra Project!® by introducing a new module in the middleware. Figure 2 shows the proposed architecture
implemented according to the layer structure of the LinkSmart middleware and the class diagram that represents the
developed classes.

Alberto M.C. Souza and José R.A. Amazonas / Procedia Computer Science 52 (2015) 1010 — 1015

| : ot
q PatternSub: ti
A B E_“ linksmart patte‘rn"‘ attern u ls:rlp on
2 PatternSubscription()
PatternSubscription()
o hadoop getType()
Application ‘ Custom Logic I‘ Custom Logic I Custom Logic | Custom Logic I - —<{outiier setType()
4 getType_Algorithm()
SimpleKMeansOutLierHadoo | setType_Algorithm()
: i \ etTypeText()
Application Elements Device Elements rSf:r;';EIeKMeansOutLlerHadoop() | getngeAlgorithmText()
. . Hﬂ() | getTopic()
Semantic Layer Semantic Layer fhet | setTopic()
[Service Manager JJ| Context Manager Context Manager || | Policy Manager ity : \ getUnit()
etClusterCentroids| k
Policy Manager —— 9 —kmeans 0 \ setUnit()
— L | getPHID()
L [~ PFattern Layer ResultPatternClassificationOutLier \ z:EEITD((:)rOSSLa —
N lassification Manage fiRecognition Manage = E lassfication Manage §Recognition Manage ResultPatternClassificationOutLier() | etFIag CrossLay ok ket
'“>f. 5 [Estimation Manags % 3| [Estimation Manager ResultPatternClassificationOutLier() | =
=1E S AR PatternSubscriptionOutLier
HH Service Layer z getCenters() B
515 5 £ SErviCelliyvar setCenters() PatternSubscriptionOutLier()
S (3]] | [Schedule Mmg%f] Ontology Manager 8|3 SN i toString() PatternSubscriptionOutLier()
H H ger_[Device Manager K
» Dlagnosn:sManagevI Event Manager L] ‘ \ ~result inputinstance()
Resource Manager ‘ runPattern()
[0S MarsE PatternOutLierHadoopimpl isOutLier()
- returnRunlsOutLier()
Network Layer - Network Layer r:;ﬁmsot;i%:{radmplmpm returnResultPatternClassification()
Network Manager n Session Manager Nstwork Manager I runPattern() finishedRunlsOutLier()
DL cleaninstances()
e e EmEes) setAttributesOutLier()
returnResultPatternClassification() -patternObj
Operating System ‘ Tinyos | [Windows CEI Windows M Series 60 ‘ setAttributesOutLier() «interface»

P Y “ | finishedRunlsOutLier() PatternOutLier
returnRunlsOutLier() - —
randomString() Dlnputlnstahce()

Physical Layer { Zigbee ﬂ Blustooth I WLAN I Ir:gsiflt:rrg()
returnRunlsOutLier()

cleaninstances()
finishedRunlsOutLier()
returnResultPatternClassification()
setAttributesOutLier()

Fig. 2. (A) The LinkSmart middleware’s '* new layer structure incorporating pattern recognition mechanisms. (B) The class diagram that represents
the implemented classes and the developed oriented programming structure.

In Figure 2(A) we see a box designated by Pattern Layer, highlighted by a red rectangle. This new layer has three
managers: classification, recognition and estimation, which implement the pattern recognition functionalities. At the
current stage of this research the implementation focused on the application elements seen at left side of Figure 2(A)
and the classification manager hosts the outlier detect algorithm.

In Figure 2(B) we see the class diagram that represents the implemented classes and the oriented programming
structure developed in the project. The classes PatternSubscription and PatternSubscriptionOutLier allow the inte-
gration with the LinkSmart middleware and implement a new service to receive instances and process data. The
class PatternOutLier defines the methods to a class to be a pattern outlier class integrated with the LinkSmart. The
main class is the PatternOutLierHadoopImpl that implements the integration with Hadoop and delegates the cluster-
ing algorithm implementation to the SimpleKMeansOutLierHadoop, which by its turn returns all clusters and their
radii to the main class, along the created model. Finally, any instance can be submited to the algorithm to calculate
if it is an outlier or not. It is important to realise that the oriented programming implementation allows future new
implementations of this functionality also to be integrated with the LinkSmart.

The algorithms to estimate values, classify and recognize behaviors, and to detect outliers 1416 oontribute to network
traffic reduction in the IoT context as the upper application layers will not receive raw data anymore but pre-processed
information by the LinkSmart middleware pattern services. The focus of this paper is the implementation of an outlier
detect algorithm with Big Data processing in the middleware layer, validate this implementation and the proposed
integration with an IoT architecture.

3.2. A testbed implementation

The raw data used in the resource manager are from the Guildford’s facility proposed in the European Smart
Santander Project!’.

