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Abstract

Let M = M, ,, be the Euclidean spade” equipped with a symmetric bilinear forl,; of
rank p = n + m and signatures — m. We compactifyM so thatM. is homogeneous and has as
its group of isometries a Lie group whose dimension is the dimension plus 2p + 1. We observe
that M. is in two ways the total space of a non-trivial sphere bundle with base space real projective
space. The compactification is well understood in the classical case MhisrMinkowski space.
The contribution here is to observe that the construction works generally and that it admits a natural
bundle descriptiona 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let M = M, ,, be the Euclidean spa®” equipped with a symmetric bilinear forBy,
of rank p = n + m and signature — m. The quadratic form associatedB®g, has the form

2 2 2 2
Bu(xa, ..., xp) =x7+ X=X~ — X

As suggested by the classical situatidh= M1 3 = Minkowski space, we refer to the first
n variables as time coordinates and the lasis space coordinates.
We will completeM naturally into a compact spac#d,., which is homogeneous and has
as its group of isometries a Lie group whose dimension is the dimensidngdfis 2p + 1.
We will then observe tha¥, is in two ways the total space of a non-trivial sphere bundle
with base space real projective space. There is a bundle which we cgkitesover time
bundle (its base has time coordinates and its fiber has space coordinates), whose base space
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is the real projective spadP”, whose fiber is the:-spheres™, and whose structure group
Z acts on the fiber by the antipodal map. We write

ES/t =RP”" X 7o Sm

Also there is a@ime over space bundle with base space the real projective spR&’, fiber
then-spheres”, and structure groufi; acting on the fiber by the antipodal map,

E;/s =RP" X7y S".

The compactification is well understood in the classical dimension. Our contribution
is to observe that the construction works generally and that it admits a natural bundle
description.

The idea of compactifying Minkowski space in order to obtain additional symmetries of
the metric appeared originally in the in the work of Dirac [4], and Coxeter [3]. Since then
the compactification has been extensively studied, most notably by Penrose [7], as a setting
for Twistors. It has been observed by Penrose and others that for Minkowski &Rase
topologically ST x $3. In our description it is, as a space/time bundle Sdrbundle over
the circleRPP!, with the groupZ, acting by the antipodal map, which in this dimension is
an orientation preserving diffeomorphism isotopic to the identity.

By way of contrast consider the casg¢ = M1 », [7]. Here the construction yields a
non-orientable manifold which from our description we see is@bundle with structure
groupZs,. In this dimension the group acts by an orientation reversing diffeomorphism.

Indeed whem = 1 there are only two equivalence classes®fbundles with structure
groupZ; corresponding to the two homomorphisms of the fundamental gfbapthe
basesS! to Zy. In all cases our bundle is non-trivial, but whenis odd the bundle we
describe has total space which is topologically a product, but whisreven it is not.

The bundle description a¥/,. also makes sense wheror m is equal to 0. When they
are both equal to 0 the space/time bundle construction yi¥lds the completion dR®.

More generally whem = 0 andm is arbitrary, the completioM, as a space/time bundle
is ™. Likewise whernm = 0 we find thatM, is the non-trivial 2-fold cover oRP" which
is S".

We shall see that all our bundles are associated to the ones described in the above
paragraph.

Our goal in this article is to present the compactification in its most elementary
form. Toward this end we work in a generatdimensional Euclidean space, we make
assumptions based purely on our linear algebra setting, and we draw conclusions which
are purely topological in nature.

2. The completion of My

We essentially follow the exposition in [5] except that we work in a general Euclidean
space.
Given the formB,,, we can define the metric (actually the pseudometric),

dszzdxf—i—dx%—k---+dx3—dx3+1—dx3+2—---—dxz

n+m:
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The set of points for whicks? = 0 is thenull-cone N of M.
In order to completéd/ we embed it intaM,,+1,,+1. The space we are looking fav/,,
is the projective spad@N of lines in the light con&V, 41 m+1 Of My41m+1.
Note thatM, is a compact space and its dimensiom i$ m. It inherits a metric from
M, +1.m+1 as follows. We measure the distance between two given lines by choosing a
hyperplane which cuts the lines at two points and take the corresponding distance between
the points in the hyperplane. Any two cutting planes have conformally related metrics so
the distance is well defined.
So we consideM,, 1 ,,+1 With coordinates;, v, andw and the metric becomes
dszzdxf—i—dx%—k---+dx3+dv2—dwz—dx3+1—dx3+2—---—dxz

n+m:

The null cone oM}, 11, 41 IS given by

a4t v —wl g —xf - = xfy, =0
ConsiderM, the intersection of the null cone with the plane givervbyw = 1. We claim
M andM are isometric

v—w=1= dv=dw = d*v—d*w=0.

Substituting into the equation for the light cone gives

2

n—+m

dszzdxf—l—dxg—l—~-~~|—dx,f—dx3+l—dx3+2—-~-—dx

which is the metric oM.

Now let us find the points o#7. which are not inM. These are elements BV, that is
lines, withw — v = 0. Consider the intersection of the hyperplane w = 0 with the null
cone inM,+1,m+1. Solving simultaneously,

v—w=0,

xf4ag vt —wP -l —xZ = —xy, =0
gives

2, 2 2_ 2 2 2 _

X1+xZ+"'+xn _Xn+1_xn+2—"'—xn+m—o

which is the equation of a light cone at the origin My, ,,. Thus M is completed by
adjoining a light cone “at infinity”.

The case which can be most easily visualizetfswhenn = 1 andm = 0. Here we
get M. = St as the completion oMy o = R™. M, is the space of lines of the light cone
x?+v2—w? = 0. By intersecting the light cone with the plane- w = 1, and takingx, w)
as coordinates on this plane we see thato embeds in the light cone as the parabola
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x2+2w+1=0.

3. Thetopology of the completion of M,

Consider the intersection of the light conelify 11 ,,+1 with the p + 1-sphere
XA ad 4 xf it wi a2 X2, x2,, =2,
Solving simultaneously yields,
xf—i—x%—}—---—}—xf—i—vz:l,
w?xf g+ xl ot xr, =1
This implies that the intersection of the null cone and the sphere is topologically
S" x S™.
Now, each generator of the light cone meets(the- 1)-sphere in two antipodal points.
Thus,
M. is topologicaly equivalent t@S" x S™)/Za,

with theZ, action induced by the product of antipodal m@psy) — (—x, —y).
In the above example the 3-sphere intersects the light cone in two circles which are then

identified by the antipodal action.

4. The conformal group of M,

The conformal group ofM, ,, is by definition the Lie group of transformations of
RP? preserving the bilinear form. This is the semi-orthogonal gréug, m) which is a
subgroup of dimensiop(p — 1)/2 of the orthogonal groug = n + m.

The semi-orthogonal group (n + 1, m + 1) modulo+1 acts on the space of lines
through the origin ifk?+2. Furthermorel/, embeds isometrically in this space. Therefore
O(n+ 1, m+ 1) acts as a conformal group of transformations on the compactifichfjon
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For example, whem = 1 andm = 0 the conformal group (2, 1)/+1 of M, is the
groupPSL(2, R) acting onS?. It extends the conformal group B by adding translations,
dilations and inversions, each of which is 1-dimensional.

In Minkowski spacen = 1 andm = 3, the conformal groupO(2,4)/+£1 of M,
is a 15-dimensional Lie group which extends the 6-dimensional conformal group of
Minkowski space by adding translations (4 dimensions), inversions (4 dimensions), and
dilations (1 dimension). This group is isomorphic3d (2, 2), see [8]. The result of adding
just translations is the 10-dimensional Poincaré group, which is the semi-direct product of
0(1,3)/+1, with the group of translations @*.

In conclusion we note thatl, is a semi-Riemannian manifold whose action by its group
of isometries is transitive. It is therefore a compact, homogeneous space [6]. In particular
itis complete.

