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The generalisation of Lloyd’s theorem to distance-transitive graphs can be improved
in the case of antipodal graphs by looking at the derived graph. In the (ase of binary per-
tfect codes the ro.ts of the Lloyd pelynomial are even integers. This con be applied to
give a short proof of the binary perfect code theorem.

1. Introduction

In this paper we show that the ~eneralisation of | oyd’s theorem to
distance-transitive graphs given by Biggs [ 1] can be i nproved in the case
of an antipodal distance-transitive graph. In particular, this shows that
the roots of the Lloyd polynomial in the case of binary perfect codes
are all even integers.

As an example we give a simple proof that there are no non-trivial
perfect binary e-codes with ¢ = 2 other than the binary Golay code. The

proof has the advantage that it deals with all values of ¢ = 2 simultane-
ously and does not require a reference to a computer search.

2. Antipodal distance-transitive graphs

A simple connected graph I' with distance function 9 is said to be
distance-transitive if, whenever 1, v, x, v are vertices of I satistying
a(u,v) = a(x, 1), then there is an automorphism g of I" such that g(x) = x,
g(v) = yv. We suppose that I" has diameter o, valency k. vert:x set VT" and.
if we fix a vertex z, we let


https://core.ac.uk/display/82229763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

176 D.H. Smith [ An improved version of Lloyd’s theorem

We call a distance-transitive graph antipodal if for ali u, ve T'y(z) U T'y(2)
either ¢(u, v) =d or u = v. For an account of the basic results on antipodal
distance-transitive graphs we refer the reader to [9].

For an antipodal distance-transitive graph I we can define a derived
graph I, The vertices of I' are the sets I'y(2) U I'y(2) (z € VT), and ver-
tices I'g(z) U ';(2) and I'y(z") U T'4(2') are adjacent in I if and eonly if
there are vertices v < I'g(z) U I'y(z) and v" € T'y(z'} U T'4(2") such that
au,vy=1inT. It is proved in [9, Lemma 7 and Theorem 3] that if
d > 2,T" is distance-transitive with valency k and diameter [!d].

If u, v are two vertices of a distance-transitive graph I' such that
¢(u, v) =i we define the intersection numbers

¢ =1 (@) n T,
a = 'r‘j‘“) N rl‘(v)' .
bi = lr".,,l(ll) M F‘(yd .

and define the intersection matrix of the graph to be the (d + 1) X (d +1)
triciiagonal! matrix with main diagonais given by the intersection array

% I 1”2 e Cd -1 (.'d

0 a; a, .. gy Qg1 .

K bl bz ... bd“ 1 *
For a full account of properties of the intersection matrices of distance-
transitive graphs see [2].

Lemma 2.1. If d > 2 aind the ¢ »rived graph T of T has intersection num-
bers c;, a;, by, then for 1 € i < [Ld], ¢;=c; a;=a; b; = b,.

Proof. This follows easily from [9, Lemina 8] (see Appendix 2). A proof
mey be found in [3, Proposition 4.2].

J. Perfect codes in antipodal distance-transitive graphs

Let Z,(v)={u€ VT: 8(u, v) < €}. A perfect e-code in T is a subset C
of VT such that the sets Z,(c) (c € ) form a partition of ¥I". In [1]
Biggs defines the e.genvector sequence {v;(N)} by

v(X) =1, v (A=A,
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Cir Vs (N (g =N v+ b _v;_((A5=0
i=12,..,d-1)

If x,(\) = Z¢. 0” (7\) then th cmal result of [1] is that if I contains
r

P o

O ts f x (A} are eigenvalues of the intersec-

Y o RN, |

a perfect e-code then the
tion matrix of I.
The following two lemmas have been proved independently by Heden

[6].

Lemma 3.1. If T s an antipodal distgiice transitive graph containing a
perfect code C then if u € C every vertex of T'y(u) is in C.

Proof. This is the remark following Theorem 1 of [5].

Lemma 3.2. If there exists a perfect e-code C in the antipodal distance-
transitive graph T, then the set of vertices Fg(c) W Fy(c) (c€ C) of T is
a perfect e-code C' in I,

Proof. The result is clear if d = 2e + 1. Suppose d > 2¢ + 1 and suppose
that vertices 'y (c;) U Ty(cy), Tylcy) U T'y(c,) in C are at distance
f<2e+1inI". From [9, Lemma 3] (see Appendix ?) we see that

r(}((”z) W) Fd(cl) C Pf(fl) U Fd,f(q)

and so there exist ¢3 € Fy(c)) U Tylcy), ¢4 € Ty(cy) U Ty(ey) such that
d(cy. ¢4) =f< 2e + 1 in I, which is impossible.

