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115 67 Prague 1, Czech Republic

Submitted by Hans-Görg Roos

Received June 27, 1997

The solution of a quasilinear elliptic state equation depends on the coefficient
function belonging to an admissible set. The solution is evaluated by a cost func-
tional the value of which is to be maximized over the admissible set, i.e., the reli-
able (safe) solution is searched for. Due to the nature of the equation, the Kirchhoff
transformation can be applied to obtain both the existence of the true state solution
and a cost sensitivity formula. In many cases, the latter makes it possible to deter-
mine the reliable solution immediately. The problem is approximated by means of
the finite element method, and some convergence results are proven. Numerical ex-
amples illustrate the theory which can be directly generalized to spatial problems.
© 1999 Academic Press
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1. INTRODUCTION: MAXIMIZATION PROBLEM

The notion reliable solution was introduced in [2] to label “the worst” case
among a set of possible solutions, where possibility is induced by uncertain
input data, and the degree of badness is measured by a cost functional. The
highest local temperature of a heated body, the conductivity coefficients of
which are not known exactly, can serve as an industrial example. Another
problem is treated in [4].

In this pilot study, we apply the theory presented in articles [2, 3, 5]
to a class of particular problems analyzed theoretically and, finally, solved
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numerically. In detail, we deal with the following equation for an unknown
function u ∈ C1��� ∩ C2���, � = �0; 1�,

−�a�u�u′�′ = f in �; (1.1)

u = u on 01; (1.2)

a�u�u′ = g on 02; (1.3)

where 01 = �0� or 01 = �0; 1�, 02 = �0; 1� \ 01, a ∈ C�0�;1��� (Lipschitz
continuous functions on �), u is a constant, and f is a right-hand side
function. The prime stands for d/dx.

Let the problem (1.1)–(1.3) be reformulated into the weak form: Find
u ∈ H1��� such that

u− u ∈ V = {v ∈ H1���x v�01
= 0

}
; (1.4)

�a�u�u′; v′�0;� = �f; v�� + �g; v�02
∀v ∈ V; (1.5)

where H1��� is the Sobolev space (with the norm � · �1;�) of functions
continuous on � and with a square integrable generalized derivative on
�, f ∈ V ∗ (dual space to V ). The symbols �·; ·�0;� and �·; ·� stand for
the inner product in the space L2��� and the duality pairing, respectively.
In detail, the rightmost term is equal to either g�1�v�1� or zero, with the
latter holding if 02 = Z. Let us be reminded that H1��� is continuously
embedded into the space C��� of continuous functions on � provided with
the common norm � · �0;∞;�. The embedding is even compact.

The uncertainty mentioned in the first paragraph concerns the function
a which belongs to the set

Uad =
{
a ∈ U0

ad�CL�x amin�t� ≤ a�t� ≤ amax�t� ∀t ∈ �
}

defined with the aid of

U0
ad�CL� =

{
a ∈ C�0�; 1���x �da/dt� ≤ CL a.e.;

a�t� = a�Tl� for t < Tl;

a�t� = a�Tr� for t > Tr
}
;

amin; amax ∈ Ũ0
ad�CL� =

{
a ∈ U0

ad�CL�x 0 < ãmin ≤ a�t� ≤ ãmax ∀t ∈ �
}
;

and given constants CL > 0, ãmin, ãmax, Tl, Tr, Tl < Tr.
Next, we introduce intervals Gj ⊂ �, j = 1; : : : ; J, and functionals

8j�v� = �measGj�−1
∫
Gj

v dx;

8�v� = max
1≤j≤J

8j�v�; v ∈ L2���:
(1.6)
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Denoting by u�a� the solution of (1.4)–(1.5) and defining 9j�a� =
8j�u�a��, 9�a� = 8�u�a��, we set the Maximization Problem: Find

a0 = arg max
a∈Uad

9�a�: (1.7)

Remark 1.1. To give the Maximization Problem a physical meaning, we
can interpret u�a� as a temperature distribution in �. Then 8 evaluates the
maximum of its value averaged over chosen intervals Gj , and we search for
the coefficient a0 inducing the maximum of 8. Since H1��� is embedded
into C��� we could consider pointwise values of u�a� as well.