The retrieved data were inserted in the Mysql '® database and a class to simulate the resource manager was created.
The resource manager provides temperature and light intensity values from a single sensor node, designated as node25.
At this stage the experiment is a proof of concept and processes data from a single sensor, but the proposed architecture
is prepared to process and manage large databases according to the big data concept.

The client application implemented has two functions: (i) it is a client of the pattern manager; and (ii) uses the
pattern manager as a coordinator to control execution of the outlier detect algorithm. Figure 3 shows the execution

1013

1014 Alberto M.C. Souza and José R.A. Amazonas / Procedia Computer Science 52 (2015) 1010 — 1015

of the client application and the Receiver Operating Characteristic (ROC) curve using the results generated by the
execution of the outlier detection algorithm on the provided raw data.

RO (AUC: 957%, EER 1735%)

| start connection | | Retrieve Instances | | Create Model

Connection started with pattern manager. Ay
Get INSEaNCes............8595 instances retrieved.

@ s _ Started to create a model........Model created.

Please Submit instances.

Found 24 Clusters

Centroid 1: Size: 200 Center: 22.724,172.090 Radius: 0.473, 7.729
Centroid 2: Size: 192 Center: 22.631, 426,589 Radius: 0.264, 8.335
Centroid 3: Size: 140 Center: 22.483, 477.629 Radius: 0.253, 6.709
& L _ Centroid 4: Size: 129 Center: 22.794,197.713 Radius: 0.483, 8.519
Centroid 5: Size: 5 Center: 22,447, 619.600 Radius: 0.040, 8.065
Centroid 6: Size: 104 Center: 22.424,504.423 Radius: 0.246, 7.253
Centroid 7: Size: 228 Center: 22,639, 399.206 Radius: 0.265, 7.224
Centroid 8: Size: 3656 Center: 21.871,3.789 Radius: 0.494, 1.499
Cantroid 6. Siza: 76 Cantar. 23 783 2511 Radie. 0425 7 Gos

[e———

|_Generate Instances | |_Analyse Instances |

esult — - .
true Finished analysis

;;‘\Jsee 17212 analysed instances.
true Please check result!!
X

true
false

LroouwonswnrD

T
B

e st ate

Fig. 3. (A) A result of Outlier detection algorithm execution on the real data and (B) Execution of the application client test developed.

In Figure 3(A) we see the ROC curve of the outlier detect algorithm execution. This ROC provides the Area Under
Curve (AUC) obtained by the classification algorithm execution: a good classifier must have AUC greater than 0.5.
In this case the obtained value was a 0.8967 area.

Figure 3(B) shows the execution of the client test application presenting the coordinator function and the result of
the classifier. This application starts the connection with the LinkSmart middleware, retrieves and inserts all instances
in the pattern manager and, finally, creates a model with real instances. Next, the application generates the new
instances to be analysed, submits each instance to the created model and the results are displayed in the interface.

In this test the model was created from 8595 real instances, 8595 outlier instances have been artificially created
by taking each real instance and generating a new instance by adding a random number to the real one. The set with
real and artificial instances has been submitted to the analysis by the outlier detection algorithm. The result shows all
real and outlier instances with their respective classification (¢rue or false). This information was used to generate the
ROC curve.

This execution refers to temperature and light intensity data values obtained on 2014-02-01 between 00:00:00 and
23:59:59.

We have also tested the algorithm using data values obtained along all days of February 2014. The data set of each
day has been analysed and the results had minimum, maximum and mean AUC values respectively equal to 0.8456,
0.9465 and 0.8762. It can be seen that the algorithm has always performed extremely well.

An application has been developed to fulfil two purposes: (i) to implement a coordinator in charge of triggering
the creation of a model by the pattern manager; (ii) to attest the integration of the pattern manager with the LinkSmart
middleware architecture. The use of the outlier detection algorithm makes the application receive all instances without
outliers and eliminates the overhead to analyse the raw data. This implementation sends filtered information to any
application that needs them contributing to reduce the processing at the application level, to increase the energy
efficiency of the whole system and to alleviate scalability issues when the number N of client applications increase.

4. Conclusions and future work

In this work we have implemented an outlier detect algorithm using the Big Data technology, namely the Hadoop
Framework and Mahout K-means algorithm implementation. This algorithm runs integrated with the IoT architecture
implemented by the LinkSmart middleware. Its scalability is ensured by the use of Big Data technology enabling
physical objects and sensors to be directly plugged in the middleware. In fact, it provides great scalability allowing
the creation of clusters with hundreds or thousands of Hadoop instances that can be plugged transparently into the
LinkSmart and client applications. The object-oriented structured programming allows other implementations to be
plugged in the extended LinkSmart middleware.

Alberto M.C. Souza and José R.A. Amazonas / Procedia Computer Science 52 (2015) 1010 — 1015 1015

The proposed architecture and its implementation enhance the functionality and potential of use of the IoT LinkS-
mart middleware. This framework addresses scalability, contextualisation and flexibility enabling a huge number
of different kinds of devices to acquire environment context awareness. The information provided by a single light
sensor, for example, can be read by various applications without any interference on each other. The raw data is pro-
cessed only once in the middleware layer, so different applications may be simpler and receive the filtered information,
without the need to process the original raw data. This approach reduces the network traffic and the overall energy
consumption.