Also [CI = |CY/f oy + kd) (VI = {VIi/(kg + kg) and it follows from
Lemma 2.1 that, if d > 2e + 1, the number of vertices in the spheres of
radius e is the same in both cases and so the code C is perfect.

Lemma 3.3. If T is an antipodal distance-transitive graph with derived
graph I then the polynomial x,(\) is the same in bath cases (e < }{d — 1)

Proof. This follows itnmediately from Lemma 2.1.

Theorem 3.4. If an antipodal distance-transitive graph I' contains a per-
fect e-code C (e < §(d — 1)) then the roots of the polynomiel x (\) are
eigenvalues of the derived graph T".

Proof. This follows from Lemma 3.3, Lemma 3.2 and an application of
Biggs’ result to the graph [,
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Since the intersection matrix of I has d + 1 eigenvalues and the inter-
section matrix of "' has {3 (d + 2)] eigenvalues the result of Theorem 3.4
will be a stronger result than that given by K ggs.

Note. Hammond {4] has extended the definition of nearly perfect codes
to distance-transitive graphs and proved an analogue of Biggs’ result. He
proves a result similar to our Lemma 3.2 for a nearly perfect code in an
antipodal graph with k; < k,/k. By looking at the derived graph in the

- same way as we have done for perfect codes a similar in.p.rovement in
Ha nimond’s main result is possible. The improvement applics to nearly
perfect binary codes.

4. Lloyd’s theoren for binary perfect codes

Jsing the same notation as [1]we let @ =:1,2, ..., g} and define a
graph I'(n, g whose vertex set is Q", and in which two vertices are ad-
jacent if and only if they differ in precise.y ope coordinate. I'(x, q) is
distance-transitive. If ¢ > 2, I'(n, q) is not antipodal, but I'(n, 2) which
corresponds to the case of binary codes is antipodal and so Theorem 3.4
applies.

the derived graph of I'(n, 2), which we denote by I'(n, 2)/2, has inter-
scclion array

* ] 2 cee A -3y Yo 1
6 0 0 ... 0 int 1_)} (n odd) ,
n -1 n-2 1n+3) =*
os
‘* 1 2 S e
0 0 0 ... 0 0} (1 even) .
ln n-1 r- 2 ... tn+l *

Lerama 4.1, The eigenvalues of the intersection matrix of T(n, 2)/2 are
0 (mod 4}) ,
n,o—An -2y n—4, ~(1-6),..,-3,1 (n=1(mod 4}) ,
n.o-nn-4 -n-4),..,6,--6,2, -2 (n=2(mod 43) ,

i, —n~2yn-4, —(n-6),.. 3. -1 (n =3 (mod 4}) .

no-n.n-4, -(n--4),..,4, -4,0 (n

i
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Proof. S¢e Appendix 1.
Now let

[
bo(v) = i (n=xy(x-1
W, (x) :};/n( D (e,)( ; )
denote the Lloyd polynomial in the binary case. It is shown in [1, Sec-
tion 5] that x(A) = Y (x) where x = (n —A). Then Theorem 3.4, Lemr:a
4.1 and x = {(n - A} give us:

Theorem 4.2. If I'(n, 2) contains a perfect e-code then the roots of oY)
are even integers in {1,nl.

5. The binary perfect code theorem

We can use Theorem 4.2 to give a short unified proof that the Golay
code is the only non-trivial binary perfect e-code with ¢ = 2 (see [7,10}).
We suppose that e > 2 and, to evclude trivial coed. 5, n > 2e + 1. The
necessary conditions for the existence of a perfect ¢- ode that we shall

use are¢ Theorem 4.2 and the sphere packing condition

sh o T (1)=2x
' i=0 \!
¥.(x) and its zeros x; < x, < ... < x, have the following properties [7]:

(5.2 ¥(0)= Eﬂ (7)

\ 7

[

. N
3 wm=(" ).

”
&
M"a

x;=3en+1),

o

l:

e

5.5 Ilx,=er2¢y 0,

lz

-

.60 Ty, -n=er2 vy .
i=1
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¢
(5.7) l"l‘ (x,- D) =el27¢y ()
=mn—-2e-1D2M-Yn-3)...(n—e).

We foflow initially the method of [7].

Lemma 5.1. If I'(n, 2) contains a perject e-code (e > 2) then n <
H17ey+le - 1.

Proof. Let ay(n) = max{m € N: m | n, 24 m} and define »| and n, to be
2-equivalent if a,(n ) = a,(n,). Let C be a perfect e-code (e < L (n - 1)).
From (5.1), (5.2), (5.5) we have

[ -4
(5.8) ﬂl x; =e! K - e
i=

and so ay(x;)ay(x .. ay(x,) =ay(e!y < e!.
It follows that t... > are zeros x;, x; which are 2-equivalent and so
2xy € x, which gives

{5.9) x,x, < §(x, +.\'e)2 .