The problem (1.1)–(1.3) is covered by the article [5] but, in contrast to
a more general class of equations studied there, it allows the use of the
Kirchhoff transformation. This tool will be found helpful in solving (1.7).

2. KIRCHHOFF TRANSFORMATION

Let us suppose u is the solution of the problem (1.4)–(1.5), the variable
a is omitted for a while. We can define a function zx �→ � by the equality
(Kirchhoff transformation)

z�x� =
∫ u�x�
u

a�t� dt; x ∈ �: (2.1)

The transformation is invertible because a is a positive function. Observing
that

z′ = a�u�u′; (2.2)

we can transform the problem (1.4) and (1.5) into the following linear el-
liptic equation: Find z ∈ V such that

�z′; v′�0;� = �f; v�� + �g; v�02
∀v ∈ V: (2.3)

Problem (2.3) has a unique solution z which does not depend on a ∈ Uad.
The function z yields the solution u of (1.4)–(1.5):

Theorem 2.1. Suppose a ∈ Ũ0
ad�CL� and z ∈ V solves (2.3). Let the

function u be defined by the equality (2.1). Then u′�x� is defined for all x ∈ �,
where z′�x� exists, and u is the unique solution of the equations (1.4)–(1.5)
with the coefficient a.
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Proof. The function u is uniquely determined by (2.1) because a�t� > 0
for any t ∈ �. The continuity of u is the consequence of the inequality

ãmin�u�x1� − u�x2�� ≤
∣∣∣∣∫ u�x1�

u�x2�
a�t� dt

∣∣∣∣ = �z�x1� − z�x2��; x1; x2 ∈ �:

To prove differentiability, we introduce

b1�x; t� =


min

s∈�u�x�;u�x+t��
a�s� if u�x� ≤ u�x+ t�;

max
s∈�u�x+t�;u�x��

a�s� if u�x� > u�x+ t�;

b2�x; t� =


max

s∈�u�x�;u�x+t��
a�s� if u�x� ≤ u�x+ t�;

min
s∈�u�x+t�;u�x��

a�s� if u�x� > u�x+ t�;

q�x; t� = �u�x+ t� − u�x��/t; x; x+ t ∈ �:

The equality (2.1), the continuity of a and u, and the inequalities

q�x; t�b1�x; t� ≤
1
t

∫ u�x+t�
u�x�

a�s� ds ≤ q�x; t�b2�x; t�

imply

lim sup
t→0

q�x; t� ≤ z′�x�
a�u�x�� ≤ lim inf

t→0
q�x; t�;

if z′�x� exists at x ∈ �. It means u′�x� = z′�x�/a�u�x�� for a.a. x ∈ � as
z′�x� is defined for a.a. x ∈ �. Moreover, u′ ∈ L2��� and u solves (1.4)–
(1.5) due to (2.2).

By virtue of (2.1) and the positiveness of a, the solution u is unique. This
also follows from [5, Theorem 3.2].

Lemma 2.1. Let u�a� and z be the solution of the problem (1.4) and (1.5)
and (2.3), respectively. Then for all x ∈ � sign�u�a��x� − u� = sign�z�x�� re-
gardless of a ∈ Ũ0

ad�CL� and CL > 0. Moreover, sign�u′�a��x�� = sign�z′�x��
if the derivatives exist at x ∈ �.

Proof. Since a is positive, the assertions follow from (2.1) and (2.2).

Remark 2.1. Lemma 2.1 and similar results for higher derivatives which
are available under smoothness assumptions help to graph u�a� on the basis
of solving the easy problem (2.3).
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Lemma 2.2. Let ε̃ > 0 be a parameter such that C0 ≡ ãmin − ε̃ > 0, and
let a0 ∈ Ũ0

ad�CL�, aε ∈ U0
ad�Ĉ�, Ĉ > 0, be two functions, �aε�0;∞;� ≤ ε̃.

If u�a0� and u�a� are the solutions of the problem (1.4)–(1.5) with a0 and
a = a0 + aε, respectively, then

�u�a0� − u�a��1;� ≤ C�aε�0;∞;�;

where the constant C > 0 does not depend on aε, a0, and Ĉ.

