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The topological completion of a bilinear form
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Abstract

Let M = Mn,m be the Euclidean spaceRp equipped with a symmetric bilinear formBM of
rank p = n + m and signaturen − m. We compactifyM so thatMc is homogeneous and has as
its group of isometries a Lie group whose dimension is the dimension ofM plus 2p + 1. We observe
thatMc is in two ways the total space of a non-trivial sphere bundle with base space real projective
space. The compactification is well understood in the classical case whenM is Minkowski space.
The contribution here is to observe that the construction works generally and that it admits a natural
bundle description. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let M = Mn,m be the Euclidean spaceRp equipped with a symmetric bilinear formBM

of rankp = n+m and signaturen−m. The quadratic form associated toBM has the form

BM(x1, . . . , xp) = x2
1 + · · · + x2

n − x2
n+1 − · · · − x2

n+m.

As suggested by the classical situation,M = M1,3 = Minkowski space, we refer to the first
n variables as time coordinates and the lastm as space coordinates.

We will completeM naturally into a compact space,Mc , which is homogeneous and has
as its group of isometries a Lie group whose dimension is the dimension ofM plus 2p +1.
We will then observe thatMc is in two ways the total space of a non-trivial sphere bundle
with base space real projective space. There is a bundle which we call thespace over time
bundle (its base has time coordinates and its fiber has space coordinates), whose base space
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is the real projective spaceRP
n, whose fiber is them-sphereSm, and whose structure group

Z2 acts on the fiber by the antipodal map. We write

Es/t = RP
n ×Z2 Sm.

Also there is atime over space bundle with base space the real projective spaceRP
m, fiber

then-sphereSn, and structure groupZ2 acting on the fiber by the antipodal map,

Et/s = RP
m ×Z2 Sn.

The compactification is well understood in the classical dimension. Our contribution
is to observe that the construction works generally and that it admits a natural bundle
description.

The idea of compactifying Minkowski space in order to obtain additional symmetries of
the metric appeared originally in the in the work of Dirac [4], and Coxeter [3]. Since then
the compactification has been extensively studied, most notably by Penrose [7], as a setting
for Twistors. It has been observed by Penrose and others that for Minkowski spaceMc is
topologicallyS1 × S3. In our description it is, as a space/time bundle, anS3 bundle over
the circleRP

1, with the groupZ2 acting by the antipodal map, which in this dimension is
an orientation preserving diffeomorphism isotopic to the identity.

By way of contrast consider the caseM = M1,2, [7]. Here the construction yields a
non-orientable manifold which from our description we see is anS2 bundle with structure
groupZ2. In this dimension the group acts by an orientation reversing diffeomorphism.

Indeed whenn = 1 there are only two equivalence classes ofSm bundles with structure
groupZ2 corresponding to the two homomorphisms of the fundamental groupZ of the
baseS1 to Z2. In all cases our bundle is non-trivial, but whenm is odd the bundle we
describe has total space which is topologically a product, but whenm is even it is not.

The bundle description ofMc also makes sense whenn or m is equal to 0. When they
are both equal to 0 the space/time bundle construction yieldsS0 as the completion ofR0.
More generally whenn = 0 andm is arbitrary, the completionMc as a space/time bundle
is Sm. Likewise whenm = 0 we find thatMc is the non-trivial 2-fold cover ofRP

n which
is Sn.

We shall see that all our bundles are associated to the ones described in the above
paragraph.

Our goal in this article is to present the compactification in its most elementary
form. Toward this end we work in a generalp-dimensional Euclidean space, we make
assumptions based purely on our linear algebra setting, and we draw conclusions which
are purely topological in nature.

2. The completion of Mn,m

We essentially follow the exposition in [5] except that we work in a general Euclidean
space.

Given the formBM , we can define the metric (actually the pseudometric),

ds2 = dx2
1 + dx2

2 + · · · + dx2
n − dx2

n+1 − dx2
n+2 − · · · − dx2

n+m.
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The set of points for whichds2 = 0 is thenull-cone N of M.

In order to completeM we embed it intoMn+1,m+1. The space we are looking for,Mc ,
is the projective spacePN of lines in the light coneNn+1,m+1 of Mn+1,m+1.

Note thatMc is a compact space and its dimension isn + m. It inherits a metric from
Mn+1,m+1 as follows. We measure the distance between two given lines by choosing a
hyperplane which cuts the lines at two points and take the corresponding distance between
the points in the hyperplane. Any two cutting planes have conformally related metrics so
the distance is well defined.