From (5.2). (3.5), (5.9) and the arithmetic-geometric mean inequality
we have

(5.10)  2%n(n-D..(n-e+)<e! 27y (0)

~ﬂ . gs;i¥f§‘§ 2 X txgt X, e

)

A-r

X, t ... ¥x } .
i . n+lyv¢
!Qg( 3 _ 6') g%(‘? l-) )

Hence

( _{z:_ﬁi}.)‘f nn-1)..(n-—e+l)
n+1 (n+1) e

v / o
son< e/l (3)/¢] - 1. Since

Cayleng . Lo 1 11 e
(1-3) ! 9¢ T 31G.9 e( e )



and we have

n<i(17e*1+Le- 1.

(5.11

Lemma 5.2

'T‘(

y -y

e?”thvnn="” s+2e+1(s=1,2

.’

TiTe+1’

Proof. From (5.3), (5.6), (5.7),

n%\'

and then since Theorem 4.2 tells us that x,, ..., x
we see that n is odd and so 2% (n - 2e
We note thatif n --

rh iy - 2e - 1),

(5.12)

Table |

e Buund of (‘ | l)

n<?7
n<li39
n< 214
n < 308
n <419
1< 547

PR bt

7):’” (x;

n o= 34

n=20tlg4 204

132129
23395571
41 73105137
75139 203
141 269

271

529

1= Zi'az(rz
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(1 e) (1 ~2e
e e

1 (¢ — 1Y 9l
,Z(), i+ 9¢ ;

e

181

“dp—iy-i

-

‘Ontaings a pert}"c*t e~-code with n > 2e + 1 and

A L )andson = et + 20 + 1.

1) then

Walues remaining
after applying
(5.12)

21
231395571
137
75139203
269

271

Values
rematning
after
applying
(5 A0

21
2339

75

=D =Y )Y D=0 -2¢ - D/(n-1)

. are all even integers
- 1) and the result follows.

Values
remaining
after
apply jng

(5.1

23
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Combining th~ results of Lemma 5.1 and Lemma 5.2 we see that no per-
fect e-code with i > e + 1 can exist with ¢ = 9. To deal with the cases
2 <€ ¢ < 8 we have only to LOHSI@LI‘ the values of 1 of the form 2*1s +
Je+ lis=1,2, L) withw < 1(17¢%)+ Le - 1. These can be eliminated
as shown in Table 1. Hence we have

Theorem 5.3. The Golay code with n =23, e = 3 is the only non-trivial
binary perfect code with e 2 2.

Appendix 1. Proof of Lemma 4.1

Let 5" denote the intersection matrix of I'(n,2)/2 and let A, =
[BU — AJ{ (B has [{n]+ 1 rows).

Case 1 n odd. B'3 has eigenvalues 3, -1, BS) has eigenvalues 5, --3, 1.
Add row i 1o row i + 2 starting from the beginning and then subtract
column j + ! from column j starting from wne beginning. Adding the pen-
ultimate row to the last row and substracting the last column from the

penuitiinaie column we obtain

-A 1 0

| -A L(n—3)
im+1)  —A-Ln-1)

and we note that the Jeterminant is the same as A, _, except that the
clement in the last row ar.? column is ~A— {(n - 1) instead of -\ +
1tn -1} Again, add row i to row i + 2 starting from the beginning and
subtract volumn j + 2 from column j starting from the beginning. Sub-
tract the penultimate row from the last row and add the last column to
the penullimate column, and we obtain A, =(n —N)(—(n -~ 2)-N) A, 4
and the result follows.

Cuse 2: n even. B has eigenvalues 0. 4, -4, B) has eigenvalues 6,
—~6, 2. - L

Add row i to row i + 2 starting from the beginning, subtract column
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j + 2 from column j starting from the beginning and we obtain

) 1 0
n-2 X 2
n-3 ~-X 3 !
A, =\ - n?) "
T=A in-2
0 el =X
Repeat the atove operations and we'abtain
.Y 1 0 .
n--4 -X 2
: n-5 -\ 3 .
A, =2 —n?) ' ;
~X 3n-3 i
in =X fn-2|
0 n-2 -\ !

Since (1 - 4)(3n - 1) =(n - 2)(4n - 2) the determinant is equal to A, 4
and we obtain 4, = (A2 --n2) 4, ,.

Appendix 2.

For the convenience of the reader we repeat here thtstatemem of [9,
Lemma 8]. If T" is an antipodal distance-transitive graph (d > 2) then for
i=1,2,..,[3d- DI, I'j(w) consists of one vertex from each of k ; dis-
tinct sets To(up L Cytu)) G=1,2, ..., k;) and

~ ( ki ~
lw () = ijlzll (Fu(“,-'} U ld(“,-))\ L) .
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