Proof. Let us set u ≡ u�a�, u0 ≡ u�a0�. The Kirchhoff transform applied
to both u0 and u results in the unique solution z of the problem (2.3). For
any x ∈ �, we have

0 =
∫ u�x�
u

a�t� dt −
∫ u0�x�

u
a0�t� dt =

∫ u�x�
u0�x�

a0�t� dt +
∫ u�x�
u

aε�t� dt:

Thus

ãmin�u�x� − u0�x�� ≤
∣∣∣∣∫ u�x�
u0�x�

a0�t� dt
∣∣∣∣ =

∣∣∣∣∫ u�x�
u

a�t�
a�t�aε�t� dt

∣∣∣∣
≤ ε

C0

∣∣∣∣∫ u�x�
u

a�t� dt
∣∣∣∣ ≤ ε

C0
�z�0;∞;�; (2.4)

where ε = �aε�0;∞;�.
We focus on u′, u′0 now. To this end, we define the function b�t1; t2� =

a0�t1� − a0�t2�, t1; t2 ∈ �, complying with the obvious inequality

�b�t1; t2�� ≤ CL�t1 − t2�: (2.5)

We infer from (1.5) that for any v ∈ V
0 = �a0�u�u′ − a0�u0�u′0; v′�0;� + �aε�u�u′; v′�0;�
= (�a0�u0� + b�u; u0��u′ − a0�u0�u′0; v′

)
0;�

+ �aε�u�u′; v′�0;�
= �a0�u0��u′ − u′0�; v′�0;� + �b�u; u0�u′; v′�0;�
+ �aε�u�u′; v′�0;�: (2.6)

On the basis of (2.6) where v = u0 − u is considered, we get

ãmin�u′0 − u′�2
0;� ≤ �a0�u0�v′; v′�0;�
= �b�u; u0�u′; v′�0;� + �aε�u�u′; v′�0;�
≤ �CL�v�0;∞;� + ε��u′�0;��v′�0;�

≤ C1ε�u′�0;��u′0 − u′�0;�: (2.7)
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To derive (2.7), the definition of Ũ0
ad�CL� and the estimates (2.5) and (2.4)

were employed.
The assertion follows from (2.4) and (2.7) provided �u′�0;� can be

bounded independently of a0, aε; and Ĉ which is true by virtue of (2.2).

Theorem 2.2. Problem (1.7) has at least one solution.

Proof. The solution u�a� depends continuously on a ∈ Uad (Lem-
ma 2.2), the functionals 8 and 9 are continuous and, by the Arzelà–Ascoli
theorem [8], the set Uad is compact in C��� (see [2, Lemma 1.2], for
example).

3. APPROXIMATION

In this section, we follow ideas of [2, 5] to address convergence and
uniqueness questions. This is why we give only sketches of proofs in some
instances. As opposed to Sections 2 and 4, the invariability of u is not
important in this section.

Let the interval � be uniformly subdivided into N subintervals ei of the
length h = 1/N . To approximate the space V; we introduce its subspace

Vh =
{
vh ∈ V x vh�ei ∈ P1�ei�; i = 1; : : : ;N

}
;

where P1�ei� denotes linear polynomials on ei.
Instead of solving (1.4)–(1.5) we search for a Galerkin approximation uh

such that

uh − u ∈ Vh; (3.1)(
a�uh�u′h; v′h

)
0;� = �f; vh�� + �g; vh�02

∀vh ∈ Vh: (3.2)

The following theorem is, in fact, a combination of [2, Appendix] and [5,
Theorem 2.6]. However, we avoid assumptions bound with the parameter
h (see [5, Theorem 2.6(ii)]).

Let us define âmin = mint∈� amin�t�. Let us recall the Friedrichs inequal-
ity (see [7], for example) �v�0;� ≤ CF�v′�0;� and the embedding inequality
�v�0;∞;� ≤ C0�v�1;� valid for all v ∈ V ; CF;C0 > 0.

It can be shown (see the proof of Theorem 3.1) that the Galerkin so-
lution is among functions the first seminorm of which is less or equal to a
positive constant CB.