The testbed implementation validated the proposed algorithm and the integration with IoT architecture using real
data from the Smart Santander Project. The execution shows that the IoT architecture implementation, the LinkSmart
middleware and the pattern recognition algorithms implemented in the middleware layer work with real data. The
ROC curve shows the good quality of the results produced by the proposed outlier detection algorithm.

As future work we intend to validate and evaluate the proposed architecture with large databases according to the
big data concept. We will implement an estimation algorithm integrated with the IoT architecture. In addition we
intend to propose and validate cross layer communication in the IoT architecture.

Acknowledgements

We acknowledge the ICT- 2009-257992 (SmartSantander) and the REDUCE project grant EP/I000232/1 under the
Digital Economy Programme run by Research Councils UK that supported the development and deployment of the
SmartCampus testbed.

References

1. Souza, A.M., Amazonas, J.R.. A novel smart home application using an internet of things middleware. In: Smart Objects, Systems and
Technologies (SmartSysTech), Proceedings of 2013 European Conference on. 2013, p. 1-7.

2. CASAGRAS, E.FP. Casagras final report: Rfid and the inclusive model for the internet of things. EU FP7 Project CASAGRAS 2009;.

3. Amazonas, J.R.d.A.. Network virtualization and cloud computing: Iot enabling thecnologies. Casagras2 Academic Seminar 2011;URL:
http://www.casagras2.com.br/downloads/day2/2-Jose_Roberto_de_Almeida_Amazonas-Network_Virtualization_and
_Cloud_Computing_IoT_enabling_echnologies.pdf.

4. MacQueen, J.. Some methods for classification and analysis of multivariate observations. In: In 5-th Berkeley Symposium on Mathematical
Statistics and Probability. 1967, p. 281-297.

5. Sun, H., Heller, P.. Oracle information architecture: An architect s guide to big data. In: An Oracle White Paper in Enterprise Architecture.
2012, .

6. Smith, L. The Internet of Things 2012: New Horizons. CASAGRAS2; 2012. ISBN 9780955370793. URL:
http://www.internet-of-things-research.eu/pdf/IERC_Cluster_Book_2012_WEB.pdf.

7. White, T.. Hadoop: The Definitive Guide. O’Reilly Media, Inc.; 1st ed.; 2009. ISBN 0596521979, 9780596521974.

8. Owen, S., Anil, R., Dunning, T., Friedman, E.. Mahout in Action. Greenwich, CT, USA: Manning Publications Co.; 2011. ISBN
1935182684, 9781935182689.

9. Tan, PN, Steinbach, M., Kumar, V.. Introduction to Data Mining, (First Edition). Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.; 2005. ISBN 0321321367.

10. Angiulli, F, Basta, S., Pizzuti, C.. Distance-based detection and prediction of outliers. Knowledge and Data Engineering, IEEE Transactions
on 2006;18(2):145-160.

11. Lei, D., Zhu, Q., Chen, J., Lin, H., Yang, P.. Automatic k-means clustering algorithm for outlier detection. In: Zhu, R., Ma, Y., editors.
Information Engineering and Applications; vol. 154 of Lecture Notes in Electrical Engineering. Springer London. ISBN 978-1-4471-2385-9;
2012, p. 363-372.

12. Jiang, M., Tseng, S., Su, C.. Two-phase clustering process for outliers detection. Pattern Recognition Letters 2001;22(67):691 — 700. URL:
http://www.sciencedirect.com/science/article/pii/S0167865500001318.

13. McCallum, A., Nigam, K., Ungar, L.H.. Efficient clustering of high-dimensional data sets with application to reference matching. In:
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; KDD *00. New York, NY,
USA: ACM. ISBN 1-58113-233-6; 2000, p. 169-178.

14. Duda, R.O., Hart, P.E., Stork, D.G.. Pattern Classification (2nd Edition). Wiley-Interscience; 2 ed.; 2000. ISBN 0471056693.

15. Sarnovsky, M., Kostelink, P., Butka, P., Hreno, J., Lackova, D.. First demonstrator of hydra middleware architecture for building
automation. Hydra Project 2005;URL: http://www.hydramiddleware.eu/.

16. Theodoridis, S., Koutroumbas, K.. Pattern Recognition, Fourth Edition. Academic Press; 4th ed.; 2008. ISBN 1597492728, 9781597492720.

17. Nati, M., Gluhak, A., Abangar, H., Headley, W.. Smartcampus: A user-centric testbed for internet of things experimentation. In: Wireless
Personal Multimedia Communications (WPMC), 2013 16th International Symposium on. 2013, p. 1-6.

18. Tahaghoghi, S., Williams, H.. Learning MySQL. O’Reilly Media; 2006. ISBN 9781449303969.

