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Abstract

In recent years, an algebraic framework was introduced for the analysis of convergence of
Schwarz methods for the solution of linear systems of the form Ax = b. Within this frame-
work, additive and multiplicative Schwarz were shown to converge when the coefficient mat-
rix A is a nonsingular M-matrix, or a symmetric positive definite matrix. In this paper, many
of these results are extended to the case of A being an H -matrix. The case of inexact local
solves is also considered. In addition, the two-level scheme is studied, i.e., when a coarse grid
correction is used in conjunction with the additive or the multiplicative Schwarz iterations.
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1. Introduction

We consider linear systems of equations of the form

Ax = b, (1)

where A ∈ Rn×n is an H -matrix (and thus nonsingular; see, e.g., [5] and the refer-
ences therein) and x and b are vectors of V = Rn; we review some definitions later
in this section. We study the solution of (1) by Schwarz iterations with p overlap-
ping blocks. These are iterative methods originally developed for operators A arising
from discretizations of partial differential equations (p.d.e.). In these cases, Schwarz
iterations correspond to domain decomposition methods; see, e.g., [12,13]. Schwarz
methods are most often used as preconditioners, but in some instances they are used
as stationary iterative methods of the form

xk+1 = T xk + c, k = 0, 1, . . . , (2)

where x0 is an initial guess, c is an appropriate vector, and T is the iteration matrix;
see, e.g., [3,8], and the references given therein for such use. In our context, the
convergence of the iteration (2), which holds for any initial vector x0 if and only if
ρ = ρ(T ) < 1 (ρ(T ) denoting the spectral radius; see, e.g., [2]), indicates that the
spectrum of the preconditioned matrix I − T (= B−1A for some nonsingular matrix
B), i.e., its set of eigenvalues, is contained in a ball centered at one with radius ρ.

In the rest of this section we review the additive and multiplicative iterations,
each corresponding to a different matrix T in (2). Our exposition is based on the
algebraic formulation presented in [6] and [1]. In these references, convergence of
the Schwarz iterations was studied when the matrix A in (1) is either a nonsingular
M-matrix or symmetric positive definite. In this paper, in Sections 2 and 3 we study
the convergence of these iterations when A is an H -matrix. The analysis for the
case of inexact local solves is also included. In Section 4 we extend the convergence
results to the two-level iterations, i.e., when a “coarse grid” correction is used.

A nonsingular matrix A having all nonpositive off-diagonal entries is called an
M-matrix if the inverse is (entry-wise) nonnegative, i.e., A−1 � O; see, e.g., [2,11].
For any matrix A = (aij ) ∈ Rn×n, its comparison matrix 〈A〉 = (αij ) is defined by

αii = |aii |, αij = −|aij |, i /= j.

A matrix A is said to be an H -matrix if 〈A〉 is an M-matrix. In particular, A is an
H -matrix if and only if it is generalized diagonally dominant, i.e.,

|aii |ui >
∑
i /=j

|aij |uj , i = 1, . . . , n (3)

for some positive vector u = (u1, . . . , un)
T. H -matrices were introduced in [11] as

generalization of M-matrices. They appear in many applications, e.g., when dis-
cretizing certain nonlinear parabolic operators using high order finite elements and
sufficiently small time steps [4]. The characterization (3) also indicates how general
these matrices are; see further [15].
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As we have mentioned, in this paper we study the solution of (1) when A is an H -
matrix, using Schwarz iterative methods. These are block iterative methods in which
the blocks are overlapping, i.e., some variables are common to more than one block.
When there is no overlap, additive Schwarz reduces to block Jacobi, while multipli-
cative Schwarz reduces to block Gauss–Seidel. To formally describe the overlapping
blocks, let Vi be subspaces of V = Rn of dimension ni , i = 1, . . . , p, (p > 1) such
that the sum of these subspaces span the whole space. These subspaces are not pair-
wise disjoint; on the contrary, their intersection is precisely the overlap, and thus∑p

i=1 ni > n.
The restriction and prolongation operators map vectors from V to Vi and vice-

versa. The restriction operators used here are of the form

Ri = [Ii |O]πi, i = 1, . . . , p, (4)

where Ii is the identity on Rni , and πi is a permutation matrix on Rn. The prolonga-
tion operator considered here is RT

i . We now define the following matrices

Ei = RT
i Ri, i = 1, . . . , p. (5)

