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Large scale cell biological experiments are beginning to be applied as a systems-level approach to
decipher mechanisms that govern cellular function in health and disease. The use of automated
microscopes combined with digital imaging, machine learning and other analytical tools has
enabled high-content screening (HCS) in a variety of experimental systems. Successful HCS screens
demand careful attention to assay development, data acquisition methods and available genomic
tools. In this minireview, we highlight developments in this field pertaining to yeast cell biology
and discuss how we have combined HCS with methods for automated yeast genetics (synthetic
genetic array (SGA) analysis) to enable systematic analysis of cell biological phenotypes in a variety
of genetic backgrounds.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

A primary goal of functional genomic projects is to reach a com-
plete understanding of cellular gene function and biological path-
ways in molecular detail. The budding yeast, a simple and
genetically tractable eukaryotic system, is a premier model organ-
ism for functional genomic work, and has been used in many pio-
neering efforts, such as the systematic construction and analysis of
gene deletion mutants [1]. Although incredibly powerful, func-
tional genomic approaches that explore gene expression [2–5],
protein–protein interactions [6–10] and genetic interactions
[11,12], fail to yield a spatio-temporal resolution that will be re-
quired to understand biological process as complex dynamic sys-
tems. Quantitative cellular imaging techniques can provide this
information and produce a wealth of data suitable for thorough
statistical evaluation, a key component in systems biology. In this
mini-review, we consider progress in applying quantitative imag-
ing to the systematic exploration of gene function and biological
pathways in budding yeast.

Immunofluorescence microscopy has been widely applied in
cell biology since its development by Coons and Kaplan in the
1950s. More recently, image-based assays for early-stage drug dis-
covery have fuelled the demand to create and refine methods for
high-throughput image acquisition and analysis. The term high-
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content screening (HCS) was first coined in the late 1990s [13]
and HCS imaging methods have been applied to a number of differ-
ent studies in mammalian cells, including drug/small molecule
target identification [14–18], screens with G-protein-coupled
receptors [19–21] and the RNAi-based analysis of genes affecting
a number of different cellular functions, including cell morphology,
cell cycle progression, mitosis, cell viability and endocytosis [22–
28]. Gene silencing or knockdown in mammalian cells relies lar-
gely on RNAi technology, which often creates a hypermorphic
rather than deletion phenotype and can exhibit significant off-tar-
get effects [29,30]. In addition, many large-scale phenotypic analy-
ses are based on experimental readouts from fixed cells that are
subject to multi-step staining techniques, which are not easily
adaptable to high-throughput screening [31].

Flexibility in growth conditions and genetic manipulability,
coupled with a shorter life cycle, make yeast an excellent system
to develop and apply live-cell HCS technology. The ability to per-
form systematic image-based screens of the yeast proteome has
been enabled by the creation of important functional genomic re-
agents and techniques. The yeast deletion collection, which con-
tains the set of �5000 viable KanMX-marked deletion mutants,
and other mutant collections have been assayed for a number of
quantitative morphological phenotypes (cell shape, actin cytoskel-
eton, nuclear morphology and cell size [32–34]). Collections of
yeast strains have also been constructed in which each ORF is fused
with affinity or fluorescence tags, allowing the first comprehensive
view of an expressed eukaryotic proteome and its subcellular local-
ization [35,36]. The collection of 4156 strains with individual GFP-
ORF fusions has been used to survey the subcellular localization of
lsevier B.V. All rights reserved.

https://core.ac.uk/display/82230264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:charlie.boone@utoronto.ca
mailto:brenda.andrews@ 
http://www.FEBSLetters.org


F.J. Vizeacoumar et al. / FEBS Letters 583 (2009) 1656–1661 1657
much of the yeast proteome, using standard fluorescence micros-
copy. This analysis revealed correlations between protein localiza-
tion and mRNA co-expression and between protein–protein
interactions and subcellular co-localization, emphasizing the
power of combining large-scale datasets to deduce physiological
relevance. HCS technology promises to enhance the power of anal-
yses using GFP-tagged collections since it allows for acquisition of
multi-dimensional phenotypic profiles of a single cell in response
to different environmental and drug stimuli (see below for more
discussion).
2. Assay development

