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Abstract. Algebratc spectficatton and transformattonal programmmg have been advc:ated as new 
approaches to the development of software, m order to solve some of the technical problems rn 
software engmeermg such as *‘early vahdatton”, correctness of rmplementatlons, re-usabrlrty of 
software, or re-usabthty of software destgn By means of a nontrtvtal example, VIZ an mteracttve 
text edttor, we demonstrate that the combmed use of these approaches allows to brtdge the gap 
between verbally stated requrrements and a runnmg program, even for non-toy, realrstrc problems 

1. Introduction 

Algebraic specification and transformational programming have been advocated 
as new approaches to solving some of the technical problems in software engineermg 
such as “early validation”, correctness of implementations, re-usability of software, 
or re-usability of software design. 

A lot of effort has been invested and is still spent on research in algebraic 
specification and transformational programming (for references to specific literature, 
cf. e.g. [9], [ 151 or [6]). We will follow the basic philosophy and the methodological 
lines as investigated in the Munich CIP project (cf. [4] and [13]). 

For denoting algebraic types and programs we essentially use the Algol-like variant 
of the language CIP-L (cf [2]), the essence of which we assume the reader to be 
familiar with. We also assume having avatlable algebraic definitions of certain basic 
data structures (for respective formal definitions, cf. [2] and [12]) such as. 

- (extended) sequences (defined by a type ESEQU) with 

& 
first resp. last 
rest resp. lead 

+ 

denoting the empty sequence, 
denoting the first (resp. last) element, 
denoting the remainder, after removing the first (resp last) 

element, and 
denoting concatenation (where attaching a single element IS 

subsumed as a special case). 
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(first, last, rest, and lead are partially dP$z _i* V. cations being undefined for 
empty sequences Furthermore, in CG+ * : 3’ 4 t r Tessive bracketing, these four 
operations are assumed to have I&.<&? 3 Gly than concatenation and test 
operators.) 

- stacks (defined by a type S’fh X! E se+~c~~~zs with restricted access, with 

& denoting ths empty ,cf -rck, 

top denoting the top ei ~;~icnt of the stack, 

POP denoting the remainler of the stack, after removing the top 
element, and 

push denoting the addition of an element to a stack. 

(Again, top and pop are partially defined operations being undefined for empty 
stacks.) 

- tuplestructures, where ( . . ) is used for denoting the tuple constructor and individual 
tdentrfiers are used for the respecttve selectors. In the sequel, we will just use 
triples (defined by an approprtate type TRIPLE). 

Rather than using the syntax of type instantiation as in CIP-L, we shortly write e g. 

mode input = ESEQU(char) 

to stand for an instantiation of the type scheme ESEQU with char (where just the 
sort sequ is renamed to input and all other operations remain the same). Apart from 
this slight devration, we use the CIP-L type mechanism as it is defined in [2] and [ 171. 

When demonstratmg any methodology by means of examples, one is always 
bothered by a trade-off between the size of an example and its comprehensibility. 
Small problems are easily understood and thus can be used to stress methodological 
aspects m all details. However, it is hard to convince a practitioner on the basis of 
such small, unrealistic toy ~~~lmples. Large problems, on the other hand, need a lot 
of effort to explam the problem proper, to motivate design decisions, or to discuss 
techmcal details, and run the risk of losing the methodologicai essence. 

The example we are going to deal with-an interactive text editor-can be seen 
as a kmd of a compromise between small problems and realistic ones: it is realistic, 
as tt is “actually a subset of an editor which has been implemented on several 
machines” (cf. the problem formulatton in [ 16]), yet it IS not too large for demonstrat- 
mg methodologtcal principles without getting lost in problem-specific technical 
details Since we mainly atm at conveying methodology, rather than just domg an 
example, we will deliberately skip details whtch we beiteve to be obvious (with 
strarghtforward soluttons) or which would lead to an Inadequate level of detail. 

According to its title the emphasis of this paper is on demonstrating how to 
formahze an informally stated problem with the algebraic specification technique 
and on how to transform the formal specification into a running program. The first 
aspect already has been tackled with the same example in [ll]. Nevertheless, we 
will deal wtth thts part here again for two reasons; first, we want to make this paper 
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self-contained, second, we have made some (mmor) changes m the formal 

specificatton, mainly to keep the presentatton at a reasonable length. 

The text editor IS one example out of a collectton of examples presented at the 

26th meeting of IFIP working group WG 2.1. This collection was intended and 

successfully used as a common basis for discussing various specification and program 

development techniques. In several discussions, this particular example has turned 

out to be a real challenge for specification languages and spectfication methodologies 

as well as for program development techniques, probably due to the difficulty 

inherent in giving a reasonably high-level treatment of a system with an obviously 

low-level procedural appearance. 

The verbal statement of the problem is literally quoted from [16] 

EXAMPLE NUMBER 4-TEXT EDITOR 

Thus problem asks for the lmplementatlon of a simple hne orlented edltor for use m 
an mteractlve environment The speclficatlon 15 actually a subset of an edltor which 
has been Implemented on several machmes 

The mput device 1s a keyboard/dtsplay Input from the keyboard IS obtamed one 
character at a time and IS one of the followmg characters letters, dlglts, blank, {cr} (hne 
return), {esc} (escape), {bs} (backspace) 

The display device IS controlled by outputtmg smgle characters from the followmg 
set letters, drglts, blank, {cr} (hne return), {bs} (backspace), {nel} (sound alarm) 

Note that the keyboard and display are completely Independent, “echomg” of input 
characters must be done by the program The effect of sendmg a {cr} IS to roll the 
screen up and set the cursor to the start of the next hne {bs} moves the cursor back 
one (no effect tf at start of hne) {bel} sounds an alarm, but has no effect on the cursor 
posltlon 

The current text IS a sequence of hnes which can be moddied by entermg edlt 
commands There IS no need to consider the problem of openmg files, readmg text etc 
Assume that the current text IS avallable as a variable (or eqmvalent) 

The ednor outputs a prompt character “V to mvlte entry of commands The followmg 
kommands are avadable 

lvote that most commands are not termmated by a {cr} 

b pos!tlon to start of first hne m file and prmt out the first hne 
e posttlon past last hne of Fi rnd dlsp!ay (end-of-file). 
m(old){cr}(new){cr} search for occurrence of the strmg (old) m the current Ime, and 

replace It by strmg (new) Display the modified hne 
I enter msert mode The cursor moves to the start of the next 

hne and text can be entered (one or several lines) which IS 
Inserted followmg the current hne Each new line IS termmated 
by a {cr} To leave insert mode, {esc} IS typed after the last 
Inserted hne 

k 

U 

delete the current hne and store tt m a stack (see u command) 
Display the hne after the one deleted 
retrteve the hne on top of the delete stack and msert It Just 
before the current hne, then display the retrreved hne (note 
the sequence ku leaves the file as It was) 
move n (decimal Integer) hnes forward m the file and type new 
current hne 

n+ 

n- move n (dectmal Integer) hnes backward m the file and type 
new current hne 
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4~eYw 

a(rep){crI 

f 
W 

search forward from the current posItIon for a hne contammg 
the string (key), and display the hne 
alter the (key) Just found by the search (s) command to the 
given replacement (rep) Display the modified hne 
forget (undo) the effect of the m or a command Just entered 
display window conslstmg of the mne lines either side of the 
current line 

The {bel} character IS transmltted to the display If any command syntax error IS 

detected or for dn unsuccessful search etc The backspace key may be pressed during 
entry of any text string, the effect IS to erase the previous character and backup the 
cursor If the backspace key IS used to erase the m or s character which starts a command, 
then a completely new type of command can be entered 

We decided to use this informal problem description without any changes, since 
we armed at a “reahsttc” case study: 

- It :s a fact of real-world software development that an informal problem descrip- 
tion and a formalizatton of the problem are given by different persons. 

- Deahng wtth a problem stated by someone else forces oneself to solve even nasty 
problems and thus prevents oneself from cheating by adaptmg the problem 
statement to fit a nice and elegant treatment. 

- Formalizing an Informal problem statement given by someone else entails a lot 
of desrgn decisions which would never have appeared in a self-made problem 
statement. These design decistons give us an opportunity to comment on alterna- 
tives with respect to the specification 

2. Formal specification 

Gtven an informal description of a problem, in any approach to formal 
specification a key question is “how do we find the formalization in a systematic 
way?“. Therefore we will start this section with some general considerations on 
methodology 

2.1. Methodological consrderatlons 

For our parttcular case study and similar ones (cf., e.g., [3]) a “strictly top-down” 
approach using “hierachtcal decomposition” and “stepwise detailization” turned 
out to be adequate and profitable. 

After having decided on an adequate “concept” (cf. [12]) underlying the formal 
specification, the formalization process starts by first describing the overall behaviour 
of the system as a function on suitably defined abstract objects which model the 
interface between the system and tts environment. 
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At least for non-toy systems it will usually be hard to define this function just in 
terms of those objects (characterizing the system’s interface) and their basic 
operations. Therefore, in a first decomposition step further “internal” object kinds 
and operatrons are introduced to be used in the definition of the system’s function 
In this way a complex system function 1s decomposed into smaller, and hopefully 
more easily manageable functions. 

Frequently part of the definition of the newly introduced operatrons over such 
“internal” object kinds follows immediately from the original, informal descnption 
(“detailization”). For the remaining parts of the respective definition (which often 
are only detected after a check for formal completeness) we proceed as above, i.e. 
we give meaning to functions by introducing new object kinds and new operations 
(i e. further “decomposition”) which, in turn, are defined by detallization and/or 
further decomposition. This iterated process ends as soon as we have arrived at a 
suitable level of pragmatics where either all object kinds and operations are com- 
pletely defined or only refer to object kinds and operations that are supposed to be 
known. 