Theorem 3.1. Let a ∈ Ũ0
ad�CL� be arbitrary. Then a Galerkin approxi-

mation uh to the problem (3.1)–(3.2) exists. The function uh is unique if at
least one of the following conditions takes place:

(i) â −1
minC0CBCL

√
1+ C2

F < 1;

(ii) �u′h�0;∞;� < âmin/�CFCL�.
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In the case (i), the Galerkin solution uh can be calculated via the
Katchanov (secant moduli) method: Let y0 ∈ Vh be arbitrary. If yk ∈ Vh is
known, let yk+1 be defined by the relation

�a�u+ yk��u+ yk+1�′; v′�0;� = �f; v�� + �g; v�02
∀v ∈ Vh:

Then �uh − �u+ yk��1;� → 0 as k→∞.

Proof. To prove the existence of the solution uh we follow ideas of the
proof of [5, Theorem 2.6(i)].

We define a mapping Sx Vh→ Vh by the relation(
a�u+ y��u+ Sy�′; v′)0;� = �f; v�� + �g; v�02

∀v ∈ Vh:
By virtue of the Lax–Milgram lemma (see, e.g., [7]), S is uniquely defined.
Taking v = Sy, we can easily show that a constant CB independent of a
exists such that CB ≥ ��Sy�′�0;� ∀y ∈ Vh.

Let us consider arbitrary y; z ∈ Vh and denote v = Sy − Sz ∈ Vh. We get

âmin�v′�2
0;� ≤ �a�u+ y�v′; v′�0;�

= 1
∣∣�a�u+ z��u+ Sz�′; v′�0;� − �a�u+ y��u+ Sz�′; v′�0;�∣∣

= ∣∣(�a�u+ z� − a�u+ y���u+ Sz�′; v′)0;�

∣∣
≤ CL�z − y�0;∞;���u+ Sz�′�0;��v′�0;�

≤ CLC0��u′�0;� + CB��v′�0;��z − y�1;�:

Cancelling �v′�0;� on both sides of the inequalities and using the Friedrichs
inequality and u′ = 0 (u is a constant), we infer

�Sy − Sz�1;� = �v�1;� ≤ â −1
minC0CL

√
1+ C2

FCB�z − y�1;�:

The mapping S is Lipschitz continuous and allows application of the
Brower theorem [1] which gives the existence of y = Sy, i.e., of uh = u+ y.
Under the assumption (i), the mapping S is contractive, the fixed point is
unique and can be gained via the Katchanov method (details in [5]).

The condition (ii) is calculated from bounds put on �uh�0;∞;� and
�uh�1;∞;� to prove the uniqueness of uh in [2, Appendix].

To approximate the admissible set Uad, we introduce equally spaced
points Ti, i = 1; : : : ;M , into the interval �Tl; Tr�, T1 ≡ Tl, TM ≡ Tr, and
then define the set

UM
ad =

{
a ∈ U0

ad�CL� x amin�Ti� ≤ a�Ti� ≤ amax�Ti�; i = 1; : : : ;M;

a��Ti; Ti+1� ∈ P1��Ti; Ti+1��; i = 1; : : : ;M − 1
}
;
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which can be identified with the set of vectors

ÛM
ad =

{
α ∈ �M x ∃a ∈ UM

ad α = �α1; : : : ; αM� = �a�T1�; : : : ; a�TM��
}
:

(3.3)

Though UM
ad ⊂ Ũ0

ad�CL�, in general UM
ad 6⊂ Uad, however.

Let us suppose that for any a ∈ UM
ad there is a unique solution of the

problem (3.1)–(3.2). This assumption is backed by some industrial measure-
ments showing that CL can often be a small number (see [5, Sect. 4]). If
we define 9h�a� = 8�uh�a�� then the Approximate Maximization Problem
reads: Find

a0M
h = arg max

a∈UM
ad

9h�a�; (3.4)

where uh�a� solves the problem (3.1)–(3.2) with the coefficient a ∈ UM
ad.

Theorem 3.2. Problem (3.4) has at least one solution.