So we considerMn+1,m+1 with coordinatesxi, v, andw and the metric becomes

ds2 = dx2
1 + dx2

2 + · · · + dx2
n + dv2 − dw2 − dx2

n+1 − dx2
n+2 − · · · − dx2

n+m.

The null cone ofMn+1,m+1 is given by

x2
1 + x2

2 + · · · + xn
2 + v2 − w2 − x2

n+1 − x2
n+2 − · · · − x2

n+m = 0.

Consider,M , the intersection of the null cone with the plane given byv −w = 1. We claim
M andM are isometric

v − w = 1 ⇒ dv = dw ⇒ d2v − d2w = 0.

Substituting into the equation for the light cone gives

ds2 = dx2
1 + dx2

2 + · · · + dx2
n − dx2

n+1 − dx2
n+2 − · · · − dx2

n+m

which is the metric onM.

Now let us find the points ofMc which are not inM. These are elements ofPN, that is
lines, withw − v = 0. Consider the intersection of the hyperplanev − w = 0 with the null
cone inMn+1,m+1. Solving simultaneously,

v − w = 0,

x2
1 + x2

2 + · · · + x2
n + v2 − w2 − x2

n+1 − x2
n+2 − · · · − x2

n+m = 0

gives

x2
1 + x2

2 + · · · + xn
2 − x2

n+1 − x2
n+2 − · · · − x2

n+m = 0

which is the equation of a light cone at the origin inMn,m. Thus M is completed by
adjoining a light cone “at infinity”.

The case which can be most easily visualized isR
3 whenn = 1 andm = 0. Here we

get Mc = S1 as the completion ofM1,0 = R
1. Mc is the space of lines of the light cone

x2+v2−w2 = 0. By intersecting the light cone with the planev−w = 1, and taking(x,w)

as coordinates on this plane we see thatM1,0 embeds in the light cone as the parabola
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x2 + 2w + 1 = 0.

3. The topology of the completion of Mn,m

Consider the intersection of the light cone inMn+1,m+1 with thep + 1-sphere

x2
1 + x2

2 + · · · + x2
n + v2 + w2 + x2

n+1 + x2
n+2 + · · · + x2

n+m = 2.

Solving simultaneously yields,

x2
1 + x2

2 + · · · + x2
n + v2 = 1,

w2 + x2
n+1 + x2

n+2 + · · · + x2
n+m = 1.

This implies that the intersection of the null cone and the sphere is topologically
Sn × Sm.

Now, each generator of the light cone meets the(p + 1)-sphere in two antipodal points.
Thus,

Mc is topologicaly equivalent to(Sn × Sm)/Z2,

with theZ2 action induced by the product of antipodal maps(x, y) → (−x,−y).

In the above example the 3-sphere intersects the light cone in two circles which are then
identified by the antipodal action.

4. The conformal group of Mc

The conformal group ofMn,m is by definition the Lie group of transformations of
R

p preserving the bilinear form. This is the semi-orthogonal groupO(n,m) which is a
subgroup of dimensionp(p − 1)/2 of the orthogonal group,p = n + m.

The semi-orthogonal groupO(n + 1,m + 1) modulo ±I acts on the space of lines
through the origin inRp+2. FurthermoreMc embeds isometrically in this space. Therefore
O(n+ 1,m+ 1) acts as a conformal group of transformations on the compactificationMc .
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For example, whenn = 1 andm = 0 the conformal groupO(2,1)/±I of Mc is the
groupPSL(2,R) acting onS1. It extends the conformal group ofR by adding translations,
dilations and inversions, each of which is 1-dimensional.

In Minkowski space,n = 1 and m = 3, the conformal groupO(2,4)/±I of Mc

is a 15-dimensional Lie group which extends the 6-dimensional conformal group of
Minkowski space by adding translations (4 dimensions), inversions (4 dimensions), and
dilations (1 dimension). This group is isomorphic toSU(2,2), see [8]. The result of adding
just translations is the 10-dimensional Poincaré group, which is the semi-direct product of
O(1,3)/±I, with the group of translations ofR4.

In conclusion we note thatMc is a semi-Riemannian manifold whose action by its group
of isometries is transitive. It is therefore a compact, homogeneous space [6]. In particular
it is complete.

5. The bundle description of the compactification

In this section we observe that

Mc = RP
n ×Z2 Sm,

the total space of a principle fiber bundle with base space real projective spaceRP
n, fiber

them-sphereSm, and structure groupZ2 acting on the fiber by the antipodal map.
We first consider the casem = 0. The construction of the compactification yields

Mc = Sn × S0/Z2.