5. The bundle description of the compactification

In this section we observe that
M. =RP" X7y Ss™,
the total space of a principle fiber bundle with base space real projective Rpacéber

them-sphereS™, and structure grouf, acting on the fiber by the antipodal map.
We first consider the case = 0. The construction of the compactification yields

M. =S"x 80/ Z.
We denote this spacg, o and write points as equivalence clas$és, £1)], where

[(x, D]=[(—=x, =D)].
There isa map

p:E,o— RP"

given by
p: [(x, :tl)] =[x].

The groupZ, acts onk, o by
-1 [(x, £D] =[x, FD)],

and hence restricts to an action on each fibgy.of

Now S” is homeomorphic t&, o by 4 :x — [(x, 1)]. Consider the principl&; bundle
which is the 2-fold cover oRP” by §". The homeomorphisra is compatible with the
Z3 actions and hence induces a bundle structui®&,qf making it equivalent to the bundle

S" x7, S°.
Now for the general case. The spakR®”" xz, S” is by definition the bundle with

fiber ™ associated to the principle bundi xz, S9. We let E, ,, be thes™ bundle
associated t&, o. The homeomorphism

RP" xz, 50 Eno
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induces a homeomorphism
RP" x7, 8" — Enm

which identifies the imag€&, ,, with $" x §™/Z,, as required.

The bundle just constructed is the bundle referred t&gs described in 1. Similar
considerations show thd, ,, is isomorphic to the bundIg; ;.

Let us consider the space over time bundle in the case whef,

ES/t == Sl XZZ Sm.

Here we have identifie®P* with the circleS?.

It follows directly from the definition that whem is odd the bundle is orientable and
whenm is even it is not, for the bundle can be described by one transition function on
the circle which is the antipodal map on the fiber. In the odd case the antipodal map is
an orientation preserving diffeomorphism §f and in the even case it is an orientation
reversing diffeomorphism.

Furthermore, whem: is odd, again it follows from the fact that the bundle can be
described by one transition, thak,, is homeomorphic to the mapping torud, (S™)
of the antipodal maa of $™. In the case whem is odd the antipodal map is isotopic
to the identity so thaiM, (S™) is simply homeomorphic t& x $”. Observe that even
though the total space of the space over time bundle is homeomorphic to a product, the
bundle is non-trivial; it is associated to the non-trivfal bundle over the circle.

An analogous bundle construction in the context of Clifford modules appears in the work
of Bott et al. [1,2].

6. The structure of space and time

The description oR* as Minkowski space provides us with what is now a familiar model
of space-time. The associated compactification is a homogeneous space which incorporates
and extends all the symmetries of electromagnetism and gravity. It has been thoroughly
analyzed, most notably in the work of Penrose.

In this section we interpret the topological nature of the space/time bundle independently
of any coordinate representation of the forces involved. What we observe, at this
elementary level, is a dynamic interaction of space and time.

Consider &;-fiber bundle oves® with fiber X. Let us think of the two elements @b,

0 and 1, as standing for two distinct states of poixits'he bases® will parametrize time,
and a pointin the fiber at a given time will either be in state O or state 1.

For the sake of concreteness let us conskdéo be a container, and a point in the fiber
in state 0 is occupied by the contentsXbfand a point in state 1 is not, but the description
that follows would apply equally well to other potentials.

There are two possible configurations of the total space of the space/time bundle. There
is a trivial Z»-bundle which describes static states of the container; it is always either empty
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or full, as determined by the two components of the total space.

A non-trivial Z»-bundle, on the other hand, describes a dynamic process; a continuous
and periodic evolution from a full to an empty state.

To illustrate this process we show above a lift of the circle to the total space of the
space/time bundle.

This lifting describes a sub-bundle of the space/time bundle and forms a non-trivial
double cover of the base. It passes through each fiber twice before closing up. The
intersection with each fiber occurs at the same time as measured in the base space. To
distinguish the intersections we have indicated two spheres in each fiber (even though there
is really only one). This allows us to depict a given fiber in two complementary states.

By what mechanism does the space/time bundle change states? Our description of the
compactification is as yet devoid of physics, so presents no answers. But one could ask how
much can be inferred from the hierarchical structure of the constructions. For example,
embedded in the compactification in the classical case are 3-manifolds which fiber over
the circle. Perhaps they enrich the setting enough to analyze this process.
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