HCS aims to evaluate cell biological changes on a large scale in
response to either genetic or environmental perturbation. As with
any useful screen, the development of a robust assay is key for suc-
cess. For example, we have developed a platform for high-through-
put imaging of yeast cells that enables systematic analysis of the
cell biological consequences of gene deletion [37]. The main com-
ponents of our assay are similar to those developed for other HC
screens and include: (a) automated sample preparation (including
genetic manipulation); (b) automated image acquisition; (c) auto-
mated image analysis and extraction of key features; and (d) data
mining and identification of biologically relevant hits. An overview
of our assay protocol is shown in Fig. 1. We note that, with slight
modifications, our methodology can be used in other assays such
as image-based chemical profiling, a common application with
higher eukaryotic cells.

2.1. Automated sample preparation

Our HCS assay was designed to explore yeast cell biology by
assessing loss-of-function phenotypes for a variety of cell biologi-
cal markers using the yeast deletion collection. A key challenge is
to efficiently incorporate the cell biological marker of interest into
the deletion collection, which is comprised of �5000 individual
yeast strains. To address this challenge, we make use of synthetic
genetic array (SGA) methodology, which allows marked genetic
elements to be combined in a single haploid cell through standard
yeast mating and meiotic recombination via an automated proce-
dure [12,38]. Alternatively, stains or antibodies can be used to visu-
alize a particular subcellular compartment. For example, Ohya
et al. fixed and triple-stained each strain in the deletion mutant
collection to visualize cell wall, actin and the nucleus while Wheel-
er and Fink used antibodies to identify cell wall proteins [33,39].

For live cell imaging, we use robotic pinners to make arrays of
liquid yeast cultures by inoculating either 96-well or 384-well for-
mat plates from agar plates with the arrayed deletion collection.
Slight variations in growth rate cause significant changes in cell
density, resulting in some images with too many or too few cells.
To ensure uniform and optimal cell densities for subsequent image
analysis, we employ a liquid handling robot (Biomek FX), to dis-
pense appropriate volume of samples based on the cell density.
Cells are re-suspended in a low fluorescence medium [40] in 96-
or 384-well optical plates, prior to imaging (see below).

Other methods for preparing yeast cells for live imaging on
large scale have been developed. Kohlwein and coworkers used
confocal microscopy to image live cells on agar pads to study lipid
metabolism [41]. Marcotte and colleagues developed a spotted
high density cell microarray system to detect aberrant morpholog-
ical changes and to monitor the dynamic localization of proteins at
the bud tip in response to mating pheromone [28,42]. The cell ar-
rays are made by contact deposition of suspension cells from an ar-
rayed library onto a single glass slide using a microarray robot.
Replicate chips can be made using a spotter and treated with dif-
ferent antibodies to reveal changes in protein localization across
the whole deletion collection. Automation of large scale sample
processing steps ensures consistency and efficient processing with
increased throughput. Several integrated systems, for example Bio-
Cell from Velocity 11 (Agilent Technologies) or MaX WorkCell
(Thermo Fisher Scientific Inc.), provide complete automated plat-
forms for sample preparation.