Within the framework of algebraic specification the combination of decomposition 
and detaihzation just described amounts to introducing a new type: “decomposition” 
roughly corresponds to introducing the signature of a type (i e. the syntactic part) 
whereas “detailization” aims at providing meaning in the form of appropriate axioms 
for the object kinds and operations introduced by the preceding decomposition 
step. Particularly helpful in this context is the notion of “sufficient completeness” 
(cf. [17]) which supports establishing completeness for each level of a hierachical 
specification during construction (cf. also [ 141). 

Proceeding top-down here has the additional advantage that new object kinds 
and operations are only introduced “by need” rather than by somehow combining 
e+ting operations into more complex ones without knowing whether they are 
actually needed as in the strict bottom-up case. (Note that this does not imply that 
top-down processing forbids the use of existing types and type schemes.) In this 
sense top-down processing minimizes the number of such “internal” object kinds 
and operations. 

2.2. The overall behaviour of the edztor 

In contrast to many other problems, finding a suitable concept for the specification 
is a critical issue for the editor problem, since it is an interactive system. 

2.2.1. A concept for specQjymg interactwe systems 

Interactive systems are communicating systems. From this viewpomt it would be 
straightforward to specify an interactive system using the formalisms developed for 
describing communicating systems (e.g. CSP [7], CCS [lo] or recursive stream 
equations [S]). On the other hand, interactive systems are very specific communicat- 
ing systems with only two (communicating) processes, viz. the user and the system. 
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In addition, commumcation between these two processes takes place in a restricted, 

rather “dlsclplined” way, VIZ in the form of a “dialogue”. 

A dialogue in an interactive system can be seen (cf. [S]) as an alternating sequence 

1,0,1202 * * - z,,o,, of “inputs” I,, and “outputs” 0,. An z,, usually originates from the 

user’s unconstrained will, but an o, surely depends on the respective I, and probably 

also on the “history”, i.e , the i, with n < m: 

input I, + output o1 

input z2 + output o2 
“visible effect” . 

input I, + output 0, 

Thus, m an abstract view an interactive system can be seen as a “function” from 

input sequences to output sequences. Consequently, its behaviour can be adequately 

specified by defining the system’s reaction to arbitrary input sequences 

Following these lines the overall behavlour of the editor can be specified by a 

function 

funct edzt = (input zn) output 

where the object kind input characterizes sequences of characters, i.e. 

mode input = ESEQU(char) 

and the object kmd output characterizes sequences of certam actions to be observed 

by the user of the editor, 1.e. 

mode output = ESEQU(action). 

Here, char and action are considered as primitive object kinds. A further detailization 

can be found later. 

2.2 2 Decomposztzon znto subtasks 

The formahzatlon of the problem stated in Section 1 now aims at giving a definition 

for edzt Since, due to the complexity of the problem, such a definition is not at all 
stralghtforward, we follow the methodological line sketched above, and decompose 

the function edzt into smaller, better manageable logical units, viz. 

- mapping from (concrete) input character sequences to sequences of (abstract) 

commands; 

- effects of commands (or sequences of commands) within the system; 

- mapping from (abstract) effects to (concrete) physical output. 

The objects to be manipulated by sequences of commands are texts, outputs (what- 

eier that means), and an internal stack (see commands k and u). For the current 
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level of refinement, however, we can abstract from these details and combrne the 
objects that are manipulated into the notion of a “state”. Thus the essential part of 
the editor will be a mapping 

funct &ct = (commsequ cs, state S) state, 

(where commsequ and state denote the object kinds characterizmg “sequences of 
commands” and “states”) which associates a new state with each sequence of 
abstract commands and a given state. 

We use 

funct parse = (input zn) commsequ 

for mapping concrete input to abstract commands, 

state znitstate 

for providing an initial “state”, and 

funct unparse = (state s) output 

for mapping abstract output to a concrete one, such that the overall behaviour of 
the editor can be completely specified by 

edzt( zn) = unparse( eflect( parse( zn), znztstate)). 

According to our global development strategy, we now aim at providing definitions 
for the newly introduced operations efict, parse, and unparse, and for the constant 
inztsrate. As outlined above, this either means considering individual cases or 
referring to further new operations. 

2.3. Translation between external and znternal representatzon 

The translation between external and internal representation of sequences of 
commands is to deal with the operations parse and unparse. However, we will just 
concentrate on the function parse and not deal with the formal specification of 
unparse mainly for two reasons: 

- The informal specification is fairly imprecise about output Thus, a formalization 
would require a proper extension of the informal description that goes substan- 
tially beyond the original problem description. Our goal, however, is to solve the 
task as given in [16]. 

- If the information about output had been more precise and complete, a formaliz- 
ation of unparse would be rather analogous to the one of parse (as dealt with 
below) and thus would add no real substance to our considerations. 
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23.1 Dejinmon of the data structures mvolved 
In order to be able to give a formal specification of 

funct parse = (input zn) commsequ, 

we first have to define the data structures mvolved. 

For being complete, the definitron 

mode input = ESEQU(char) 

(as introduced above) requires a further definitton of admissible characters 

Therefore, accordmg to the informal requirements, we define 

mode letter = (a, b, c, . ), 

and 

mode digit = (0, 1,2, . ) 

The set of possible Input characters is then charactertzed by 

mode char = letter 1 digit 1 blank ( { bs} I{ esc} I {cr} 

(where we have simply adopted the notation for the special characters that was 

used m the mformal descrtption). 

For the definition of parse we will also need input strings that do not contain the 

characters {cr} and {esc]. These strings are defined by 

mode string = ESEQU(char c. c g {cr, esc}). 

Furthermore we need sequences composed of digits and {bs}, defined by 

mode dstring = ESEQU(digit 1 {bs}). 

According to the informal description commands are either simple, consisting of a 

single letter (such as, e g., b) or are “parameterized”, consisting of a letter and 

“arguments” (such as, e.g , m(old)(new)). For the definition of commands we use 

modecommand=(b~e(k~u~f~w~m~s~a~i~+~-Ii’lec), 

where 

- b, e, k, u, f, and w are to denote the respecttve (simple) commands; 

- m, s, a, 1, +, and - are shorthand notations for the respective “parametertzed” 

commands They are supposed to stand for tuples consisting of the respective 

command letter and the types of the “arguments” of the command. Thus, e g , 

m abbreviates (m, string, string), s is short for (s, string), + is short for (+, nat), etc, 
- 1’ and ec are commands produced by parse that are not available to the user; ec 

denotes an additional error command in case of syntactically illegal input (cf. 

below) and i’ IS used for the decomposition of an insertion command into hnewise 
msertlons (cf also below). 

For sequences of commands we simply use the definition 

mode commsequ = ESEQU(command). 
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2.3.2. The problem of backspaces 

According to the informal descrtption a {bs} character may erase certam preceding 

characters. In case of certam “parameterized” commands it even may be used to 

erase the respective command letter 

One might be tempted to try a specification where first all {bs} characters are 

removed from the input strmg before parsmg takes place. However, a closer look 

at the informal description tells us immediately that the erasing effect of a {bs) 

character depends on the respectrve state of the parsing process when the {bs} 1s 

detected. 

Thus, e.g., an input string of the form 

(*) b{bs}k{bs}{bs}c.. . 

has the same effect as 

bkc _ . . 

provided a new command is currently being recognized. If, however, the string (9) 

is the beginning of a text to be inserted, then tt has the same effect as 

C . . . 

(if we assume that an i command cannot be undone by {bs}, cf below). And if the 

above string (*) is the beginning of the argument for a search, then even the preceding 

command letter 1s to be erased. 

It is exactly for this interrelation between parsing and backspace removal why rt 

is approprtate to specify the effect of backspaces jointly with parsing rather than 

specifying both tasks independent of each other 

For modelling the effect of {bs} we will use the auxiliary operations 

funct mbl = (string f) nstring (“move backspaces left”), 

funct dlb = (nstring n) nbsstring (“delete leading backspaces”), 

where 

mode nbsstring = (string s. {bs}e s), 

defines strings containing no backspaces, 

mode b&ring = ESEQU({bs}), 

defines strings consisting of backspaces only, and 

mode nstring = (string s: 3 nbsstring n, bsstring b: s = b + n) 

defines (“normalized”) strings having backspaces only at the beginning 

The operation mbl deletes pairs of characters consisting of a character (dtfferent 

from {bs}) and an immediately following {bs} character. Remaining {bs} characters 

accumulate to the left of the resulting string, as can be seen from the property 
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mbl({bs} + S) = {bs} + &l(s). Formally this operation 1s defined by 

V string S, s, , sz, char c. CE {cr, esc}: 

mbZ( s) = mbl( s, + s2) provided s = S, + c + {bs} + s2, 

mbl( s) = s provided s # S, + c + {bs} + s2. 

The operation dlb simply skips all leading {bs} characters (from a string where 

all backspaces are at the beginning) unttl a character different from {bs} is encoun- 

tered. It is defined by 

d&(e) = e, 

dlb({bs}+s) = dlb(s), 

dlb( c + s) = c + s provided c # {bs}. 

For both operattons completeness of the definition is obvtous. 

For the formal spectficatton of parsing it is convenient to have furthermore an 

auxthary predicate that checks for a gtven string whether all backspaces can be 

removed: 

funct nbs = (string t) boo1 

mbl( f) = E V first( mbf( t)) f {bs} 

(where V denotes sequenttal disjunction) 

2 3 3. Parsing correct rnput 
Now we have all prerequisites to give a formal specification for the operation 

parse. We first concentrate on those cases that are obvious from the verbal problem 

description 

Assuming the general quantification 

V input SC, char c, string C, ‘) t2, d&ring fd : 

we define parse as follows: 

Empty input yields an empty command sequence, i.e., 

parse(~) = E. 

