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We characterize the primitives of the minimal extension of the Lebesgue inte-
gral which also integrates the derivatives of differentiable functions (called the C-
integral). Then we prove that each BV function is a multiplier for the C-integral
and that the product of a derivative and a BV function is a derivative modulo a
Lebesgue integrable function having arbitrarily small L1-norm. © 2000 Academic Press

1. INTRODUCTION

The question of providing a minimal constructive integration process
which includes the Lebesgue integral and also integrates the derivatives of
differentiable functions was solved in [1, 3] by the following Riemann-type
integral (called the C-integral):

Defintion 1.1. Given a function f � �a� b� → R we say that f is C-
integrable on �a� b� if there exists a constant A such that for each ε > 0
there is a gage δ such that∣∣∣∣

p∑
i=1

f �xi��Ii� −A

∣∣∣∣ < ε�

for each δ-fine McShane partition 
�I1� x1�� � � � � �Ip� xp�� satisfying the
condition

p∑
i=1

dist�xi� Ii� < 1/ε� (1)
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The number A is called the C-integral of f on �a� b�, and we write
A = ∫ b

a f .

We recall that a gage δ on �a� b� is a positive function defined on
�a� b�, and that a δ-fine McShane partition of �a� b� is a collection

�I1� x1�� � � � � �Ip� xp�� of pairwise nonoverlapping intervals Ii ⊂ �a� b�
and points xi ∈ �a� b� such that Ii ⊂ �xi − δ�xi�� xi + δ�xi�� and∑p

i=1 �Ii� = b− a.
A first descriptive characterization of C-primitives was obtained by

Bruckner et al. [7]. They proved that a function F is a C-primitive if and
only if it is the limit in variation of a sequence of absolutely continuous
functions. Note that, in general, F is not a function of bounded variation;
however, its associate variational measure is absolutely continuous with
respect to the Lebesgue measure. This follows from the trivial observation
that a C-primitive is also a Denjoy–Perron primitive and by [4, Theorem 3].

In effect the last mentioned theorem gives a characterization of Denjoy–
Perron primitives. The idea of considering appropriate variational measures
to characterize the primitives of some integral has been also used in [2, 8,
9] for many multidimensional integrals and in [5] for the Henstock-dyadic
integral and for the Henstock-symmetric integral.

In this paper we define a useful variational measure that allows us to
extend [4, Theorem 3] to the C-integral (theorem 4.1). The resulting char-
acterization is then used to prove that each BV function is a multiplier for
our integral (Theorem 4.2), and consequently the product of a derivative,
and a BV function is a derivative modulo a Lebesgue integrable function
having an arbitrarily small L1-norm (Theorem 4.3).

2. PRELIMINARIES

R denotes the set of all real numbers. Given a Lebesgue measurable set
E ⊂ R� �E� denotes the Lebesgue measure of E. For a function F and for
an interval I = �α�β�, we use the notation F�I� = F�β� − F�α�. A δ-fine
McShane partial partition of �a� b� is a collection 
�I1� x1�� � � � � �Ip� xp��
of pairwise nonoverlapping intervals Ii ⊂ �a� b� and points xi ∈ �a� b� such
that Ii ⊂ �xi − δ�xi�� xi + δ�xi��.
Lemma 2.1. If f is a C-integrable function on �a� b�, then given ε > 0

there exists a gage δ such that
p∑
i=1

∣∣∣∣f �xi��Ii� −
∫
Ii

f

∣∣∣∣ < ε�

for each δ-fine McShane partial partition 
�I1� x1�� � � � � �Ip� xp�� satisfying
the condition

∑p
i=1 dist�xi� Ii� < 1/ε.
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The proof follows by standard techniques (see [11, Lemma 9.11]).

Lemma 2.2. If F is a function differentiable at x, then given ε > 0 there
exist δ�x�>0 such that

�F�I� − F ′�x��I�� < ε �dist�x� I� + �I���
for each interval I ⊂ �x− δ�x�� x+ δ�x��.
Proof. By the existence of F ′�x� there is δ�x� > 0 such that

�F�y� − F�x� − F ′�x��y − x�� < ε

2
�y − x��

for each y ∈ �x− δ�x�� x+ δ�x��.
Therefore, given I = �α�β� ⊂ �x− δ�x�� x+ δ�x�� we have

�F�β� − F�α� − F ′�x��β− α��
≤ �F�β� − F�x� − F ′�x��β− x�� + �F�α� − F�x� − F ′�x��α− x��
<

ε

2
�β− x� + ε

2
�α− x�

<
ε

2
dist �x� I� + ε

2
(dist �x� I� + �I��

= ε (dist �x� I� + �I���

3. THE VARIATIONAL MEASURE

For a given function F on �a� b�, a gage δ, a set E ⊂ �a� b�, and a positive
ε we denote