Note that the diagonal matrices Ei given by (5) have nonzero diagonal elements
(with value one) only in the columns which have a nonzero element the matrix Ri .
We denote by q the measure of overlap, i.e., the maximum over all possible rows, of
the number of matrices Ei with a nonzero in the row. Thus

p∑
i=1

Ei � qI ; (6)

and usually q  p.
The restriction of the matrix A to the subspace Vi is

Ai = RiART
i , (7)

which is a symmetric permutation of an ni × ni principal submatrix of A, i = 1, . . . ,
p. These are precisely the p overlapping blocks; see [6] for more details.

We are ready to describe the Schwarz iterations for the solution of (1). The damped
additive Schwarz iteration has the following form

xk+1 = xk + θ

p∑
i=1

RT
i A

−1
i Ri(b − Axk), (8)

where 0 < θ � 1 is the damping factor.
In practical implementations of the additive Schwarz iterations (8), for each iter-

ation, the residual vector rk = b − Axk is restricted to each subspace Vi using the
operator Ri . Then, the local problem

Aiei = rki = Rir
k (9)
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is solved, the obtained local errors, eki = ei , are prolongated, summing them (and
damping its value) and finally that correction is added to xk yielding the new approx-
imation vector xk+1.

It follows that the process (8) is (2) with the iteration matrix

Tθ = I − θ

p∑
i=1

RT
i A

−1
i RiA = I − θ

p∑
i=1

Pi, (10)

where Pi = RT
i A

−1
i RiA is a projection onto Vi . In the case of A symmetric and

positive definite, this projection is orthogonal with respect to the A-inner product;
see, e.g., [13].

The iteration matrix for the multiplicative Schwarz iterations is

Tµ = (I − Pp)(I − Pp−1) · · · (I − P1) =
1∏

i=p

(I − Pi). (11)

In contrast to the additive Schwarz iteration (8), here, the correction in each subspace
is followed by another correction, until all corrections have been made.

When the local problem (9) is not solved exactly, but only approximately, its
solution can be considered the exact solution of another approximate local problem,
namely Ãiei = rki . The matrix Ãi could be, for example, an incomplete factoriza-
tion of Ai ; see, e.g., [13]. In this case, the iteration matrix for the damped additive
Schwarz iteration with inexact local solves is

T̃θ = I − θ

p∑
i=1

RT
i Ã

−1
i RiA = I − θ

p∑
i=1

P̃i , (12)

where P̃i = RT
i Ã

−1
i RiA.

Similarly, the iteration matrix for the multiplicative Schwarz iterations with in-
exact local solves is

T̃µ = (I − P̃p)(I − P̃p−1) · · · (I − P̃1) =
1∏

i=p

(I − P̃i). (13)

We proceed in the next sections to study the convergence of the iterations
(10)–(13).

2. Convergence of additive Schwarz iterations

We begin by establishing a different algebraic representation of the iteration mat-
rix (10). Given a matrix A = (aij ), we define the matrix |A| = (|aij |). It follows that
|A| � O and that |AB| � |A||B| for any two matrices A and B of compatible size.
Let

A¬i = [O|I¬i]πiAπT
i [O|I¬i]T, (14)
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where I¬i is the (n − ni) × (n − ni) identity matrix, and let

Mi = πT
i

[
Ai O

O H¬i

]
πi, (15)

where H¬i is some (n − ni) × (n − ni) nonsingular matrix such that

|H¬i − A¬i | = 〈H¬i〉 − 〈A¬i〉. (16)

In fact, this condition gives us a lot of freedom in choosing H¬i . In [1,6], different
choices were H¬i = A¬i or H¬i = D¬i = diagA¬i . These choices clearly satisfy
our condition (16).