2.2. Automated image acquisition

The key component of any large-scale cell biological screening
system is an automated microscope. Several vendors offer a variety
of either wide-field HCS imagers or confocal imagers and a number
of systems are listed by Gough and Johnston [43]. However, to
track intracellular events in yeast cells, a minimum of 60� magni-
fication would be ideal. Important system features include speed,
compatibility with other components, magnification and the type
of focus. Speed is limited by several factors, namely the number
of channels, the exposure time and the number of images per well.
The choice of laser-based or image-based focusing also influences
screening speed, since it affects the rate of scanning a plate. In
laser-based focusing, an external light source (typically a laser or
laser diode) measures the position of a reference point at the inter-
face between the sample and plate. Although this auto focus can
increase the throughput, a single reference point may not be suffi-
cient and may render the sample out of focus. On the other hand,
image-based focusing achieves fine focus by imaging several
planes and selecting a particular plane from which quantitative
parameters such as contrast, resolution and intensity decrease on
either side monotonically and symmetrically. This process invari-
ably increases the scan time. Automated focussing in general is
time-consuming, so minimizing the focal range using plates with
small bottom variations can substantially increase throughput.
Magnification is yet another important criterion that affects
screening throughput as a higher resolution will capture a smaller
field view with fewer cells. Yeast cells are much smaller than mam-
malian cells (5–7 lm versus 15–25 lm diameter) and with a 60�
objective, imaging at least 4–6 sites per well, one can gather as
many as 200 cell images. However, depending on the specific bio-
logical requirement of the assay, a 20� or a 40� objective may
serve the purpose [39,44].

The introduction of the Nipkow spinning disk in some recent
machines [Opera (Evotech, Perkin Elmer); Pathway-HT (BD Biosci-
ence)] aids in near real-time image capture with high resolution.
Although confocal systems offer higher resolution than standard
fluorescence microscopes, their cost and complexity are not re-
quired for many primary screens. In addition, illumination can be
hindered by the spinning disk, necessitating longer exposure times
[45]. We developed our protocol using both a wide-field (ImageX-
press 5000A, Molecular Devices) and a confocal system (Opera).
We found that the ImageXpress 5000A can image a two channel
96-well plate with 4 images per well in about �45 min while, in
the same time, the Opera can image a 384-well plate with the same
specifications. Gough and Johnston provide a comprehensive re-
view with detailed descriptions of various HCS system require-
ments [43].

To increase our throughput, we have linked Cytomat automated
incubators (Thermo Fisher Scientific Inc.) to the ImageXpress
5000A system to allow automated loading of plates into the imager
using a CRS Catalyst Express robotic arm (Thermo Electron Corpo-
ration) and integration software [Polara (Thermo Electron Corpora-
tion)]. Generally two types of automation can be used to control
the integration software: dynamic and static protocols. A dynamic
approach processes the plates using a specified protocol as the
instrument becomes available, increasing the throughput of the
screen. However, this approach causes variation in how each plate



Fig. 1. Steps involved in high-content screening. Using the SGA methodology, a query strain expressing a fluorescent marker can be crossed with the arrayed deletion
collection resulting in the expression of the fluorescent marker in the entire deletion array. These samples are then grown as arrays of liquid cultures and transferred to
optical plates for imaging. The automated image analysis software, MetaXpress, can detect the specific signal of interest and measure its morphologic features.
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is treated, which may be important for certain experiments. Since
we are imaging live cells, we adopt a static protocol in which every
plate is treated the same way leading to minimum variability be-
tween plates.

2.3. Automated image analysis and extracting key features

Once images are acquired, the next crucial step is to analyze the
terabytes of data associated with a screen. Automation of this pro-
cess not only yields high reproducibility, but also helps to identify
subtle phenotypic differences in some cases [46]. Most automated
systems come with a commercial software package that allows for
sophisticated image analysis. Several software solutions, both
open-source and commercial, are also available. For example,
Definiens Software (http://www.definiens.com/) has been widely
applied from Earth to Life science [47]. We have used MetaXpress
to analyze our data as it includes several useful segmentation algo-
rithms, and allows plugins to be built in C++. MetaXpress offers
good versatility with an easy output of several morphometric fea-
tures and unlimited calculation of positioning features. Academic
laboratories have produced open-source algorithms that provide
a cost-effective option and can be customized to individual assays.
One such application that we have currently employed is CellPro-
filer [48]. CellProfiler is MATLab-based software, developed at the
Broad Institute, with useful cell segmentation abilities (http://
www.cellprofiler.org/). CalMorph is a software package developed
specifically for yeast cell segmentation and morphometric and geo-
metric analysis, and has been used for automated image analysis of
fixed cells [33] and to investigate the natural genetic diversity of
cellular morphology [49].