Vε�F� δ�E� = sup
{∑

i
�F�Ii�� � 
�I1� x1�� � � � � �Ip� xp�� is a δ-fine

McShane partial partition of �a� b�
such that xi ∈ E� i = 1� 2� � � � � p, and∑p

i=1 dist �xi� Ii� < 1/ε
}
�

We also denote

V0�F� δ�E� = sup
{∑

i
�F�Ii�� � 
�I1� x1�� � � � � �Ip� xp�� is a δ-fine

McShane partial partition of �a� b�
such that xi ∈ Ii ∩ E� i = 1� 2� � � � � p��

It is clear that

V0�F� δ�E� ≤ Vε1
�F� δ�E� ≤ Vε2

�F� δ�E� whenever ε1 > ε2� (2)
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Then we define

VCF�E� = supε infδ Vε�F� δ�E�
and

V0F�E� = infδ V0�F� δ�E��
From (2) it follows that

V0F�E� ≤ VCF�E�� (3)

By the same argument used in [18] for proving Theorems 3.7 and 3.15, we
can show that the extended real-valued set functions V0F and VCF are Borel
regular measures in �a� b�.

4. MAIN RESULTS

Theorem 4.1. F is an indefinite C-integral if and only if the variational
measure VCF is absolutely continuous with respect to the Lebesgue measure.

Proof. Let F�x� = F�a� + ∫ x
a f �t�dt be the indefinite C-integral of f on

�a� b�, and let E ⊂ �a� b� with �E� = 0. Without loss of generality we can
assume f �x� = 0 for each x ∈ E. Then by Lemma 2.1, given ε > 0 there
exists a gage δ such that

p∑
i=1

�F�Ii�� < ε

for each δ-fine partial McShane partition 
�I1� x1�� � � � � �Ip� xp�� with xi ∈
E� i = 1� 2� � � � � p, and

∑p
i=1 dist�xi� Ii� < 1/ε. Then Vε�F� δ�E� ≤ ε and by

(2), we have VCF�E� = 0.
Conversely, if VCF is absolutely continuous, then by (3), so is V0F . There-

fore by [4, Theorem 2], the function F is differentiable almost everywhere
in �a� b�.

Let N = 
t ∈ �a� b� � F is not differentiable at t� and let

f �t� =
{
F ′�t� if t ∈ �a� b�\N ,
0 if t ∈ N .

We prove that F is the indefinite C-integral of f . To this end, let 0 < ε <
1/�b− a� and let x ∈ �a� b�. For each t ∈ �a� b�\N there exists (by Lemma
2.2) δ1�t� > 0 such that

�f �t��B� − F�B�� < ε2

4
�dist�t� B� + �B���

for each interval B ⊂ �t − δ1�t�� t + δ1�t��.
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Moreover, since VCF�N� = 0, there exists a gage δ2 such that

p∑
i=1

�F�Bi�� <
ε

2
�

for each δ2-fine McShane partial partition 
�B1� x1�� � � � � �Bp� xq�� with
xi ∈ N� i = 1� 2� � � � � q, and

∑p
i=1 dist�xi� Ii� < 1/ε.

Let

δ�t� =
{
δ1�t� if t ∈ �a� b�\N ,
δ2�t� if t ∈ N ,

and let 
�I1� x1�� � � � � �Ip� xp�� be a δ-fine McShane partition of �a� x� sat-
isfying condition (1). Then

∣∣∣∣
p∑
i=1

f �xi��Ii� − �F�x� − F�a��
∣∣∣∣ ≤

p∑
i=1

�f �xi��Ii� − F�Ii��

<
∑
xi∈N

�F�Ii�� +
ε2

4
∑
xi �∈N

�dist�xi� Ii� + �Ii��

<
ε

2
+ ε

4
+ ε2

4
�b− a� < ε�

By the arbitrariness of ε, the function f is C-integrable on �a� x�,
∫ x

a
f �t�dt = F�x� − F�a��

and by the arbitrariness of x ∈ �a� b�, the function F is the indefinite C-
integral of f on �a� b�.

Recall that a function g� �a� b� → R is said to be a BV function whenever
there exists a function of bounded variation g̃� �a� b� → R such that g = g̃
a.e. in �a� b�.
Theorem 4.2. Each BV function is a multiplier for the C-integral.

Proof. Let f be a C-integrable function and let F be its primitive. If g
is a BV function, then by [17, Chap. 8, Theorem 2.5], fg is Denjoy–Perron
integrable, and for each x ∈ �a� b�,

�DP�
∫ x

a
fg dt = �Fg�xa − �L�

∫ x

a
F dg� (4)

here (DP)
∫

and (L)
∫

denote the Denjoy–Perron and Lebesgue integrals,
respectively. Let ��x� = �DP� ∫ x

a fg dt,

E = 
x ∈ �a� b� � �′�x� = f �x�g�x���
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and observe the set N = �a� b�\E is negligible. Without loss of generality
we can assume that f �x� = 0 for each x ∈ N , and that g�x� is increasing
and positive on �a� b�.