It follows then from the form of the matrices (5) and (15) that

EiM
−1
i = RT

i A
−1
i Ri . (17)

Using this equality, the iteration matrix Tθ can be expressed as

Tθ = I − θ

p∑
i=1

EiM
−1
i A. (18)

Our proof of convergence consists of showing that if θ � 1/q, then ρ(Tθ ) < 1;
cf. [6]. Our strategy is to show that |Tθ | � T̂θ , for the matrix

T̂θ = I − θ

p∑
i=1

RT
i 〈A〉−1

i Ri〈A〉, (19)

which we show in the next subsection to be nonnegative and to have spectral radius
less than one.

2.1. Properties of T̂θ

Let us consider the following linear system associated with the original problem
(1),

〈A〉x = b, (20)

and apply the additive Schwarz iterations with the same p overlapping blocks that
we considered in Section 1. Then, given an initial approximation x0 for the solution
of (1), the damped additive Schwarz iteration applied to (20) reads, for k = 0, 1, . . . ,

xk+1 = xk + θ

p∑
i=1

RT
i 〈A〉−1

i Ri(b − 〈A〉xk), (21)

where the Ri are given by (4), and in a way similar to (7),

〈A〉i = Ri〈A〉RT
i ,

and the iteration matrix for this scheme is precisely (19).
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It is not hard to see that 〈A〉i = 〈Ai〉, and since any principal submatrix of an
M-matrix is also an M-matrix [2,11], we have the following useful result.

Lemma 1. If A ∈ Rn×n is an H -matrix, then any principal submatrix of A, and
any symmetric permutation of it is an H -matrix. In particular the matrix Ai given
by (7) is an H -matrix.

We note that the coefficient matrix of (20) is an M-matrix, and therefore, we can
use the results in [6]. In particular, we have that

B̂ =
p∑

i=1

RT
i 〈Ai〉−1Ri =

p∑
i=1

Ei〈Mi〉−1

is nonnegative and nonsingular, where Ei is given by (5). We also have that the
iteration matrix (19) can be written as

T̂θ = I − θ

p∑
i=1

Ei〈Mi〉−1〈A〉 (22)

and that if θ � 1/q, T̂θ � O, and the damped additive Schwarz iteration (21) con-
verges to the solution of (20) for any initial vector x0. Therefore we have

ρ(T̂θ ) < 1. (23)

2.2. Convergence for H -matrices

Before proceeding with the convergence analysis of (21) we prove an impor-
tant result concerning the matrices Mi defined in (15). A splitting A = Mi − Ni is
called regular if M−1

i � O and N � O [14]; it is called H -compatible if 〈A〉 =
〈Mi〉 − |Ni |; see [5].

Theorem 1. Let A ∈ Rn×n be an H -matrix and let the matrices Mi be of the form
(15), satisfying (16). Then, A = Mi − Ni, i = 1, . . . , p, are H -compatible split-
tings.

Proof. First, from the definition of 〈A〉 notice that 〈πT
i Aπi〉 = πT

i 〈A〉πi since the
diagonal of the matrix πT

i Aπi is a permutation of the diagonal of A. Let A be written
by blocks as

A = πT
i

[
Ai U

V A¬i

]
πi,

where U and V are matrices of appropriate size.
Then, we have that

〈A〉 = πT
i

[ 〈Ai〉 −|U |
−|V | 〈A¬i〉

]
πi (24)
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and

〈Mi〉 = πT
i

[〈Ai〉 O

O 〈H¬i〉
]
πi.

From these expressions we may write, using (16)

〈Mi〉 − 〈A〉 = πT
i

[〈Ai〉 O

O 〈H¬i〉
]
πi − πT

i

[ 〈Ai〉 −|U |
−|V | 〈A¬i〉

]
πi

= πT
i

[
O |U |
|V | |H¬i − A¬i |

]
πi.

Consider now the splittings A = Mi − Ni , i = 1, . . . , p. Then,

Ni = Mi − A = πT
i

[
Ai O

O H¬i

]
πi − πT

i

[
Ai U

V A¬i

]
πi

= πT
i

[
O −U

−V H¬i − A¬i

]
πi.

Hence, we have that |Ni | = 〈Mi〉 − 〈A〉 and the proof is complete. �

We are ready now to prove the following convergence result.