A smgle b, e, k, u, f, w character is recognized as the respective command, i.e., 

parse( c + SC) = c + parse( sc) provided c E {b, e, k, u, f, w}. 

With respect to the m, s, and a command we have to differentiate according to 

the form of then first “argument”. If all backspaces in this argument can be removed, 

1 e. if nbs( t,) holds, we follow the verbal description and define 

parse(m+t,+{cr}+t2+{cr}+sc)=(m,mbl(t,),dlb(mbl(f2)))+parse(sc) 
provided nbs( t,), 
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parse(s+ t, +{cr}+ SC) = (s, mbl(~,))+parse(sc) provided nbs( t,), 

par.se(a+ t, + (CT} + SC) = (a, &I( t,)) +parse(sc) provided nh(t,). 

In case lnbs( t,) holds, mbl( t,) starts with a backspace which erases the preceding 
command letter. Therefore we specify 

parse( c + t, + SC) = parse(rest( mbl( t,)) + SC) 
provided -wzbs( t,) A c E {m, s, a}. 

Note that this axiom implies the axiom 

parse(c+{bs}+sc)=parse(sc)provided c~{m,s,a} 

which formalizes the informal requirement that the backspace key may be used to 
erase an m or s character which starts a command. 

With respect to the i command we have to make a decision. Obviously, the 1 

command could be specified analogous to the m, s, or a command above. However, 
taking into account the particular “msertion mode” mentioned in the informal 
description, it also seems reasonable to assume that an i character starting an 
insertion command cannot be erased by a following {bs). Deciding in favour of the 
latter possibility we specify: 

parse(i+t,+{cr}+sc)=(i,dZb(mbZ(t,))+{cr})+parse(i+sc), 

parse(i+ t, +{esc}+ sc) = (i’, dlb(mbl(t,))+{cr})+parse(sc) 

Here the pseudo-command i’ is used to signal that the last line of an insertion 
command has been recognized. 

A correct move command requires a non-empty sequence of digits followed by 
a + or - sign. Hence, parsing a move command can be specified by 

purse( rd + srg + SC) = (sig, conv( mbZ( rd), 0)) + purse( sc) 

provided (mbl( td) Z E A first( mbZ( Id)) f {bs}) A ng E { +, -} 

(where A denotes sequential conjunction). 
Here we have used another auxiliary operatton, viz. 

fuact conu = (nbsdstring d, nat n) nat 
(“convert” a string of digits into a number), 

where 

mode nbsdstring = ESEQU(digit), 

characterizes strings consisting of digtts only. 
COIIU describes the translation of a sequence of digits into a decimal number. It 

is formally defined by 

conu(s, in) = in, 

conu(n+sd,in)=conu(sd,inxlO+n). 
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2 3.4 Parslng mcorrect Input 
One of the major benefits of using the algebratc specificatton technique is the 

availability of the theoretical notton of “sufficient completeness” (cf. [ 171) that 
considerably helps in detecting mcompleteness, even m a seemingly complete verbal 
spectficatton as ours In our parttcular example, for instance, we imnediately find 
out that the informal requtrements contam no mformatton on how to react to 
erroneous situations which may come up in connectton with syntactically wrong or 
mcomplete input 

Obvtously, incomplete input has no effect, i.e., yields an empty command 
sequence: 

parse( c + t,) = E provided c E {m, a, s, I} A r.bs( t,), 

parse(m+ t,+{cr}+ t2) = E provided nbs(t,), 

parse( td) = E provided mbl( td) Z E 

Contrary to thts, syntax errors result in an “error command” ec. Syntax errors 
occur, whenever, m a situation where a command is expected, a character appears 
that does not start a legal command: 

parse(c+sc)=ec+parse(sc) 
provided c & ({b, e, m, i, k, u, s, a, f, w} u digit). 

Another erroneous situation 1s the Illegal use of an {esc} character in connection 
with an m, s, or a command 

parse(c+ t,+{esc}+ sc)=ec+parse(sc) provided nbs(t,)~ c~{m,a,s}, 

parse(m+ t,+{cr}+ t,+{esc}+sc)=ec+parse(sc)provided nbs(t,). 

FinaXy, an error situation occurs, if a sequence of digits is not followed by a -I- 
or - stgn: 

parse(t,+c+sc}=ec+pawe(sc) 
provided (mbl( td) # E A first( mbl<t,j) f {bs}) A c E ({+, -} u digit). 

Here we have specified a very simplistic view of error handling. We simply indicate 
the presence of an error or tgnore mcomplete input. Of course, we also could have 
specified a much better error dtagnosls by mformmg the user on the kind of error 
that has occurred With little additional effort, we also could have made a 
specrficatton m such a way that m case of an incomplete command the system 
attempts to process the available part of the input and requests the missing part 
from the user With respect to the length of our presentation, however, we have 
abandoned this possibility. 

Above, we have treated leading {bs}, {esc}, or {cr} characters as an erroneous 
situation One also could imagine simply ignoring them, but only at the expense of 
an additional axtom for parse. 
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2 3.5. Summary 
In order to provide for easier checks of consistency and formal completeness, we 

now simply summarize the definition of parse by collectmg all axioms given so far 

As a kind of first step towards an rmplementatton, in this summary we rearrange 

and rephrase the above axioms in such a way that the left-hand sides of the axioms 

just differentiate between empty and non-empty input sequences and that, further- 

more, in the case of non-empty input sequences, axioms concerning the same leading 

character are grouped together: 

V input m, SC, char c, digit 4 string t, , f2, dstring td : 

parse(E) = E, 

parse( c + in) = c +parse( m) provided c E {b, e, k, u, f, w}, 

parse(c+m)=ec+parse(m) 
provided c E ({b, e, m, i, k, u, s, a, f, w} u digit), 

parse(m+m)=(m,mbZ(t,),dZb(mbZ(t,)))+parse(sc) 
provided WI = t, + {cr} + t2 + {cr} + SC A nbs( t,), 

parse(m+ zn) = parse(rest( mbZ( t,)) + SC) provided zn = 1, + SC A -mbs( t,), 

parse(m+ m) = E 
provided (in E string A nbs( zn)) v (m = t, + {cr} + t2 A nbs( t,)), 

parse(m+ m) = ec+parse(sc) 
provided (zn = tl + {cr} + t2 + {esc} + SC A nbs( t,)) 
v (m = t,+{esc}+scA nbs(t,)), 

parse(i+m)=(i, dZb(mbZ(~,)~t{cr})+parse(i+sc) 
provided in = t, + {cr) + SC, 

parse(i+ m) = (i’, dZb~mbZ(t,))+{cr})+parse(sc) 
provided in = tl + {esc} + SC, 

parse( i + m) = E provided in E string, 

parse(s+m) = (s, mbZ(t,))+parse(sc) provided zn = t,+{cr}+sc A nbs(r,), 
parse(s+ m) = parse(rest( mbZ( t,)) + SC) provided m = t, + SC A lnbs( t,), 
parse(s+ m) = E provided m E string A nbs( m), 
parse(s+ zn) = ec+parse(sc) provided in = t, +{esc}+sc A nbs( t,), 

parse(a+ m) = (a, mbZ( t,)) +parse(sc) provided in = t, + {cr} + SC A nbs( tl), 
parse(a+ m) = parse(rest( mbZ( tl)) + SC) provided m = tl + SC A lnbs( t,), 
parse(a+ m) = E provided zn E string A nbs( m), 
parse(a+ in) = ec+parse(sc) provided m = tl +{esc}+ SC A nbs(r,), 



276 H Partsch 

parse(d + zn) = (sig, conu(mbl(td), O))+purse(sc) 

provided zn = td -I- szg + SC 

A (mbl( td) # E A first( mbZ( td)) f {bs}) A szg E (+, -}, 
pause(d + ipt) = parse(rest(mbl( r,)) -I- SC) provided zn = t, + SC A lnbs( t,), 

parse( d + in) = E provided zn E dstring A mbl( d + zn) f e, 
parse(d+zn)=ec+purse(sc) 

provided d + zn = rd -I- c + SC 

A (mbl( td) # & A first( mb!(?,)) # {bs}) A c tZ ({+, -} u digit). 

Now the proofs of sufE&ent completeness and soundness (i.e , ngn-overlapping 
left-hand sides) of the specification are straightforward, although not trivial. These 
are left as an exercise to the interested reader. 

2 4. The kernel of the edztor 

The “kernel” of the editor (or its “abstract”, “internal” behaviour) is captured 
by the operatzon e&c? that maps a sequence of commands and a state to a new 
state The state transition affected by a single command is described by an auxiliary 
operation apply 

2.4 1. The eflect of sequences of commands 

A sequence 1s ezther empty, or it can be decomposed into an individual element 
and a sequence. Thus an unreflected formalzzation would immediately lead to 

eficr( E, s) = - - 

eflect(c+cs, s) = - * - 

where s denotes an arbitrary state, cs a sequence of commands, and c an individual 
command. 