Proof. Though we cannot utilize the Kirchhoff transform as in the
proof of Lemma 2.2, the continuity of 9h can be proved by other means,
cf. [2, Theorem 2.1, Theorem 1.1, Proposition 1.2]. Thus (3.4) and (3.3)
lead to the maximization of a continuous function over a compact set.

Remark 3.1. If the uniqueness of the Galerkin solution uh is not sup-
posed, problem (3.4) can be properly modified, see [2, Lemma 2.2], and,
under an additional assumption (see [2, Theorem 2.1]), the rest of this
section remains valid.

Two discretization parameters, i.e., h and M , are used in the defini-
tion of the Approximate Maximization Problem (3.4). Let us bind them
together supposing M depends on h in such a way that the sequence
�M�h��, h→ 0+, is nondecreasing.

Lemma 3.1. Assume that a sequence �aM�h��, h → 0+, aM�h� ∈ U
M�h�
ad ,

converges in C��� to a function a. Let �uM�h�� be the corresponding se-
quence of the solutions of the problem (3.1)–(3.2). Then a ∈ UM̂

ad for some M̂
(if M�h� is bounded) or a ∈ Uad. Moreover,

�uM�h� − u�1;� → 0; (3.5)

where u, u− u ∈ V , solves (1.4)–(1.5) with the coefficient a.

Proof. We can follow basic ideas presented in the proof of [5, Theorem
2.9] and thus reduce some parts of our proof to a sketch. Since the cited
proof deals with a convergence of uh for a fixed we will pay more attention
to those parts where substantial modifications have to be done to treat the
fact that we deal with the sequence �aM�h��.



522 jan chleboun

If �M�h�� is bounded then a number M̂ exists such that a ∈ UM̂
ad, else

a ∈ Uad as proven in [2, Lemma 3.2].
As in [5], the sequence �uM�h�� is bounded in H1��� as we can infer

from (3.1)–(3.2) and the properties of U
M�h�
ad . Thus a subsequence, denoted

again by �aM�h��, and a function w ∈ H1��� exist such that

uM�h� ⇀ w (weakly) in H1���: (3.6)

Moreover, w ∈ u + V because u + V is convex and closed in H1��� and
uM�h� ∈ u+ V .

The next step is to prove w ≡ u. To this end we choose an arbitrary
v ∈ V ∩ C∞��� (C∞��� stands for smooth functions on �) and consider
a sequence

{
vh
}
, vh ∈ Vh, vh→ v in H1��� as h→ 0+.

Let us estimate the following value with the aid of (3.2):∣∣�a�w�w′; v′�0;� − �f; v�� − �g; v�02

∣∣
≤ ∣∣�a�w�w′; v′�0;� − �aM�h��uM�h��u′M�h�; v′h�0;�∣∣
+ ∣∣�f; vh − v��∣∣+ ∣∣�g; vh − v�02

∣∣ = I1�h� + I2�h� + I3�h�:
Further,

I1�h� ≤
∣∣�a�w�w′; v′�0;� − �a�w�u′M�h�; v′�0;�∣∣
+ ∣∣�a�w�u′M�h�; v′�0;� − �a�uM�h��u′M�h�; v′�0;�∣∣
+ ∣∣�a�uM�h��u′M�h�; v′�0;� − �aM�h��uM�h��u′M�h�; v′h�0;�∣∣

= I11�h� + I12�h� + I13�h�:
By (3.6), limh→0+ I2�h� = 0 = limh→0+ I3�h� = limh→0+ I11�h�.

We also have limh→0+ I12�h� = 0 due to the boundedness of �uM�h��,
(3.6), and the compact embedding H1��� ⊂⊂ C���. Finally,
limh→0+ I13�h� = 0 as �vh� converges strongly. We get (1.5) (with w
substituted for u) for any v ∈ V ∩ C∞���. The density argument leads to
the equality for all v ∈ V which implies w ≡ u.

According to Theorem 2.1, u is the unique solution and, as a conse-
quence, not only a subsequence but the whole sequence �uM�h�� converges
weakly to u.