All automated image analysis software uses machine learning
techniques that include the ability to automatically query images
in a database, extract key morphometric features and export the
measurements as a separate output. The image analysis process in-
volves four basic steps: (1) pre-processing provides shade correc-
tion and background subtraction; (2) segmentation identifies all
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cells or objects in each image; (3) classification places objects iden-
tified as ‘regions of interest’ into sub-populations, and (4) morpho-
logical measurement provides quantitative data on important
features, enabling production of a unique morphometric profile
for the cells being examined. For example, a minimal set of features
can be used to train the imaging software to classify yeast cells
based on their bud morphology which serves as a proxy for cell cy-
cle position. This was useful in our recent study in which we used
SGA to cross a GFP-Tub1 fusion protein into the yeast deletion col-
lection in order to discover mutants that affect the dynamics of the
mitotic spindle. We focussed on three spindle features – length,
orientation and positioning – and discovered several new genes
that regulate spindle disassembly [37]. By combining the spindle
measurements with budding index, we were able to track the
dynamics of spindle assembly and disassembly relative to cell cy-
cle position in the entire deletion collection. For more complex
phenotypes, such as aberrant morphology, the extraction of many
features, including intensity values and texture measurements as
well as morphometric features, is often required [17,27]. Non-
redundant features can then be selected using dimensionality
reduction [50].

As outlined above, automated image analysis of a single biolog-
ical marker in a series of images is challenging. Additional compu-
tational challenges are faced when attempting to survey a series of
mutant strains for a variety of patterns, such as the subcellular
localization of different proteins. Recent progress has been made
in this area, and suggests that the performance of automated image
analyses in yeast cells, using a combination of both supervised and
unsupervised learning, is more objective, quantitative and repro-
ducible than manual inspection [51]. Developments in this area
will be incredibly useful, as more laboratories apply automated im-
age analysis to study a variety of cell biological phenotypes.

2.4. Data mining and hit identification

Data derived from HCS screens can be images, feature measure-
ments or metadata. Storage and retrieval of data can be accom-
plished with a variety of database management tools; however,
statistical analysis and data mining for multiplexed high content
analysis (HCA) is still in its infancy. Challenges include: (1) the
number of cells and features being assayed which creates large
datasets that can overwhelm computational capacity when com-
plex models are to be derived; (2) many conventional statistical
analyses may not be applicable as some morphometric features
do not follow a normal distribution; (3) phenotypic variability be-
tween plates and between experiments due to high volumes of
sample processing may cause false positives; and (4) identification
of key informative features from the many features measured to
define patterns for functional prediction is highly dependent on
the features chosen. Hence, most HCA are custom designed and
also require manual inspection of images [14,15,22,27,28,52,53].

Recently, machine learning has been applied in segmentation of
images to recognize specific patterns [51], and also to discover
inherent properties of imaging data that differentiate mutant phe-
notypes from wild-type and allow functional predictions. For
example, Ohya et al. used a support vector machine (SVM) to trans-
form data to a high dimensional space through kernel mapping and
to predict gene functions based on morphological profiles [33].
Similarly, Bakal et al. trained a neural network where a non-linear
mapping of the original dataset was done by minimizing a certain
objective function to identify local signaling networks that regulate
cell protrusion, adhesion and tension [22]. For our analysis of spin-
dle morphology in yeast mutants [37], we employed a machine
learning technique that used a mixture of Gaussian models to learn
the probability density function of control (wild-type) samples
based on a subset of spindle features. Each mutant strain was then
evaluated by computing the likelihood of significant variation from
the control under this learned model by a random sampling proce-
dure, using data from individual cells and generating a p-value. The
significant deviation of the measurement values from those of
wild-type cells reflect morphological defects and indicate a pertur-
bation of the cellular process being surveyed. Accordingly, mutant
strains with low p-values have spindle measurements significantly
different from wild-type and are identified as defective in spindle
dynamics [37]. Currently, there are no well-accepted standard pro-
cedures available for HCA and the continued development of stan-
dard statistical tools to process HCS data without sacrificing
information accuracy will be important for the field.
3. Tools for HCS and their applications