However, at a closer inspection of the verbal requirements for an individual 
command we will soon find out that there are commands of different quality, namely 
commands having effects on states, and others (such as a or f), having effects on 
other commands. In particular thus latter observation suggests that in our formalzz- 
atlon below always two leading elements of a sequence should be considered 
simultaneously 

Using the definitions of command and commsequ as introduced in the previous 
section, the overall behaviour of the editor may be specified, according to the verbal 
description, by 

V command c, c’, commsequ cs, state s: 



Algebraic specrjicatlon and transformatlonal programmrng 277 

(1) 
(24 
(2b) 
(34 
(3b) 

(3c) 
(34 

(34 
w 

eJi32( 2, s) = s, 

e&cct( c + E, S) = s provided c E {b, f}, 
e&cct( c + E, S) = ~pply(c, S) provided c & {a, f}, 
e_ffect(c+ c’+ CS, s) = &ect(c’+ cs, S) provided c E {a, f}, 
e$ect(c+c’+cs, s)= e_trect(c’+cs, appZy(c, s)) 

provided c SZ {a, f) A C’S? {a, f}, 
e&ct( c + f + cs, s) = e&cct( (s, key) + cs, S) provided c = (m, key, rep), 
e$ect(c+c’+cs, s)= e@ct((m, key, rep)+cs, appZy((s, key), s)) 

provided c’ = (a, rep) A c = (s, key), 
@ect( c + f + cs, s) = e&c? {c + cs, S) provided c SZ {a, f, m}, 
e#ecf (c + a + cs, S) = e@ect( c + cs, S) provided c S? {a, f, s}. 

Here we deliberately have used shorthand notations such as e g. CS-Z {a, f} for 
13 string x: c = (a, x) A c # f. 

Of course, we could have combined, e.g , axioms (2a) and (3a) into one axiom. 
However, the form used above has the advantage that the formal completeness of 
this specification, as well as its soundness, are obvious: Axiom (1) covers empty 
command sequences; axioms (2a) and (2b) deal with the case of singleton command 
sequences; and the axioms (3a)-(3f) deal with all possibilities of command sequences 
containing at least two elements. 

In fact, the above specification is essentially equivalent to the one given in [ll], 
the only differences being 

- an “evaluation” of command sequences from “left-to-right” rather than “right-to- 
left”; 

- a different way of processing consecutive b or e commands. 

As before, the above specification also had to take care of problems not mentioned 
in the informal requirements, such as, e.g., 

- “what is the effect of an f command applied after a command that is not an a or 
m command?” 

- “what is the effect of an a command applied to a command different from an s 
command?” 

both of which were simply decided to have no effect. 

2.4.2. Dejnition of state 
In order to be able to specify the function apply used in the above specification, 

we first have to define what a “state” is. 
As already outlined, the abstract notion of state served for collectively refemng 

to the “internal” objects of the editor, i.e. the text file, the delete stack (see commands 
k and u) and the output sequence. Thus, an obvious definition for state is a triple 
consisting of these entities, i.e., 

mode state = TRIPLE(file, stack, output). 
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Consequently, the constant rnrfmte denoting the intttal state can be defined by 

state rnrtslate = (E, , ccl, F,, + ?) 

where P( denotes the empty file, .Q the empty stack, and E, the empty output. The 
“?” in the output sequence reflects the verbal requirement that “the editor outputs 
a prompt character “3” to invite the entry of commands”. 

Of course, one also could imagine other definitions of inmtate such as 

state lnrtsfate = (rmt( ff), &d , &,+ ‘) 

where tf 1s a functton for retrievmg a (non-empty) text from some secondary store 
and rn~t inittalizes the file for text processtng. The specification of the editor Itself, 
however, IS not mfluenced by this deciston. 

From the mformal requn-ements we know that a “text IS a sequence of lines”. 
Obvtously, a (proper) hne IS a (possibly empty) string composed of letters, digtts, 
and blanks, that IS furthermore termmated by a {cr}, i e., 

mode pline = (input I: 3 nbsstring n- I = n + {cr}), 

and, hence, a text can be specified by 

mode text = ESEQU(pline) 

(where E, IS used to denote the empty text). 
Phrasings hke “first lrne in the file”, “next line”, “current line”, etc., suggest 

constdertng the “current text file” as a triple conststing of some piece of text (that 
might be empty), an actual hne, followed by ..nother piece of (possibly empty) text. 
However, there is also the case of the empty file, i.e , the file containtng nothing at 
all In order not to be forced to always drstmgursh between empty and non-empty 
files, we introduce a “pseudo-hne” (denoted by F,), extend the above definition of 
a lrne to be etther a proper hne (as defined above) or a pseudo-lure, I.e., 

mode line = (pline 1 F,), 

and define files urnformly by trtples consisting of text, (extended) line, and text, 
le. by 

mode file = TRIPLC(text, line, text) 

(where et denotes the triple (F,, Ed, FJ which models the empty fle). 
“urthermore we assume 

modeaetion=(d(.),p( ),t(.), -.) 

(I e a collection of output acttons where d( .), p( ), . . . are abstract representations 
for the actions “display”, “prmt”, “type”, etc , that are used in the inforinal 
description) 
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2.4.3. Applicatron of single commands 
Based on the above decomposition of state, we are now in a position to attempt 

a formal definition of the function apply used above. 
Obviously (inherited by the above level of our specification) apply only has to 

deal with commands that are not an a or f command. Therefore it suffices to consider 

funct apply = (command’ c, state s) state, 

where 

mode command’ = (comm8id x: x ti {a, f )), 

since, according to the axioms (2b), (3b), and (3d), for a commands may not occur 
as arguments of apply. 

For defining the semantics of the ir.dividual commands we have to give appropriate 
axioms, at least one for each of them. From the aspect of presentation, it seems 
reasonable to point out similarities between different commands whenever there are 
any. 

Thus, obviously all commands (except for the e, i, i’, and the u command) display 
the {bel}, if the text file is empty, i.e. 

V command’ c, stack d, output o: c ti {e, i, i’, u}: 

appb(c, (Q, 4 4) = (G, 4 0 + WN) + 3. 

This means that, in the sequel, for all commands (except for e, i, i’, and u) a 
non-empty text file may be assumed. Therefore, for the remaining axioms we assume 
the general quantification 

V text t, , tz, t3, pline 1, I,, stack d, output o: t3 f E,: 

which will be supplemented by additional restrictions when dealing with individual 
commands. 

From the informal requirements the specification of the “regular” behaviour of 
the editor (i.e., in cases where t3 denotes a non-empty text and 1, I, denote proper 
lines) is straightforward. 

(a) The b command: 

ap&(b, (01~6 h), 4 0)) 

The prerequisite for the definedness of the partial operations first and rest is 
fulfilled here, as t, + I+ tt # E, IS guaranteed by the definitton of pline. 

(b) The e command: 

ap&(e, ((jI, 1, fd, 4 4) = ((fl f I+ h, &I, et), 4 o+d({eofl)+ ‘9, 

awW, (Q, 4 4! = (ET, 4 0 + 4kofD + 9. 
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(h) The s command: 

V nbsstring key: 

upply((s, key), ((tl, 1, fJ, d, o)) = ((Cl, I, t&, d, o+d(l)+ ?) provided key isin 1, 

~PP~Y((s, key), @,, 1, tJ, d, o)) 
= apply( (s, key), ((t, + Z, first t3, rest f3), d, o))provided l( key isin 1). 

Here isin denotes a predicate checking whether the string key occurs in I. 
(1) The w command 

~PPMW, ((t,, &12), 4 4) =(I,, 4 f2), 4 o+d(wind(t,, 1, f2))+ 3. 

Again, wznd denotes an auxiliary operation that generates a window of the 
desired size. 

2 4.4. Erroneous situations 
So far we have specified what has been required from the commands in the verbal 

specification. A simple formal exammation, however, will again yield that the 
specification of apply is not complete, since borderline cases (that do not appear 
in the verbal specification) still have to be dealt with. 

Of course, there are several possibilities to get rid of these marginal cases. One 
way IS to use partial functions. However, in contrast to other applications, using 
partial functions does not make sense in our particular example, since it is hard to 
imagine what “undefined” should mean (should it mean that the screen bursts, or 
what else?). Another (simpler) way in our particular example would be to transmit 
the {be]} character as a kind of “universal” error message. This would be similar 
(and, hence, similarly unsatisfactory) to what in error handling in compilers 1s 
known as “pantc mode”. What is really tacitly expected (at least from the customer’s 
side) is a “friendly” behaviour, 1.e. whenever in such a borderline case there is a 
chance still to do something reasonable, the s--tern should do so. It also seems 
reasonable to additionally output {bel} in order r r -tgnal a “warning” in these cases. 

Aiming at such a friendly behavtour, we E line: 

ad (e) 

apply(k, 0,) 5 44 0)) 

=((f,, q, EJ, push(d, I), o+d({eof))+d({bel))+?). 

In the verbal specification tt is required to display the line after the one deleted. 
However, if there is none, tt cannot be displayed 

ad (f) 

aPPlY(u, (01, 1,12), &d,o))=((tl,z,t2),&d,o$d({bel})+?). 
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Here we have assumed that the u command has no eflect on the state, if the delete 

stack IS empty-agam d case that IS not conslaered In the verbal requirements. 

&MI (g) 

(and, of course, analogously for (-, I t 1)). 
The informal requrrements might suggest that + and - have converse effects, e g 

(-,(m-n)) ifm>n, 

(-,m)+(+,n)= 1fn>nt, 

tfn=m 

(and analogously for (+, m)+(-, n)). 

If we had spectfied m this way, we not only have forgotten that each move 

command also generates output even tf the file IS not changed. We also would have 

prevented any “user-frtendly” solutton to the above-menttoned borderlme case. 

ad (h) 

V nbsstring key 

apply((s, Aey),((r,, 4 4, 4 0)) =411, 4 4, 4 o+d({belI)+?) 
provided T( key isin I) 

Stall two more questtons have to be tackled. 