To show the strong convergence, we introduce a sequence of functions
wh ∈ Vh such that

lim
h→0+

�wh − u+ u�1;� = 0 (3.7)

and define functions vh = uM�h� − u−wh, vh ∈ Vh, h→ 0+. If vh tends to
zero then (3.5) holds by virtue of (3.7) and the triangle inequality.
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Let us estimate �vh�1;� using (3.2) and (1.5) with vh substituted for v:

ãmin�vh�2
1;� ≤ �aM�h��uM�h��u′M�h�; v′h�0;�

− �aM�h��uM�h���u+wh�′; v′h�0;�
= �a�u�u′; v′h�0;� − �aM�h��uM�h���u+wh�′; v′h�0;�
≤
∣∣∣(�a�u� − aM�h��u��u′; v′h)0;�

∣∣∣
+
∣∣∣(aM�h��u��u− �u+wh��′; v′h)0;�

∣∣∣
+
∣∣∣(aM�h��u��u+wh�′; v′h)0;�

− (aM�h��uM�h���u+wh�′; v′h)0;�

∣∣∣
≤
[
�a− aM�h��0;∞;��u�1;� + ãmax�wh − u+ u�1;�

+ CL�u− uM�h��0;∞;��u+wh�1;�

]
�vh�1;�:

If h→ 0+ then the right-hand side tends to zero as a consequence of (3.7),
(3.6) (where w ≡ u), and the compact embedding H1��� ⊂⊂ C���.

The final theorem of this section takes pattern from [2, Theorem 3.1]
but has simpler assumptions.

Theorem 3.3. Let �a0
M�h��, h → 0+, be a sequence of solutions of the

Approximate Maximization Problem (3.4), and let M�h� → ∞. Then there
exists a subsequence �a0

M�ĥ�� ⊂ �a
0
M�h�� such that

a0
M�ĥ� → a0 in C���;

uĥ�a0
M�ĥ�� → u�a0� in H1���;

9ĥ�a0
M�ĥ�� → 9�a0�;

as ĥ→ 0+, where a0 is a solution of the Maximization Problem (1.7).

Proof. We can follow the proof of [2, Theorem 3.1] taking into account
Lemma 3.1 instead of [2, Proposition 3.2].

4. SENSITIVITY ANALYSIS

Let us choose a0 ∈ Ũ0
ad�CL� and a ∈ U0

ad�Ĉ�, where Ĉ is an arbi-
trary positive constant. If τ0 > 0 is sufficiently small then the function
aτ = a0 + τa ≥ C > 0 on � for any τ ∈ �−τ0; τ0�, and a unique state solu-
tion uτ ≡ u�aτ� of (1.4)–(1.5) exists. We examine the Gâteaux derivative of
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the state solution u�a0� in a certain norm and in the direction determined
by a. We write u0 instead of u�a0� in what follows.

Theorem 4.1. There is a unique function u̇0 ∈ H1��� such that

lim
τ→0

∥∥∥uτ − u0

τ
− u̇0

∥∥∥
0;∞;�

= 0:

The function u̇0 reads

u̇0�x� =
−1

a0�u0�x��
∫ u0�x�

u
a�t� dt; x ∈ �: (4.1)

Proof. Since the Kirchhoff transform (2.1) applied to uτ, τ ∈ �−τ0; τ0�
results in a unique function z, we have for any x ∈ �

0 =
∫ uτ�x�
u

aτ�t� dt −
∫ u0�x�

u
a0�t� dt

=
∫ uτ�x�
u0�x�

a0�t� dt + τ
∫ uτ�x�
u

a�t� dt: (4.2)

By this equality, Lemma 2.2 and the embedding H1��� ⊂⊂ C���,

lim
τ→0

1
τ

∫ uτ�x�
u0�x�

a0�t� dt = lim
τ→0
−
∫ uτ�x�
u

a�t� dt = −
∫ u0�x�

u
a�t� dt: (4.3)