3.1. Molecular tools

HCS approaches arguably revolutionized cell biology and its
applications are expanding as more and more researchers adopt
the technology. As noted above, a major advantage of yeast as a
model system for high-content screening is the availability of
many genome-wide collections of yeast strains for systematic anal-
ysis. Of particular note for high-content screening is the GFP-ORF
collection in which about three quarters of the yeast genes are
endogenously tagged with GFP at their C-terminus [35]. The collec-
tion is now being productively used to screen for both changes in
localization and abundance of the yeast proteome. For example,
Benanti et al. screened for substrates of the F-box protein Grr1p,
which is involved in targeted proteolysis. By monitoring for
changes in protein abundance, they were able to identify at least
seven novel metabolic targets of Grr1p. The project involved intro-
duction of an RFP marker linked to the grr1D locus into the yeast
GFP collection using an SGA protocol. GRR1 and grr1D cells were
imaged simultaneously in the same well using a Cellomics high-
throughput microscope system (40� objective). All the cells were
identified using the stain CellTracker, which localizes to the yeast
vacuole, whereas grr1D cells were distinguished from wild-type
cells by the presence of the RFP signal. Once wild-type and mutant
cells were identified, GFP intensity between null and wild-type
cells was compared to assess changes in protein abundance.

A similar approach can be used to track genome-wide changes
in protein localization caused by a genetic, chemical or environ-
mental perturbation. In our laboratory, we are using SGA to intro-
duce marked deletion alleles of interest, together with a
constitutively expressed cytosolic marker, into the GFP-ORF collec-
tion. The cytosolic marker allows normalization of the varying GFP
signals. We analyze images using Cell Profiler and features are ex-
tracted to assist in defining changes in proteins level or localization
within the cell. This system allows us to globally track each tagged
protein and the changes it undergoes at the cellular level. Integrat-
ing SGA analysis and HCS provides a general strategy for quantita-
tive assessment of cell biological phenotypes on a genome-wide
scale and in sensitized genetic backgrounds. A quantitative readout
allows for the identification of subtle but significant phenotypes,
offering the potential to confirm and expand genetic networks
based solely on fitness measurements.

3.2. Reagents for HCS

Fluorescent labels and probes (Fluorescein and Rhodamine) that
are covalently linked to substances that bind biomolecules or that
bind biomolecules themselves (DAPI) are also useful for simple
screens in HCS experiments. These types of reagents are particu-
larly valuable when the addition of a GFP or other tag disrupts pro-
tein function [54]. In such situations, the small size of organic
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fluorescent labels becomes useful. For example, the FlAsH (Fluores-
cein Arsenical Hairpin) reagent binds a small peptide tag (the
CCXXCC motif) and can be used to fluorescently label recombinant
proteins in live cells [55]. The high affinity of tetracysteine residues
for organo-arsenical compounds promotes covalent bonds be-
tween the tetracysteine residues with the thioarsolan groups of
the FlAsH reagent. Although this reagent has not been used yet
in HCS, the background staining due to non-specific binding of
FlAsH could be used to successfully segment whole cell informa-
tion. Similarly a few other covalent labeling techniques such as
SNAP-tag (New England Biolabs) and Halo tags (Promega) are
potential tools for HCS. Methods have also evolved to monitor
dynamic environmental changes within the cell. For example, a
pH-sensitive GFP or an organic label could be employed to study
membrane potential or ionic flux [56].

Several new approaches have been developed that combine cle-
ver genome-wide reagents with simple fluorescent readouts to
map protein interactions [57]. Of specific interest, Michnick and
colleagues have applied a fluorescent protein-fragment comple-
mentation assay (PCA) to detect spatio and temporal perturbations
of protein–protein interactions in mammalian cells, following
addition of drugs, siRNAs or hormones [58]. A specific application
of a PCA assay called GePPI (genetic perturbations of sentinel pro-
tein interactions) was recently used to identify proteins involved in
the regulation of a yeast cell cycle transcription factor [59]. The
GePPI assay involves detecting interactions of fusion chimeras be-
tween proteins of interest that query a particular pathway and two
fragments of the yellow fluorescent protein ‘‘Venus”. When the Ve-
nus protein fragments are brought together due to a protein–pro-
tein interaction, a fluorescence signal is produced. Expression of
these fusion chimeras in specific deletion backgrounds leads to loss
of fluorescence signal revealing modulators of the pathway. With
appropriate reagents, the GePPI and related assays could be com-
bined with HCS platforms to provide genome-wide information
about contextual interactions within signaling complexes and bio-
logical pathways.