Theorem 2. Let A ∈ Rn×n be an H -matrix. Let the matrices Ri be of the form
(4). Then, if θ � 1/q, the damped additive Schwarz iteration (8) converges to the
solution of (1) for any initial vector x0.

Proof. We first show that

|Tθ | � T̂θ . (25)

From the expressions (22) and (18) we have

T̂θ − Tθ = θ

p∑
i=1

Ei

[
M−1

i A − 〈Mi〉−1〈A〉
]

and applying Theorem 1, we have

T̂θ − Tθ = θ

p∑
i=1

Ei

[
〈Mi〉−1|Ni | − M−1

i Ni

]
. (26)

Let us recall that if A is an H -matrix, then |A−1| � 〈A〉−1 [11]. Then, the right
hand side of (26) is nonnegative, since

M−1
i Ni � |M−1

i Ni | � |M−1
i ||Ni | � 〈Mi〉−1|Ni | (27)

and thus

Tθ � T̂θ . (28)
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Now, from the expressions (22) and (18), we also have

T̂θ + Tθ = 2I − θ

p∑
i=1

Ei

[
〈Mi〉−1〈A〉 + M−1

i A
]
,

using again Theorem 1 and simplifying, we have

T̂θ + Tθ = 2

[
I − θ

p∑
i=1

Ei

]
+ θ

p∑
i=1

Ei

[
〈Mi〉−1|Ni | + M−1

i Ni

]
. (29)

Now, from (6), if θ � 1/q, we have

I � θqI � θ

p∑
i=1

Ei,

and then the first term of the right hand side of (29) is nonnegative. Moreover, from
(27), the second term of the right hand side of (29) is also nonnegative. Therefore,
we have that if θ � 1/q, then

−T̂θ � Tθ . (30)

Combining (28) and (30) we have the desired result (25).
To conclude the proof, we recall that if A,B ∈ Rn×n and |A| � B then ρ(A) �

ρ(B); see, e.g., [10, 2.4.9]. Applying this to (25) we have, using (23), that if θ � 1/q,
then ρ(Tθ ) � ρ(|Tθ |) � ρ(T̂θ ) < 1. �

2.3. Inexact local solves

Given the matrices Ãi , i = 1, . . . , p, representing the inexact local solves, for the
convergence analysis one considers the matrices

M̃i = πT
i

[
Ãi O

O H¬i

]
πi, (31)

cf. (15). We assume as before that H¬i satisfies (16). As in (17) and (18), we have
now EiM̃

−1
i = RT

i Ã
−1
i Ri , i = 1, . . . , p, and T̃θ = I − θ

∑p

i=1 EiM̃
−1
i A.

The conditions we impose on the local solves to guarantee convergence of the
additive Schwarz methods are the following:

〈Ãi〉−1 � O and (32)

|Ãi − Ai | = 〈Ãi〉 − 〈Ai〉, i = 1, . . . , p. (33)

We note that condition (32) is satisfied automatically if Ãi is an H -matrix. This
occurs, e.g., if Ãi is an incomplete factorization of Ai [9,14]. Condition (33) is equiv-
alent to having the splitting Ai = Ãi − (Ãi − Ai) be H -compatible. Note also that
under the conditions (32)–(33), since we have that (〈Ãi〉 − 〈Ai〉) � O, we conclude
that 〈Ai〉 = 〈Ãi〉 − (〈Ãi〉 − 〈Ai〉) is a regular splitting. These conditions also pro-
vide us with the counterpart to Theorem 1. Its proof is analogous, and therefore it is
omitted.
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Theorem 3. Let A be an H -matrix and let the matrices M̃i be defined as in (31).
Assume further that the inexact solves are such that the condition (33) holds. Then,
the splittings A = M̃i − Ñi , i = 1, . . . , p, are H -compatible splittings.

The following counterpart to the result (23) is obtained by applying [6, Theorem
3.5] to the M-matrix 〈A〉.