First, we have not yet spectfied what happens, tf the current lme of the file is the 
pseudo-lure &I As we assume that tiles only can be created using the edttor 

operattons, the case (t, , E,, tJ always tmplres t2 = Ed, since (for a non-empty file) 

(I,, F~, tJ c,ln only result from applymg an e or k command Hence, the case (t, , Q, tz) 

wtth f2 f P, needs not to be considered explicttly, and an approprtate mvartant 

a\\ertton can be added to LZ~~/J 

funct uppl,, 

= (command’ C, state F 

3 stack d, output 01, text f ,, f2 F = ((t,, cl, f2), d, o)+f, = E,) state 

For the current lure bemg the pseudo-lure we have 

V command’ c E {I, I’, u, b, e, -) 

~PPMG ((t,, Q, e,), 4 0)) =f(f,, q, F,), 4 o+d({bel))+ ‘9 

and 
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w&O, (l t 1, cl, E,), d, 0)) =((et, first ft, rest t3), d, n+p(first rl)+?), 

cpMe&, ~1,4,4 4) =th, &I, &4 o+d(b~fD+ 9, 

aPP~y((-9 OL ((I I, EI,E,), 4 0)) = ((II, ~1, d, 4 0 +d(Uxll) + ?), 

aPPly((-, r+ I), (13, ~1~4~4 0)) = wPly((-, 11, ((lead h, last b, &Ad, 0)). 

Secondly we have to deal with the fact that any syntactically mcorrect input is 
mapped to an (abstract) error command ec. This error command simply can be 
specified by 

V lilef: 

wb(ec, (f, 4 0)) = (f, 4 0 + d(-b#j + ‘9. 

24.5. Summary 
As for the function parse we now summarize the axioms of apply and rearrange 

and rephrase them in order to ease the proofs of soundness and formal completeness. 
Thus we get altogether: 

funct apply 
= (command’ c, state S: 

3 stack d, output o, text t, , t, : s = ((t, , .q , r,), d, o)+ t, = EJ state, 

V filef; stack d, output o, nat z, tevt t,, t2, pline /, I,, nbsstring x, y: 

=((E,,tjrst(t,+[+t2),rest(t,+I+tz)),d,o+p(first(r,+I+t~))+?), 

apply@, tt, , &I, d,d, 0)) = (h, first tl , rest t,>, 4 0 + p(first 6 i + ‘9 

provided I, f E,, 

app~y(c,((t,, l, G, 4 0)) =((r,+l+ t2, &I, 4, 4 o+d({eofl)+ ‘9, 

wply(e, ttl, &I, d, 4 0)) = (O,, E~, d,d, 0 fd({eofl) + 3, 

aPP~y(tmx,yL((t,, 4 M, 4 o))=((t,, reph4 x,Y), tJ,d, o+re(&x,~)+?), 
aPPiyt@, x, YL ((f,, &I, 4,4 0)) =th, EI, 4,4 o+d(WU)+ 7), 

aPPly(k 0, 01, 4, b), 4 4) = 0, + 4, 4 h), 4 0 + d(O), 
aPPly((l, 0, O,, Q, d,d, 4) = h, 4 4,4 0 + d(O), 
aPPly((l’, O,((r,, II, h), 4 o))=titl+k, 1, b.), 4 o+d(O+% 
UPPlY(V, I), ((t 1, ~1, d,d, 0)) = Ot,t 4, 4 0 +40 + 7), 

apply( k, ((t, , I, tz), d, 0)) = ((t, , first tz, rest tJ, push(d, I), o + d(first t2) + ?) 

provided t2 # E, , 

wW, tt,, l,4,4 0)) = ((tl, &I, 4, push(d, 40 +dWN + ‘0, 

’ wWk ((G, &I, G/, 4 0)) = ((fl, EI, 4,d, 0 +d(bfl) + d({beO) + 3, 
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app/y(u,((~,,/,t,),d,o))=((/,,topd,/+~,),popd,o+d(topd)+?) 
provided d f F,~, 

upp/v(u,(f,~,~,o))-(/,~,,,o+d({bel})+?), 

up/(vb,((t,, t-1, F,), d, rr)i--(f,, top4 c.,), pop4 o-kd(topd)+?) 

provided d f 8 cl) 

qpb((+,O),(~,, 1, Q, 4 ~))=((i,r 1, Q, 4 o+t(O+% 
~PP/Y((+, 11, ((tI, &I, 4, d, 0)) =((f,, &I, 4 4 o-+d(iW)+ 3, 
wM(+, I-I- 11, (tt, 1, ~~),d, 0)) = ~P/Y((+, 11, Or + 1, first r2, rest b>, 4 0)) 