We observe that a0�t� ≤ a0�t1� + CL�t − t1� and a0�t� ≥ a0�t1� − CL�t − t1�
if t ≥ t1. The first integral at the right-hand side of (4.2) can be estimated
from below and above by the inequalities∫ uτ�x�

u0�x�
a0�t� dt ≤

∫ uτ�x�
u0�x�
�a0�u0�x�� + CL�t − u0�x��� dt

= �uτ�x� − u0�x���a0�u0�x�� + CL�uτ�x� − u0�x��/2�
= �uτ�x� − u0�x��c1�x; τ�;∫ uτ�x�

u0�x�
a0�t� dt ≥ �uτ�x� − u0�x���a0�u0�x�� − CL�uτ�x� − u0�x��/2�

= �uτ�x� − u0�x��c2�x; τ�
which are valid for any x ∈ � and irrespective of sign�uτ�x� − u0�x��.
If τ0 is sufficiently small then 0 < c1�x; τ�, 0 < c2�x; τ� for any x ∈ �
and τ ∈ �−τ0; τ0�. We can suppose, without loss of generality, that τ > 0.
Combining the inequalities and dividing by τ, c1, and c2, we arrive at

1
τc1�x; τ�

∫ uτ�x�
u0�x�

a0�t� dt ≤
uτ�x� − u0�x�

τ
≤ 1
τc2�x; τ�

∫ uτ�x�
u0�x�

a0�t� dt:

By Lemma 2.2 and the continuous embedding H1��� into C���, the values
c1�x; τ�, c2�x; τ� tend to a0�u0� uniformly on � if τ→ 0+.
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Taking this and (4.3) into account, we can define u̇0 and express it by
the following simple formula:

u̇0�x� ≡ lim
τ→0

uτ�x� − u0�x�
τ

= −1
a0�u0�x��

∫ u0�x�

u
a�t� dt: (4.4)

Since τ→ 0+ and τ→ 0− lead to the identical result, we can write τ→ 0
in (4.4). Due to Lemma 2.2 and the equality (4.3), the limit (4.4) is uni-
form on �. To see that u̇0 ∈ H1��� it is sufficient to differentiate the
formula derived above.

As a direct consequence of Theorem 4.1, we get

9̇j�a0; a� ≡
d8j�uτ�

dτ

∣∣∣∣
τ=0

= −�measGj�−1
∫
Gj

(
1

a0�u0�x��
∫ u0�x�

u
a�t� dt

)
dx: (4.5)

Since

max
a∈Uad

{
max
1≤j≤J

9j�a�
}
= max

1≤j≤J

{
max
a∈Uad

9j�a�
}
;

the Maximization Problem (1.7) can be subdivided into J particular maxi-
mization problems defined as the search for the maximum of 9j over Uad,
j = 1; : : : ; J. That is why we focus only on a functional 9j in what follows.

In practice, we deal with a vector α and the set ÛM
ad (see (3.3)) rather

than with a function a and the set UM
ad, respectively.

Let us consider a vector αi ∈ �M the components of which are equal to
0 except for the ith one which equals 1. There is a unique piecewise linear
function ai ∈ U0

ad��M − 1�/�Tr − Tl�� defined by the vector αi of the nodal
values at points Tk, k = 1; : : : ;M .

Any vector α = �α1; : : : ; αM� ∈ ÛM
ad corresponds to a unique function

aα ∈ UM
ad which implies a unique state solution u�aα� and, as supposed, a

unique Galerkin approximation uh�aα�.
Setting 9̂j�α� = 8j�u�aα�� and taking into account Lemma 2.2 and the

derivative (4.5), we have

9̂j; i�α� ≡
∂9̂j

∂αi
�α� = 9̇j�aα; ai� ≈ 2hj; i�α�; i = 1; : : : ;M: (4.6)

The definition of the functional 2hj;i�α� coincides with the right-hand side
of the equality (4.5), where the functions aα, uh�aα�, and ai are substituted
for a0, u0, and a, respectively. According to Lemma 3.1, where a fixed
M�h� independent of h is considered, uh�aα� → u�aα� in H1��� so that
2hj; i�α� → 9̇j�aα; ai� as h→ 0+.
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For simplicity reasons, let us suppose that there exists i0 ∈ �1; : : : ;M�
such that Ti0 = u.

Lemma 4.1. Let Ti, i ∈ �1; : : : ;M� \ �i0�, and α ∈ ÛM
ad be arbitrary. If

Ti > u then 9̂j; i�α� ≤ 0, if Ti < u then 9̂j; i�α� ≥ 0, 1 ≤ j ≤ J.