Theorem 4. Let A be an H -matrix and let the inexact solves be such that (32) holds
and that 〈Ãi〉 − 〈Ai〉 � O, i = 1, . . . , p, which hold if one imposes the condition
(33) as well. Then, if θ � 1/q, the damped additive Schwarz iteration with inexact
local solves, defined by (2) with the iteration matrix̂̃

T θ = I − θ

p∑
i=1

RT
i 〈Ãi〉−1Ri〈A〉

converges to the solution of 〈A〉x = b for any initial vector x0, i.e., we have that

ρ(
̂̃
T θ ) < 1.

We are now ready to show the convergence of the damped additive Schwarz iter-
ation matrix with inexact local solves for H -matrices.

Theorem 5. Let A be an H -matrix and let the inexact solves be such that the condi-
tions (32)–(33) hold. Then, if θ � 1/q, the damped additive Schwarz iteration with
inexact local solves, defined by (2) with the iteration matrix (12) converges to the
solution of (1) for any initial vector x0.

Proof. The proof is analogous to that of Theorem 2. Using the same techniques

one shows that |T̃θ | � ̂̃
T θ , and using Theorem 4, we conclude that ρ(T̃θ ) � ρ(

̂̃
T θ )

< 1. �

3. Multiplicative Schwarz iterations

We first observe that using (17), the iteration matrix for multiplicative Schwarz
Tµ given in (11) can be written as

Tµ =
1∏

i=p

(I − RT
i A

−1
i RiA) =

1∏
i=p

(I − EiM
−1
i A). (34)

As was the case for additive Schwarz, we consider the solution of the linear sys-
tem (20) by multiplicative Schwarz iterations with the same blocks as for the system
(1). Then, the new iteration matrix for the multiplicative Schwarz iteration is now

T̂µ =
1∏

i=p

(I − RT
i 〈A〉−1

i Ri〈A〉).
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Using the results of [1] applied to the system (20) (whose coefficient matrix is an
M-matrix), we have that

T̂µ =
1∏

i=p

(I − Ei〈Mi〉−1〈A〉) � O.

and that ρ(T̂µ) < 1.
Furthermore, using Theorem 1, we have that

T̂µ =
1∏

i=p

(I − Ei + Ei〈Mi〉−1|Ni |). (35)

We are ready to prove the convergence of multiplicative Schwarz iterations for
H -matrices.

Theorem 6. Let A ∈ Rn×n be an H -matrix. Let the matrices Ri be of the form (4).
Then, the multiplicative Schwarz iteration (2) with iteration matrix (11) converges
to the solution of (1) for any initial vector x0.

Proof. As in the proof of Theorem 2, to prove that ρ(Tµ) < 1 we show that |Tµ| �
T̂µ. To that end, we bound

|I − Ei + EiM
−1
i Ni | � |I − Ei | + |EiM

−1
i Ni |

= I − Ei + |EiM
−1
i Ni |

� I − Ei + Ei〈Mi〉−1|Ni |, (36)

where the last inequality follows from

|EiM
−1
i Ni | � |Ei ||M−1

i ||Ni |
� |Ei |〈Mi〉−1|Ni | = Ei〈Mi〉−1|Ni |.

From (34), using that A = Mi − Ni , we have

|Tµ| = |
1∏

i=p

(I − EiM
−1
i A)| �

1∏
i=p

|I − EiM
−1
i A|

=
1∏

i=p

|I − Ei + EiM
−1
i Ni |,

and using 36 and (35) we conclude that

|Tµ| �
1∏

i=p

(I − Ei + Ei〈Mi〉−1|Ni |) = T̂µ. (37)

The convergence of the multiplicative Schwarz iteration is proved. �
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3.1. Inexact local solves

In order to analyze the convergence of the multiplicative Schwarz iteration with
inexact local solves, we first consider the solution of the auxiliary system (20), and
apply [6, Theorem 4.5] to it. We thus obtain the following result.

Theorem 7. Let A be an H -matrix. Assume that 〈Ãi〉 − 〈Ai〉 � O, i = 1, . . . , p,
which hold if one imposes condition (33). Then the multiplicative Schwarz iteration
matrix with inexact local solves, defined by (2) with the iteration matrix

̂̃
T µ =

1∏
i=p

(I − Ei〈M̃i〉−1〈A〉)

converges to the solution of 〈A〉x = b for any choice of the initial vector x0, i.e., we

have that ρ(̂̃T µ) < 1.