provided t2 f Ed, 

appl,,((+,rSl),((r,,/,~,),d,oo))=((l,,I,~,),rf,n+n!!hrl))+?), 

~~~~~((-,0),((~,,I,~,),d,oo))=((~,,I,~,),d,o+t(/)+?), 
w;vi(-,O),((f,, 61, FJ, 4 o))==(f,r &I, Et), 4 o+d({W)+‘O, 
qvh((-, r + 11, ((I~, 4 fd, 4 0)) = QPP/Y((-, 11, ((lead tt, last II, I+ k), 4 0)) 

provided 1, # E., 

QPP~Y((-, I+]‘,( et, 1, h>,d, o))--((E,, 1, h), 4 o+404)+9), 

UPPb,((-, l-t 11, ((r,, Q, &,A 4 0)) = QPP~Y((-, 11, (lead fl, last t,, 4,4 0)) 

provided I, # q, 

qyM(-, I+ I), (F,, 4 0)) =b,, 4 o+d(WU)+?), 

upp/y((s, x), ((1,) /, r,), d, 0)) =((t,, /, t?), d, o+d(/)+ ?) pravided x isin I, 

wp/y((s, x), ((t,, 1, Q, 4 0)) = UPP/Y((S, ~1, ((I, + 1, first h, rest M, 4 0)) 

provided t-, # F, A -I(X isin I), 

~PP~~(s, xl, ((t,, 1. PA 4 0)) = ((1,) 5 F,), 4 0 +d({W)+ ‘9 

provided l( x isin I), 

apph(b, WO,, cl, 4,4 4) =(h F~, d, 4 o+d(bN+?A 

~PPMW, (tr, 9 4 G, 4 0)) =((t,, 4 h>, 4 o+d(wrnd(l,, 4 Q)+ 3 

provided I f t , , 
UPP~(W, ((t, , &I, 44 0)) = ((1, , &I, A4 0 + d({W) + 9, 

uppb(ec, (A 4 0)) = (f; 4 0 +d(W$) + 3. 

3. Transformational development 

The subsequent transformatronal development will deal with the functtons eflecf, 

upp/y, and purse Its emphases IS on the transrtron from the respective algebraic 

specificatrons to eqmvalent (tart rccursrvc) apphcatrve programs working rn an 

“on-line” fashron, I e , processing one unit after the other (without knowing the full 

history) 

The overall strategy we are gomg to follow 1s fanly simple- first, we transform 

the algebrarc specrficatron mto an apphcatrve program, second, we apply suitable 
transformatrons to Improve thus program The mam techniques to be used are 



Algehrarc specrjcarron and trantjormafronal programmmg 285 

rephrasing of axioms on the level of algebraic specification, and abstraction, embed- 
ding, case introduction, and unfold/fold for the operational improvement. 

3.1. Development of an operational version of e$ect 

The operation eflect, describing the overall behaviour of the editor, was defined 
on sequences of commands rather than on individual commands to be processed 
one at a time. In this way we were able to specify the effects of the commands a 
and f, which depend on “previous” commands, in a very elegant way. In the sequel 
we are going to transform this abstract specification into an equivalent one where 
commands are individually processed, 

3.1.1. Condensing the SpeciJicatiuvr of e$ect 

The formulation of the axioms for e@ct in Section 2.4.1 was primarily guided 
by the intention to ease a completeness proof. Thts led to a fairly large number of 
axioms. Therefore our first development step aims at reducing this number while 
simultaneously providing somewhat more uniformity for the right-hand sides of the 
axioms in order to keep the presentation reasonably short. 

To this end we introduce 

funct apply’ = (command c, state s) state: 

if c E {a, f} then s else apply( c, s) fi 

(which allows us to combine the axioms (2a) and (2b) as well as (3a) and 
(3b)) and furthermore combine (3e) and (3f) into one axiom. Thus we get a new 
(equivalent) specification for effect: 

V command c, c’, commsequ CS, state S: 

(1) eJkct( E, S) = s, 

(2ab) @ect( c + E, s) = apply’( c, s), 

(3aW e@ct(c+c’+cs, s) = e$izct(c’+cs, appZy’(c, s)) 

provided c E {a, f} v c’& {a, f}, 

(3c) e&t ( c + c’ + cs, S) = eflect (( s, key) + CS, apply ‘( c’, s )) 

provided c’ = f A c = (m, key, rep), 

(34 e&ct( c t c’ + CS, s) = e@ct( (m, key, rep) + CS, upply’( c, s)) 

provided c’ = (a, rep) A c = (s, key), 

(3ef) e$ect(c+c’+cs,s)=e#ect(c tcs, appZy’(c’,s)) 

providedc~{a,f}~((c’=f~c#m)v(c’=a~cfs)) 

3 1 2 Introductron of debmlter symbols 

We still have to differentiate between empty sequences, smgleton sequences, and 
sequences with more than one element. Hence our next efforts aim at makmg thts 
distinction vanish. Intmtively, we use a technique that IS well-known in the areas 
of compiler construction or string processing. There, frequently, strings are supple- 
mented by (unique) delimiter symbols such that recognizing an empty siring is 



reduced to recogntze the respectrve delimiter symbol, and therefore “normal” cases 
and “borderlme” cases can be treated ahke 

Formally, we perform a simple data type transformation changing a command 
sequence into one which is delimited at both ends by the (new) delimtter symbols 
# (acting as dummy commands). To this end we introduce 

- sequences consisting of commands and dellmiter symbols, defined by 

mode commsequ’= ESEQU(command#) 

where 

mode command’ = command 14 # 1. 

- sequences of commands that have a delimtter symbol at therr right end, 

mode commsequn = (commsequ’ r’* 3 commsequ 3 : s’ = s + # ), 

and 

- sequences of commands that have dellmiter symbols at both ends, 

mode commsequ#Y# = (commsequ’ s’ 3 commsequ s s’ = # + s + #). 

Next we ‘idjust app$’ and effect to these new data types, i.e we transform them into 
functions apply# and eflect” that work on dehmtted command sequences, but 
otherwtse are the same (Note, that by defirution, for all objects cs of types commsequ# 

and commsequHrr respecttvely, CI z E holds ) 

We get 

funct apply” = (command” c, state r) state. 

if c E {a, f, #} then 5 else apply(c, S) fi, 

and 

funct (commsequ#x, state) state efict#, 

defined by 

W command ft c, command c’, commsequ# cs, state s. 

(l/2) eflect#( c + #, s) = apply”( c, s), 

(3ab) eflect”( c + c’+ cs, F) = eflect#( c’+ cs, apply”( c, s)) 

provided c E {a, f, #} v c’& {a, f}, 

(3c) e#ect’(c+~‘+c5,S)=e~ect~((s,key)+cs,apply’(c’,s)) 

provided c’ = f A c = (m, key, rep), 

(3d) e~ect”(c+c’+cs,s)=e~ect#((m,key,rep)+cs,apply”(c,s)) 
provided c’ = (a, rep) A c = (s, ke),), 
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W) eflecr”( c + c’+ cs, s) = e@cf”( c + cs, uppZy#( c’, 8)) 

providedc~{a,f,#}~((c’=fnc#m)v(c’=a~c#s)). 

The right-hand sides of (3~) and (3ef) can be further simplified using the respective 
premises and the definition of apply’!. We get 

(3c) . ..= e&ct”((s, key) + cs, S) provided . . . , 

(3ef) . ..= e#ect”( c + cs, s) provided . . . . 

Of course, the definition of edzt has also to be adapted to these new data types 

edrt( m) - unparse( e$ect “( # -I- parse( in) + #, initstate)) 

such that the previous transformation step technically amounts to an embedding 
(cf. [ 121). 

3.1.3. Shlftmg thefocus of the computation 

Due to the fact that commands may have etfects on other commands the definition 
of e#eci has to take into account always two commands at a time. In the previous 
definition of e@cf this fact was reflected by looking one command ahead. Of course, 
the same srtuation also can be handled by remembering the command that has been 
considered before 

In order to achieve this shaft of the focus of the computatton we add two arguments 
to efect which are to remember the prevrous command and the prevrous state. 
Technically, this IS achieved by another embedding. We introduce 

funct (commsequ#c.y, state s’, command’c, state S: 

s’ = upply#( c, s)) state efi 

defined by 

efl(cs, app/y”(c, s), c, s) = e&ct#(c+ cs, s), 

and transform the defimtion of edrt into 

edlt( rn) = unparse( efs( parse( m) + #, mrtstate, #, snrtstate)). 

Obviously, this defimtion IS equivalent to the previous one, as (accordmg to the 
defimtion of apply#) 

apply”( #, rmtstate) = mztstate. 

The goal now IS to derive a definition of efl which is independent of e&ct#. 
Using the above definition of e#, the axioms for efict’ directly translate to 

V command# c, command c’, commsequ# CS, state S, s’: s’ = apply #( c, s). 

(l/2) efl( #, s’, c, S) = s’, 

(3ab) e#(c’+ cs, s’, c, S) = efl(cs, ~PP~Y”(c; 0, c’, 0 

provided c E {a, f, #} v c’& {a, f}, 



(3c) 23-( c’+ cs, s’, c, s) = 2fl(w ~pp~y’((s, key), s), b, key), 4 

provided c’= f A c = (m, key, rep), 

(3d) eJJ( c’+ 0, s’, c, s) = cfl(cLv, qMy’((m, key, rep), 0, (m, key, rep), s’) 
provided c’ = (a, rep) A c = (s, key), 

(3cf) c$( C-t= c.s, s’, c, s) = efl( cs, s’, c, S) 

providedcL{~,f,#}~((c’=J~c#m)v(c’=a~c#s)). 

Fmaliy, a@y# can be ehmmated- 

By sample unfoldmg the assertion translates to 

s’ = if c E {a, f, #} then s else apply(c, S) fi 

whrdh can be further simplified to 

Unfoldmg upply# m the axioms IS trtvial for (3~) and (3d) and leads to a case 

dt$tinction for 3(ab). 

Altogether we get 

V command” c, command c’, commsequ# cs, state S, s’: 
(c E {a, f, #} A s’ = s) V s’ = upply( c, s). 

(l/2) eJI( #, I’, c, s) = S’, 

(3a) cfl( c’+ cs, s’, c, s) = e#(cs, s’, c’, s’) provided c E {a, f, #} A C’E {a, f}, 

(3b) 2Jf( c’+ CS, s’, C, s) = efl( cs, apply( c’, s’), c’, s’) provided c’& {a, f}, 

(3c) efl(~‘+cs, J’, C, Y) = ef(cs, upply((s, key), s), (s, key), s) 
provided c’ = f A c = (m, k2~!, yen), 

(3t.i) r$Yc’+ cs, s’, c, s) = efl( cd, upply( (m, key, rep), s’), (mm, key, rep), s’) 
provided c’ = (a, rep) A c = (s, key), 

(W cjj(c’ f cs, s’, c, s) = ejj(cs, s’, c, s) 

provided c Z {a, f, #} A ((c ’ = I‘/\ C’ f m) v (c’ = a A c z s)). 

Note that thts version also could have been dertved without introducmg the auxihary 

operattons app$’ and upply# respecttvelj, however, at the expense of considerably 

more effort m keepmg the number of axioms as small as possible 

3.1 4 An equwulent applicative program 
Accordmg to the rules gtven m [3], our last version of 28 can immediately be 

converted Into the defimtton of an apphcatlve functton 

funct efJ’ = (commsequ” cs, state s’, command” c, state S: 

(cE{a,f,#}A5’=s)Vs’=u~jJy(c,s))state. 
begin command’ c’ = first cs, 
if c’= # then S’ 

else commsequ# CS’ = rest CS, 
if c E {a, f, #} A C’ E {a, f) then efl( cs’, P’, c’, s’) 

0 C’CZ {a, f} then 2$‘( cd, upply( c’, s’), c’, s’) 