We denote this spaceEn,0 and write points as equivalence classes[(x,±1)], where
[(x,1)] = [(−x,−1)].

There is a map

p :En,0 → RP
n

given by

p :
[
(x,±1)

] = [x].
The groupZ2 acts onEn.0 by

−1 · [(x,±1)
] = [

(x,∓1)
]
,

and hence restricts to an action on each fiber ofp.

Now Sn is homeomorphic toEn,0 by h :x → [(x,1)]. Consider the principleZ2 bundle
which is the 2-fold cover ofRP

n by Sn. The homeomorphismh is compatible with the
Z2 actions and hence induces a bundle structure ofEn,0 making it equivalent to the bundle

Sn ×Z2 S0.

Now for the general case. The spaceRP
n ×Z2 Sm is by definition the bundle with

fiber Sm associated to the principle bundleSn ×Z2 S0. We let En,m be theSm bundle
associated toEn,0. The homeomorphism

RP
n ×Z2 S0 → En,0



342 S. Jekel, N. Macmillan / Topology and its Applications 118 (2002) 337–344

induces a homeomorphism

RP
n ×Z2 Sm → En,m

which identifies the imageEn,m with Sn × Sm/Z2, as required.
The bundle just constructed is the bundle referred to asEs/t described in 1. Similar

considerations show thatEn,m is isomorphic to the bundleEt/s .
Let us consider the space over time bundle in the case whenn = 1,

Es/t = S1 ×Z2 Sm.

Here we have identifiedRP
1 with the circleS1.

It follows directly from the definition that whenm is odd the bundle is orientable and
whenm is even it is not, for the bundle can be described by one transition function on
the circle which is the antipodal map on the fiber. In the odd case the antipodal map is
an orientation preserving diffeomorphism ofSm and in the even case it is an orientation
reversing diffeomorphism.

Furthermore, whenm is odd, again it follows from the fact that the bundle can be
described by one transition, thatEs/t is homeomorphic to the mapping torusMa(S

m)

of the antipodal mapa of Sm. In the case whenm is odd the antipodal map is isotopic
to the identity so thatMa(S

m) is simply homeomorphic toS1 × Sm. Observe that even
though the total space of the space over time bundle is homeomorphic to a product, the
bundle is non-trivial; it is associated to the non-trivialZ2 bundle over the circle.

An analogous bundle construction in the context of Clifford modules appears in the work
of Bott et al. [1,2].

6. The structure of space and time

The description ofR4 as Minkowski space provides us with what is now a familiar model
of space-time. The associated compactification is a homogeneous space which incorporates
and extends all the symmetries of electromagnetism and gravity. It has been thoroughly
analyzed, most notably in the work of Penrose.

In this section we interpret the topological nature of the space/time bundle independently
of any coordinate representation of the forces involved. What we observe, at this
elementary level, is a dynamic interaction of space and time.

Consider aZ2-fiber bundle overS1 with fiberX. Let us think of the two elements ofZ2,

0 and 1, as standing for two distinct states of pointsX. The baseS1 will parametrize time,
and a point in the fiber at a given time will either be in state 0 or state 1.

For the sake of concreteness let us considerX to be a container, and a point in the fiber
in state 0 is occupied by the contents ofX, and a point in state 1 is not, but the description
that follows would apply equally well to other potentials.

There are two possible configurations of the total space of the space/time bundle. There
is a trivialZ2-bundle which describes static states of the container; it is always either empty
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or full, as determined by the two components of the total space.

A non-trivial Z2-bundle, on the other hand, describes a dynamic process; a continuous
and periodic evolution from a full to an empty state.

To illustrate this process we show above a lift of the circle to the total space of the
space/time bundle.

This lifting describes a sub-bundle of the space/time bundle and forms a non-trivial
double cover of the base. It passes through each fiber twice before closing up. The
intersection with each fiber occurs at the same time as measured in the base space. To
distinguish the intersections we have indicated two spheres in each fiber (even though there
is really only one). This allows us to depict a given fiber in two complementary states.

By what mechanism does the space/time bundle change states? Our description of the
compactification is as yet devoid of physics, so presents no answers. But one could ask how
much can be inferred from the hierarchical structure of the constructions. For example,
embedded in the compactification in the classical case are 3-manifolds which fiber over
the circle. Perhaps they enrich the setting enough to analyze this process.
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