Proof. Since ak�Ti� = δik (the Kronecker symbol) and aα > 0, ai ≥ 0,
the assertion is a direct consequence of (4.5) and (4.6).

Lemma 4.1 plays a crucial role in solving the problem (1.7) formulated
in terms of 9̂j , α, and ÛM

ad now. To maximize 9̂j�α�, αi tends to amin�Ti�
for i > i0, and αi tends to amax�Ti� if i < i0.

Remark 4.1. In applications, we can expect that the set Gj comprises
a point where a (local) extremum of the function z or, equivalently, uα is
achieved (see Lemma 2.1). Let us suppose z�Gj

is a nonnegative function.
As in Lemma 4.1, we can infer from (4.6) and (4.5) that the ith component
of the vector α0

j = arg maxα∈ÛM
ad
9̂j�α� is equal to amin�Ti�, i = i0; : : : ;M .

The remaining components can be arbitrary within the admissible set. They
do not influence the state solution on Gj (cf. Lemma 2.1 and (4.5)).

A similar conclusion with amax�Ti� and i = 1; : : : ; i0 can be drawn for
z�Gj
≤ 0.

If z changes its sign on Gj , then the above tendencies are combined
with the slope constraint parameter CL. Roughly speaking, on a semiaxis,
the “extremal” function a0

j sticks to amin or amax, and switches to the other
value on the neighborhood of Ti0 , where its maximum increase or decrease
rate is bounded by CL.

Remark 4.2. If a spatial form of the problem (1.1)–(1.3) is considered
such that the Kirchhoff transformation can be applied, i.e., if a is a scalar
function, then, under some smoothness assumptions, (4.4) holds as well as
(4.5). This would be a starting point to some generalizations of Lemma 4.1
and Remark 4.1 to problems, where � ⊂ �n, n = 2; 3 for example.

5. NUMERICAL EXAMPLES

A MATLAB program was coded to solve the Maximization Problem
(3.4) with J = 1. The functionals 2h1;i were evaluated by the trapezoidal rule
applied to nodal values exactly calculated from the Galerkin approximation
uh. The stiffness matrices in the Katchanov algorithm (see Theorem 3.1)
were also computed exactly. The Katchanov iterations ran until the C���-
norm of the difference of two successive iterative solutions was decreasing.
The sequential quadratic programming (SQP) routine E04UCF, see [6], was
chosen to solve (3.4). In examples, the symbol 9̂h

1 �α� stands for 81�uh�aα��.
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FIG. 1. Example 5.1: amin, amax, aini, aα0
1
.

Example 5.1. We chose f = 100χ�G1� (χ is the characteristic function),
G1 = �0:44; 0:66�, 01 = �0; 1�, u = 0, M = 7, Tl = −1, Tr = 5, CL = 0:8,
and h = 0:02 (see Fig. 1 for amin, amax (dotted lines)). It is uh�aα��G1

> 0
for any admissible α. The initial value 9̂h

1 �αini� = 4:358 corresponds to
aini = �amin + amax�/2 (dashed line in Fig. 1). After three SQP minimiza-
tion steps and five functional evaluations, α0

1 was found, 9̂h
1 �α0

1� = 5:029,
(see Fig. 1 for aα0

1
(solid line)).

Example 5.2. We set f = 14000 sin�16x��1 + �x − 0:4�2�, 01 = �0; 1�,
u = 0, G1 = �0:281; 0:463�, amin = 4:0, amax = 10:1, Tl = −5, Tr = 5, and
CL = 1. The function uh�aα� changes its sign on G1. Optimization
runs with various parameters M and h were performed. Always, αini =
�7:05; : : : ; 7:05�. The values p�M� = 9̂h

1 �α0
M�, h = 0:02, are graphed in

Fig. 2. The graph is almost identical for h = 0:01, h = 0:005, or h = 0:0025

FIG. 2. Example 5.2: values p�M�
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because the difference between the corresponding values of 9̂h
1 �α0

M� is
less than 1%. To give the reader an idea of the vector α0

M , let us list its
components for M = 21: α1 = α2 = 10:1, αi = αi−1 − 0:5, i = 3; : : : ; 18,
α19 = α20 = α21 = 4.
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