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0 c’= fA c = (m, key, rep) then ea)(cs’, upply((s, key), s), (s, key), s) 
II c’= (a, rep) h c = (s, key) 

then e$‘(cs’, apply(m, key, rep), s’), (m, key, rep), s’) 
llc~{a,f,#}h((c’=fhc#m)v(c’=ahc#s)) 

then efl( cs’, s’, c, s) “i fi end 

where, by defimtron, the last branch of the guarded expression simply can be 
abbreviated to else. 

3.2. Zntroductton of on-line processing 

The previous definition of efl still assumes that the complete input sequence is 
already parsed into a sequence of commands. Our next intermediate goal is the 
introduction of “on-line” behaviour, i.e. the parsing and processing of single com- 
mands one after the other rather than considering (pre-parsed) command sequences 
as done so far. 

3.2.1. Combmmg parsmg and processmg of smgle commands 
Technically, the introduction of “on-line” behaviour is achieved by simple func- 

tion composrtion, applied to er and purse in the right-hand side of the definition 
of edrt, viz. 

edrt( m) = unparse( eJs’( parse( m) + #, initstate, #, uutstate)). 

This function composition simply can be done by using the unfold/fold strategy. 
First, we redefine edlt into 

edzt( m) = unparse( efl( in, mtstate, #, rnrtstate)), 

where 

funct er = (input In, state s’, command+ c, state s: 

(c E {a, f, #} A s’ = s) V s’ = apply( c, s)) state: 

e$Y parse( m) f #, s’, c, s). 

By unfolding (the sq ‘7 4 version of) efl we get 

funct er= (roi,t* 5; - ste s’, command# c, state s: 

(c E {a, f, #} A s’ = s) V s’ = apply( c, s)) state. 

begin command# c’ =z fir&( parse( in) -I- #); 
if c’ = # then s’ 

else commsequ’ cs’ = rest( parse( m) + #); 
if c E {a, f, #} A C'E {a, f} then efl( cs’, s’, c’, s’) 

Cl C’SZ {a, f} then efl( cs’, apply( c’, s’), c’, s’) 
0 c’= f A c = (m, key, rep) then ef(cs’, app/y((s, key), s), (s, key), s) 

II c’ = (a, rep) A c = (s, key) 

then ef(cs',apply((m key, rep),s'),(m,key, repAs') 
else ef(cs',s',c,s) fi fi end 
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Thus last verston stall contams sequences of commands that have to be elrminated. 

We do this m two steps. Ftrst, by abstraction, we Introduce auxihary operations 

funct nexlcommand ; (input in) commanal”. 

first( parre( m) f # ) 

and 

funct inputrest = (input in parse(m) f E) input: 

some input z parse(z)+# = rest(parse(m)+#). 

Obvrously, parre( mputrest( m)) + # = rest( pr:rre( rn) + #), and, hence, our next inter- 

mediate verston reads 

funct eJf” = (iaput rn, state s’, command# c, state s 

(cE{a,f,#}As’=i ) V s’ = applly( c, s)) stat;: 

begin command” c’ = nextcommand( rn), 

if c’ = # then s’ 

else input rn’ = rnputresl f+ m); commsequ# cs’ = patbe: PI ,’ -f 4 ~ 

Ef CE (a, f, #I A C’E {a, f) then efl(cs’, s’, c’, s’) 

0 c’& ;a, f} then @!J’(cs’, appl_y( c’, s’), c’, s’) 

0 c’= f A c = (m, keJ: rep) then e#‘(cs’, appZy((s, key), s), (s, key), s) 

0 c’ = (a, rep) A c == (s, key) 

then e,ff’(cs’, apply((m, keJ: rep), s’), (m, key, rep), s’) 

else eff’( CT’, s’, c, S) fi fi end 

Next, by stmply unfoldmg the declaratton of CF’, we get 

fwct e#” = (input w, state s’, command# c, state S: 

(cE{a,f,#}As’=r)V s’=apply(c,s))state. 

begin command# c’= nextcommand( m), 

if c’=# then S’ 

else input IYR’ = mputrest( m), 

if c E {a, f, #} A C’E {a, f} then efl( parse( rn’) + #, s’, c’, s’) 

0 C’C! {a, f} then eff’( parse( m’) + #, apply(c’, s’), c’, 7’) 

0 c’ = f A c = (m, ke_y, rep) 

then eff’( parse( m’) + f, app/v((s, key), s), (s, key), s) 

Cl c’= (a, rep) A c = (s, key) 

then ej’( parse( m’) + #, upply((m, key, rep), s’), 

(m, key, rep), 5’) 

else efl’( parse( m’) C #, s’, v. 9) fi fi end 

Now foldmg (wtth nssertton) of efJ” IS possible and our final result IS 

funct ep = (input rn, state s’, command+ c, state s 

(c E {a, f, #> A s’= s) V s’= apply(c, s)) state 

begin command# c’ = nexrcommand( m), 
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it c’ = # then s’ 
else inpot WI’ = rnputrest( VI); 

if c E {a, f, #} A C’E {a, f} then e$“( In’, s’, c, s’) 
0 c’ti {a, f} then e#“( in’, upply( c’, s’), c’, s’) 
0 c’ = f A c = (m, key, rep) 

then cfl”(rn’, c@y((s, key), s), (s, key), sj 
0 c’ = (a, rep) A c = (s, key) 

then efl”( In’, apply(m, key, rep), s’), (m, key, rep), s’) 
else ef”( rn’, s’, c, s) fi fi end 

where commands are recognized (by nextcommand) and processed one at a time. 

3.2.2. A more detarled verszon 
Obviously, withm the given context, 

c’e{a,f} @ c’=ecvc’=bvc’=evc’=(m,key,rep)v 
c’ = (3, I) v c’ = (I’, I) v 

c’=kvc’=uvc’=(+,n)vc’=(-,n)vc’=s(key)vc’=w 

Hence the respective branch m the above program can be further detailed. Addt- 
tionally, we combine the auxiliary operations nextcommand and mputrest mto a 
single new auxiliary operation 

funct nextcomm = (input m) (command#, input): 

(nextcommand( m), if parse( m) = E then E else znputrest( rn) fi) 

This leads to 

funct e@” = (input m, state s’, command# c, state s’ 
(c E {a, f, #} A s’ = s) V s’ = opply( c, ,t)) state. 

begin (command# c’, input m’) = nextcomm(zn), 
if c’ = # then s’ 

else if c E {a, f, #) ,A C’E {a, f} then e#“( m’, s’, c’, s’) 
Cl c’ = ec then e#“( cs’, uppZy( ec, s’), ec, s’) 
0 c’ = b then efl”( cs’, upply(b, s’), b, s’) 
Cl c’ = e then efl”( cs’, upply(e, s’), e, s’) 
II c’ = (m, key, rep) 

then efs”( cs’, upply( (m, key, rep), s’), (m, key, ~pp), s’) 
Cl c’= (I, I) then eff”(cs’, upply((i, I), s’), (i, I), s’) 
Cl c’ = (I’, I) then efjp”(cs’, apply((l’, I), s’), (i’, I), s’) 
II c’ = k then efl”( cs’, uppfy( k, s’), k, s’) 
Cl c’ = u then e@“( cv’, upply( u, s’), u, s’) 
0 c’= (+, n) then e#“(cs’, apply((+, n), s’j, (+, n), s’) 
Cl c’ = (-, n) then efl”( cs’, apply( (-, n), s’), (-( n), s’) 
II c’= (s, key) then efl”(cs’, upply((s, key), s’), (s, key), s’) 
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Ilk’= w then e#“(cs’, upply(w, s’), w, s’) 
Elc’=f~c=(m,ke):rep) 

then efl”(in’, apply((s, key), s), (s, key), s) 
II c’= (a, rep) A c = (s, key) 

then e$“(m’, apph(vn, key, rep), s h h, key, rep), s’) 
elseef”(in’,s’,c,s) fifiend 

3.2.3. An expbat, axiomatic de$mtion of nextcomm 
So far, the auxiliary operation nextcomm is defined using the operation purse. 

Our next intermediate goal is to derive a definition of nextcomm which is independent 

of parse. 
First, by unfolding the respective definitions of nextcommand and inputrest, we get 

fund nextcomm = (input m)(command#, input): 
(first(parse( in) + #), 
if parse( m) = e then E else some input z: 

parse(z) + # = resC( parse( in) + #) fi). 

An axiomatic definition of nextcomm can be obtained from the axioms of parse in 

a straightforward way (again by using unfold/fold steps and the definition of 
nextcomm): 

V input m, SC, char c, digit d, string t, , t2, dstring td : 

nextcomm(e) = (#, E), 

nextcomm (c+ m) = (c, in) provided c E {b, e, k, u, f, w}, 

nextcomm( c + in) = (ec, in) 
provided c & ({b, e, m, i, i’, k, u, s, a, f, w} u digit), 

nextcomm(m+ zn) = ((m, mbl(t,), dlb(mbl( t2))), SC) 
provided in = t, + (cr}+ t2+{cr}+sc A nbs(t,), 

nextcomm(m+ m) = nextcorvm(rest(mbf(t,))+sc) 
provided zn = t, + SC A -mbs( t,), 

nextcomm(m+ zn) = (#, E) 
provided (in ~string A nbs(m)) v (m = t,+{cr}+ t,~ nbs(t,)), 

nextcomm(m+ m) = (ec, SC) 
provided (m = t, + {cr} + t2 + {esc} + SC A nbs( t,)) 

v(m=t,+{esc}+sc~nbs(t,)), 

nextcomm(i+m)=((i,dfb(mbl(t,))+{cr}),i+sc) 
provided m = t, + { cr} + SC, 

nextcomm(l+ m) = ((i’, dlb(mbl(t,))+{cr}), SC) 
provided m = t, + {esc} + SC, 

nextcomm(l+ m) = (#, E) provided in E string, 

nextcomm(s+ zn) = ((s, mbZ(t,)), SC) provided in = t,+{cr}+sc A nbs(t,), 
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nextcomm(s+ m) = nextcomm(rest( mbZ( t,)) + sc) 
provided zn = I, -t SC A -wzbs( tz), 

nexrcomm(s+ m) = (#, e) provided in E string A nbs(zn), 
nextcomm(s + zn) = (ec, SC) provided zn = tz +{esc} + SC A nbs( t,), 

nextcomm(a+ in) = ((a, mbl(t,)), SC) provided zn = t,+{cr}+sc A nbs(t,), 
nextcomm(a+ zn) = nextcomm(rest( mbl( I,)) + SC) 

provided in = tl + SC A -wzbs( tl), 
nextcomm(a+ in) = (#, E) provided in E string A nbs(in), 
nextcolmm(a+ in) = (ec, SC) provided in = t, +{esc}+ SC A nbs( t,), 

nextcomm(d + in) = ((szg, conu(mbZ(td), 0)), SC) 
provided in = td+ szg + SC A (mbZ( dd) # E A first( mbZ( td)) f {bs}) 

AsigE{f, -}, 

nextcomm( d c in) = nextcomm( rest( mbZ( tl)) + SC) 
provided in = tl -I- SC A lnbs( tl), 

nextcomm( d + in) = (#, E) provided in E dstriog A mbZ( d + in) f E, 
nextcomm( d + in) = (ec, sc) 

provided d + in = td+ c + SC A (mbZ( td) # E A fir&( mbZ( fd)) # {bs}) 

A c $Z {+, -} u digit. 

3.2.4. An operational dejnztzon for nextcomm 
It remains to derive operational versions for nextcomm starting with the axiomatic 

definition given above As a representative we will deal with the s command in detail. 
First, we redefine (by abstraction) the respective axioms, viz. 

(1) 
(2) 

(3) 
(4) 

into 

pextcomm(s+ in) = ((s, mbZ(t,)), SC) provided zn = t, +{cr}+ SC A nbs( t,), 
nextcomm(s+ in) = nextcomm(rest( mbZ( tz)) -I- SC) 

provided in = t, + SC A lnbs( t,), 
nextcomm(s+ zn) = (#, E) provided in E string A nbs(zn), 
nextcomm(s+zn)=(ec, SC) provided in = ?,+{esc}+sc~ nbs(t,), 

nextcomm(s + zn) = 
if in = E then (#, E) 
else if first zn = {bs} then nexxtcomm(rest zn) 

else ps(first zn, first in, rest zn) fi di 

where the auxiliary operation ps parses an s command and is defined by 

funct ps = (nstring p, string 0, input in: 
p = mbZ(o) A (o # E A first o # {bs})) (command#, input): 

nextcomm(s+ o+ in). 

Next, we derive axioms for ps uszr,g its definition, the assertion on the parameters, 
unfold and folding with assertion. As we specified nextcomm m such a way that all 