We proceed as in Theorem 6, using Theorem 3 one can prove that |T̃µ| � ̂̃
T µ

implying that ρ(T̃µ) � ρ(
̂̃
T µ) < 1. We have then the following convergence result.

Theorem 8. Let A be an H -matrix and let the inexact solves be such that condi-
tion (33) holds. Then, the multiplicative Schwarz iteration with inexact local solves,
defined by (2) with the iteration matrix (13) converges to the solution of (1) for any
initial vector x0.

4. Coarse grid corrections for H -matrices

In this section, we study the convergence of the additive and multiplicative Sch-
warz iterations when a coarse grid correction is applied. We follow the structure used
in [1,6]. The coarse grid is represented algebraically by an additional subspace V0 of
dimension n0, with p � n0 < n. For this subspace, we define a restriction operator
R0 as before with (4) (i = 0), A0 as in (7), and E0 as in (5), implying

O � E0 � I. (38)

We also define the corresponding matrix M0 as in (15), and thus, by Theorem 1, the
splitting A = M0 − N0 is also H -compatible. In other words, Theorem 1 holds for
i = 0, 1, . . . , p, and this is how we use it throughout this section.

If the coarse grid equation A0e0 = r0, is solved approximately, we defined the
matrix Ã0 so that the approximation solves exactly Ã0e0 = r0. We assume that the
conditions (32)–(33) hold (for i = 0). One can then define a matrix M̃0 as in (31).
The analysis of the two-level methods presented in the sequel can be applied to the
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case of inexact local solves, and/or inexact corrections using the same techniques.
We omit the details.

4.1. Multiplicative Schwarz with multiplicative correction

Following [1], let the iteration matrix of the multiplicative Schwarz iteration with
a multiplicative coarse grid correction be

Hµ = (I − G0A)Tµ, (39)

where G0 = RT
0 A

−1
0 R0. It follows that (17) holds [1], i.e.,

E0M
−1
0 A = G0A. (40)

Let us consider the linear system (20). Applying the results of [1] to the M-matrix
〈A〉, we have that the iteration matrix

Ĥµ = (I − Ĝ0〈A〉)T̂µ (41)

is nonnegative and has spectral radius less than one, where

Ĝ0 = RT
0 〈A〉−1

0 R0 = RT
0 〈A0〉−1R0 = E0〈M0〉−1.

By Theorem 1, we know that 〈A〉 = 〈M0〉 − |N0| and thus we can rewrite the
matrix (41) as

Ĥµ = (I − E0 + E0〈M0〉−1|N0|)T̂µ.

Theorem 9. Let A ∈ Rn×n be an H -matrix and consider the solution of (1) by
multiplicative Schwarz iterations with multiplicative correction, i.e., the iteration
(2) with T = Hµ as in (39). Then, the iterations converge to the solution, for any
initial vector x0.

Proof. We can rewrite the iteration matrix (39) using (40) and Theorem 1 as

Hµ = (I − E0 + E0M
−1
0 N0)Tµ. (42)

As in the proof of Theorem 6, we have

|I − E0 + E0M
−1
0 N0| � I − E0 + E0〈M0〉−1|N0|. (43)

From (42) and (43), we have that

|Hµ|=|(I − E0 + E0M
−1
0 N0)Tµ| � |I − E0 + E0M

−1
0 N0||Tµ|

�(I − E0 + E0〈M0〉−1|N0|)|Tµ|.
We use now (37), which says that |Tµ| � T̂µ, then we have that

(I − E0 + E0〈M0〉−1|N0|)|Tµ| � (I − E0 + E0〈M0〉−1|N0|)T̂µ = Ĥµ.