3.3. Software tools

To quickly interrogate HCS data, commercially available packages
that either come with the microscope or are sold separately are use-
ful. These packages include: (1) Spotfire (http://spotfire.tibco.com/);
(2) AcuityXpress (Molecular Devices); (3) CellmineT (http://
www.bioimagene.com/); (4) Accelrys (http://accelrys.com/); (5)
IDBS-Activity base suite (http://www.idbs.com/ActivityBase/); and
(6) GeneData Screener (http://www.genedata.com/). These analysis
packages allow quick assessment of data quality with a range of con-
figurable components to create custom data processing workflows.
In addition, several pathway-mapping tools are also being produc-
tively applied to the analysis and interpretation of HCS data. These
tools have been typically used to describe biological networks in
large-scale genomic datasets [60]. Examples include Pathway Studio
(http://www.ariadnegenomics.com), Ingenuity Pathway Analysis
(http://www.ingenuity.com/), Cytoscape (http://cytoscape.org/),
Mapman (http://www.gabipd.org/), PathwayVoyager (http://
www.genome.ad.jp/), MetaCore (http://www.genego.com/) and
Pathart (http://www.jubilantbiosys.com/).

Open source platforms such as Open Microscopy Environment
(http://www.openmicroscopy.org/) can also be used to visualize,
manage and annotate images and metadata. In collaboration with
a number of commercial entities, researchers at the University of
Dundee developed a package that supports modeling workflows
for the quantitative analysis of microscopy images. Academic labs
have not only built image analysis software but also have devel-
oped programs that have the ability to control hardware. Micro-
manager (lManager), an open-source Java-based imaging
software developed by the Vale laboratory (http://www.micro-
manager.org/), is a low-cost software platform for automated
microscopy. When integrated with ImageJ software (http://rsb.
info.nih.gov/ij), lManager implements several imaging procedures
with the ability to design customized user plugins for specialized
imaging applications.

Some useful databases have been developed for the storage and
analysis of HCS data. As part of an effort to study lipid metabolism,
Kohlwein and colleagues have started a relational database (http://
ypl.uni-graz.at/pages/home.html) that stores images for yeast pro-
tein localization in order to accommodate the wealth of data
emerging from large-scale genomic analyses. This open-access
platform for submitting and storing image data allows the integra-
tion of specific information regarding experiments that are rele-
vant to researchers [41]. In a complementary effort, Kumar and
colleagues have built a cross-species organelle database (http://
organelledb.lsi.umich.edu/) which houses information about the
localization of proteins from 138 organisms with an emphasis on
the major model systems. These open-access platforms allow inte-
gration of HCS and other functional genomic datasets and are an
important community resource for understanding gene function.

4. Concluding remarks

Completion of the S. cerevisiae genome sequencing project cat-
alyzed major efforts to create reagents and tools for functional
annotation of genes. The combination of genomic approaches such
as transcriptome profiling, organellar proteomics, database mining,
comparative genomic analysis and standardized phenotypic analy-
ses promises to produce a new global view of a model eukaryotic
cell. Due to the logistics of imaging and tedious manual scoring
of aberrant morphological phenotypes, large-scale cell biological
studies have been a major challenge. However, significant progress
has been made in the development of useful reagent sets and
accessible microscope and software systems. While the current
focus is on producing and analyzing still images, future methodol-
ogies may collect four-dimensional spatial and temporal informa-
tion with multiple colors for different molecular reporters. The
implementation of automated robotics for handling and imaging
of cell cultures, allowing for rapid data acquisition, will vastly
change the scope of genomic investigation in yeast.
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