Now fix an 0 < ε < 1/�b− a�. By Lemma 2.2, for each x ∈ E there exists
δ1�x� > 0 such that

�f �x�g�x��I� −��I�� < ε2 �dist �x� I� + �I��
6

� (5)

for each interval I ∈ �x − δ1�x�� x + δ1�x��. As the variational measure
VCF is absolutely continuous by Theorem 4.1, there exists a gage δ2 such
that

p∑
i=1

�F�Ii�� <
ε

3���g��∞ + 1� (6)

for each δ2-fine McShane partial partition 
�I1� x1�� � � � � �Ip� xp�� with xi ∈
N� i = 1� 2� � � � � p, and

∑p
i=1 dist�xi� Ii� < 1/ε. Choose a σ > 0 so that

�F�x� − F�y�� < ε

6���g��∞ + 1� (7)

for each x� y ∈ I with �x− y� < σ , and define a function δ by the formula

δ�x� =
{
δ1�x� if x ∈ E,
min�δ2�x�� σ� if x ∈ N . (8)

Let 
�I1� x1�� � � � � �Ip� xp�� be a δ-fine McShane partition of �a� b� satisfy-
ing condition (1). Then

∣∣∣∣
∑
i

f �xi�g�xi��Ii� −���a� b��
∣∣∣∣

≤ ∑
i

�f �xi�g�xi��Ii� −��Ii�� ≤
∑
xi∈E

+ ∑
xi∈N

� (9)

An estimate of
∑

xi∈E follows from (5):

∑
xi∈E

�f �xi�g�xi��Ii� −��Ii��

<
ε2

6
∑
xi∈E

�dist�xi� Ii� + �Ii�� <
ε2

3
· 1
ε
= ε2�b− a�

6
<

ε

3
� (10)
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Next we estimate
∑

xi∈N . Note that f �xi� = 0 for xi ∈ N . Using (4) and
letting Ii = �αi� βi�, we obtain

∑
xi∈N = ∑

xi∈N ���Ii��

= ∑
xi∈N

∣∣∣∣
(
F�βi�g�βi� − F�αi�g�αi� − �L�

∫ βi

αi

F dg
)∣∣∣∣

= ∑
xi∈N ��F�βi� − F�αi��g�βi�

+F�αi��g�βi� − g�αi�� − F�ξi��g�βi� − g�αi���
≤ ∑

xi∈N ��F�βi� − F�αi��g�βi��
+∑

xi∈N �F�αi� − F�ξi���g�βi� − g�αi��� (11)

where ξi ∈ �αi� βi�. By (6),

∑
xi∈N ��F�βi� − F�αi��g�βi�� ≤

ε

3���g��∞ + 1� · ��g��∞ <
ε

3
� (12)

and by (7) and (8),

∑
xi∈N �F�αi�−F�ξi���g�βi�−g�αi��≤

ε

6���g��∞+1� · 2��g��∞<
ε

3
� (13)

Summing up the inequalities (10), (12), and (13) and taking into account
(9) and (10), we obtain

∣∣∣∣
∑
i

f �xi�g�xi��Ii� −���a� b��
∣∣∣∣ < ε�

which completes the proof.

Theorem 4.3. The product of a derivative and a BV function is a deriva-
tive modulo a Lebesgue integrable function of an arbitrarily small L1-norm.

Proof. Let f be a derivative, and let g be a BV function. By [1,
Teorema 1], f is C-integrable. According to Theorem 4.2, fg is also
C-integrable. Thus by [3, Main Theorem], there exists a derivative f1 such
that fg− f1 is a Lebesgue integrable function. Choose an ε > 0. The abso-
lute continuity of the Lebesgue integral and Lusin’s theorem imply that
there is a continuous function h1 with

∫ b

a
�fg − f1 − h1� <

ε

4
�
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Let h2 be a continuous function such that h2�a� = f1�a� + h1�a�� h2�b� =
f1�b� + h1�b�, and

∫ b
a �h2� < ε/4. Moreover, let h3 be a continuous function

for which h3�a� = h3�b� = 0 and
∫ b

a
h3 =

∫ b

a
�f1 + h1 − h2� −

∫ b

a
fg

=
∫ b

a
�f1 + h1 − fg� −

∫ b

a
h2�

Clearly, we may assume h3 ≥ 0 or h3 ≤ 0. Thus
∫ b

a
�h3� =

∣∣∣∣
∫ b

a
h3

∣∣∣∣ ≤
∫ b

a
�fg − f1 − h1� +

∫ b

a
�h2�

<
ε

4
+ ε

4
= ε

2
�

Observe that the function hε = f1 + h1 − h2 − h3 is a derivative, since a
continuous function is a derivative and the sum of derivatives is a derivative.
Furthermore,∫ b

a
�fg − hε� ≤

∫ b

a
�fg − f1 − h1� +

∫ b

a
�h2� +

∫ b

a
�h3�

<
ε

4
+ ε

4
+ ε

2
= ε�

Consequently, the claim follows by the obvious identity fg = hε+
�fg − hε�.
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