Thus, |Hµ| � Ĥµ and therefore ρ(Hµ) � ρ(Ĥµ) < 1. �
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4.2. Additive Schwarz with multiplicative correction

The multiplicative correction (I − G0A) applied to the additive Schwarz itera-
tions gives rise to the following iteration matrix [1]

Hθ = (I − G0A)Tθ . (44)

As it can be appreciated, the structure of this iteration matrix is the same as that
of (39). Using the same logic as in the previous subsection, and using the fact that
|Tθ | � T̂θ , one can compare (44) with Ĥθ = (I − Ĝ0〈A〉)T̂θ , the iteration matrix of
additive Schwarz iterations for the system (20), for which ρ(Ĥθ ) < 1 if θ � 1/q;
see [1]. Thus, we have the counterpart to Theorem 9.

Theorem 10. Let A ∈ Rn×n be an H -matrix and consider the solution of (1) by
additive Schwarz iterations with multiplicative correction, i.e., the iteration (2) with
T = Hθ as in (44). Then, if θ � 1/q, the iterations converge to the solution for any
initial vector x0.

We remark that unlike the situation in the M-matrix case [1], the coarse grid
correction not always leads to a decrease of the spectral radius of the iteration matrix.
The following simple example illustrates this situation. Consider the following H -
matrix

A =


14/15 1/15 7/90 1/20

1/5 4/5 7/45 3/20
1/30 4/15 29/30 3/10
1/10 1/45 1/10 89/90

 ,

and let

R1 =
[

1 0 0 0
0 1 0 0

]
, R2 =

0 1 0 0
0 0 1 0
0 0 0 1

 ,

with the coarse grid correction given by

R0 =
[

1 0 0 0
0 0 1 0

]
.

The spectral radii of the iteration operators are

ρ(Tµ) ≈ 0.0004, ρ(Hµ) ≈ 0.0028,

ρ(Tθ ) ≈ 0.6667, ρ(Hθ ) ≈ 0.6674

for the value θ = 1/3.
On the other hand, for the case of A symmetric positive definite, one can say the

following. It holds that I − G0A is an orthogonal projection onto V0 using the A-
inner product, and thus ‖I − G0A‖A = 1. Therefore ‖Hµ‖A = ‖(I − G0A)Tµ‖A �
‖Tµ‖A and ‖Hθ‖A = ‖(I − G0A)Tθ‖A � ‖Tθ‖A.
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4.3. Additive Schwarz with additive coarse grid correction

Having a coarse grid correction additively consists of having an extra term in
(10) corresponding to the correction in the subspace V0. The corresponding iteration
matrix is thus

T̄θ = I − θ

p∑
i=0

RT
i A

−1
i RiA. (45)

In [6], this iteration was shown to be convergent for systems where the coefficient
is an M-matrix, and θ � 1/(q + 1). Thus, if we consider the solution of system (20)
by the additive Schwarz with additive coarse grid correction, we have that the matrix

̂̄T θ = I − θ

p∑
i=0

RT
i 〈A〉−1

i Ri〈A〉

is nonnegative and has spectral radius less than one, if θ � 1/(q + 1). Using Theo-
rem 1 (for i = 0, 1, . . . , p) we can rewrite it as

̂̄T θ = I − θ

p∑
i=0

(Ei − Ei〈Mi〉−1|Ni |) � O.

Theorem 11. Let A ∈ Rn×n be an H -matrix. Then, if θ � 1/(q + 1), the damped
additive Schwarz iteration with additive correction defined by the iteration matrix
T̄θ of (45) converges to the solution of (1) for any initial vector x0.

Proof. The proof is analogous to that of Theorem 2. On one side we have that

̂̄T θ − T̄θ = θ

p∑
i=0

(〈Mi〉−1|Ni | − M−1
i Ni) � O.

On the other, we write

̂̄T θ + T̄θ = 2

[
I − θ

p∑
i=0

Ei

]
+ θ

p∑
i=0

Ei

[
〈Mi〉−1|Ni | + M−1

i Ni

]
,

which is nonnegative since from (6) and (38), for θ � 1/(q + 1),

I � θ(q + 1)I � θ

p∑
i=0

Ei.

Then, we conclude that |T̄θ | � ̂̄T θ and thus ρ(T̄θ ) � ρ(̂̄T θ ) < 1. �
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