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axioms are disjoint, no special care with respect to “overlapping” cases has to be 

taken. We get 

If nstring p, string o, input in, char c, c’: c’& {bs, cr, esc} A c e {bs, cr, esc}: 

ps(p, o, E) = nextcomm(s+o + E) = (#, E) [according to (3)J 

ps(p+c,o,{bs)+in)=nextcomm(s+o+{bs}+m)=ps(p,o+{bs},in) 

[byfolding,asp+c=mbl(o)~(o#cAfirsto#{bs})~ 

p=mbZ(o+(bs})~(o+{bs}#~Afirst(o+{bs})#{bs})] 

ps(e, o, {bs}+ in) = nextcomm(s+o+{bs)+ zn) = nextcomm(in) 

[accordmgto(2),ase=mbf(o)~mbf(o+{bs})={bs} 

*-mbs(o+{bs})J 

ps(p,o,{cr}+zn)=nextcomm(s+o+{cr}+in)=((s,p), in) 

[according to (l), as p E nstring A p = mbf( o) A nbs( o)] 

ps(p, o,{esc}+in)=nexfcomm(s+o-l-{esc}+zn)=(ec, in) 

[according to (4), as p E n&ring A p = mbl( o) A nbs( o)] 
ps(p,o,c’+~n)=nextcomm(s+o+c’+in)=ps(p+c’,o+c’,zn) 

[by folding, as c’e {bs, cr, esc} A p = mbZ(o) A (o f E A first o # {bs})a 

p + c’ = mbi( 0 + c’) A (o + c’ # E A first (o + (bs}) # { bs})] 

This definition of ps can be transformed into a recursive function tn a straightforward 

way- 

funct ps = (pstring p, strhg 0, input m: 

p = mbl( o) A (o # E A first o # {bs})) (command#, input): 
if m = E then (#, E) 

else if first m = {bs} 

then if p = e then nextcomm( rest m ) 

else ps( p, o + {bs}, rest rn) fi 
II first m = (cr} then ((s, p), rest zn) 

II first zn = {esc} then (ec, rest rn) 

else ps( p + first I, 0 + first I, rest in) fi fi. 

In an analogous way also the remaining axioms of nextcomm for a, s, m, i, or 

move commands can be treated to finally obtain a fully operational version of 

nextcomm. 

The result obtained so far does not yet exhtbtt true “on-line” behaviour, since 

unparse (in the definition of edrt) is applied Just to the “final” state rather than 

successively to all intermediate states thus producing output in an “on-line” way 

Obviously, another function composttion (here of unparse and er) 1s necessary 

which, although straightforward analogous to the treatment of parse, cannot be 

demonstrated m detail due to the lackmg specification of unparse 

3.3 Remarks on the further development 

We have stopped our derivation at the level of applicative programs, since we 
are convmced that the still missing steps towards a conventional programming 
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language such as, e.g., Pascal are fairly obvious. Nevertheless we would hke to add 

a few more comments on these final optimtzation steps. 

First, the definition of 4ppZy has to be transformed such that for each command 

there is exactly one axiom. Starting with the definition of apply from above this IS 

straightforward and left as an exercise to the reader. 

Next, we can get rid of the auxiliary structures state and file by simply unfolding 

the respective definitions. Of course this also requires unfolding of all calls of apply 

in e$” (where the recursively defined axioms have to he made into appropriate 

auxiliary operations). This also leads to a redefimtion oi W;T into 

e&t(m) = unp4r%!(efl*( In, &,, ‘ a et, Ed, Eo, “, et, 6 [, .+, Ed, E,)) 

where the explicit definition of 

funct eff* = (input zn, text 1, , line Z, text f2, stack d, 
output o, command* c, text or,, 
line 01, text o?,, stack od, output 00) 
(text, line, text, stack, output), 

which IS characterized by 

efl*( in, I), 1, t,, d, o, c, ot,, 01, otZ, od, 00) 

= eT(ln, ((t,, 1, b), 4 o), c, tot,, 4 oh), 04 oo)), 

again is straightforward. 

The definition of efl* also allows a possible further opttmizatton according to 

the general idea of saving storage at the expense of addmonal computational effort 

Rather than keeping the “old state” ((ot, , 02, ot,), od, 00) explicitly, it 1s maybe more 

economic to just have the “current state” ((t, , Z, tJ, d, o), some information znf, and 

an operation restore, such that 

restore(((t,, 1, t,), d, o), inf) = ((ot,, 02, ot,), od, oo), 

i.e. to recompute the information contained in ((otl, 01, ot2), od, 00) m case it IS 

needed. Whether this last transformation, which in some sense is a counterpart to 

the technique of “finite differencmg” (cf. [ 12]), is really an improvement, depends 

on further facts that go beyond the scope of this paper. 

The function efl” and its further optimized versions are all tail-recursive such 

that the well-known transformation from tail recursion to iteration (including final 

polish-up transformations for imperative programs) could be added as a final 

optimization step. 

4. Conclusion 

By means of a realistic case study we have demonstrated how the paradigms of 

algebraic specification and transformational programming can be used to bridge 
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the gap between informally stated requirements and a running program. In particular, 

we have demonstrated how an abstract view taken in an algebraic specification is 

to be transformed into a practically reasonable operational version. 

A reader unexperienced in using formal techniques in program development might 

be intimidated by the amount of formulas that were needed for a detailed formal 

problem description and discouraged or even bored by persistence necessary to 

follow Its development. This very reader should be simply reminded of the fact that 

writing a program (without formal development) would require at least the same 

amount of formulae (called “statements”) and of the well-known difficulty to make 

sure that the program really does what it should do. 

Ltkewtse, the ratio between specification and development, i.e., more effort for 

the specification than for the development, might appear strange to some readers. 

We think that this phenomenon IS a simple consequence of the fact that formal 

specifications require a precise and complete statement of the problem and thus 

leave no room for “handwaving” or for hiding aspects of the problem in the 

development of an algorithm. Thus, program development starting from a formal 

specification can exclusively concentrate on making constructs operational and 

efficient without being bothered by aspects of problem analysis, which obviously 

reduces the effort compared to the traditional approach to software development. 

Although still some more effort has to be invested in order to complete this sample 

dertvatton, e.g , by addmg a smtable treatment of cursor posrtions (which we have 

deliberately left out due to the lack of respective information in the informal 

requirements), the general way how to deal with such kmds of problems should 

have become obvious. In particular, an attentive reader with basic knowledge in 

algebratc specification and transformational programming should be able to do 

similar developments, e.g for existing, commercially available editors, himself. 

Acknowledgement 

I would hke to thank the referees of SCP, Niek van Diepen, Norbert Vblker, and 
Frank Stomp for their constructtve criticism and a lot of valuable remarks on earlier 

versions of thts paper. In particular, I enjoyed several highly technical discussions 

wtth Frank, Norbert, and Niek which provtded the basis for further essential 

improvements. 

References 

[l] F L Bduer and H Wossner, Algorrthmrc Language and Program Development (Sprmger, 
Berhn/Hetdelberg/New York, 1982) 

[2] FL Bauer, R Berghammer, M Broy, W Dosch, F Gelselbrechtmger, R Gnatz, E Hangel, W 
Hesse, B Kneg-Bruckner, A Laut, T Matzner, B Moller, F Nlckl, H Partsch, P Pepper, K 
Samelson, M Wlrsmg and H Wossner, The Munich Project CIP Volume I The Wide Spectrum 
Language CIP-L, Lecture Notes m Computer Science 183 (Sprmger, Berhn/Heldelberg/New York, 
1985) 



Algebraic speclfcatron and transfirmatlonal programmtng 297 

[3] F L Bauer, H Ehler, A Horsch, B Moller, H Partsch, 0 Paukner and P Pepper, 7%e Munrch 
&OJf?Ct CIP Volume II The Transformatron Syslem CIP-S, Lecture Notes m Computer Science 292 
(Spnnger, Berhn/Heldeiberg/New York, 1987) 

[4] F L Bauer, B Moller, H Partsch and P Pepper, Formal program construction by transformatlons- 
computer-atded, mtultlon-guided programmmg, IEEE Tram Software Engrg (1988) 

[5] M Broy, Fixed point theory for commumcatlon and concurrency, rn D BJ@rner, Ed , IFIPTCZ 
Workmg Conference on Formal Descrrptron of Programmmg Concepts II, Garmrsch-Partenklrchen, 
June 1982 (North-Holland, Amsterdam, 1983) 

[6] M S Feather, A survey and classrficatron of some program transformation approaches and tech- 
mques, m L G L T Meertens, Ed , Program specrficatton and transformation, Proc IFIP TC2 Workmg 
Conference, Bad To/z, Aprd 15-17, 1986 (North-Holland, Amsterdam, 1987) 

[7] C A R Hoare Commumcatmg sequential processes, Comm ACM 21(8) (1978) 666-677 
[S] I Kupka and N Wdsmg, Functions describing Interactive programmmg, m Gunther et al, Eds , 

Internatronal Computrng Symposrum 1973 (North-Holland, Amsterdam, 1974) 
[9] B Kutzler and F Llchtenberger, Blbhography on Abstract Data Types, Inrbrmatlk-Fachbenchte 68 

(Spnnger, Berhn/Heldelberg/New York, 1983) 
[lo] R Mdner, A calculus for commumcatmg systems, Lecture Notes Computer Science 92 (Springer, 

Berhn/Heidelberg/New York, 1980) 
[ 111 H Partsch, Algebraic requirements defimtlon a case study, Techn Scl Info S(1) (1786) 21-36 
[ 121 H Partsch, Specdicatlon and transformation of programs-a formal approach to software develop- 

ment, Lecture Notes (1988) to appear 
[13] H Partsch and B Moller, Konstruktlon korrekter Programme durch Transformation Informatlk- 

Spektrum lO(6) (1987) 309-323 
[ 141 H Partsch and P Pepper, Abstract data types as a tool for requirements engmeenng in D Kromg 

and G Hommel, Eds, Requirements engineering, Informatrk-Fachbenchte 74 (Spnnger, 
Berhn/Heldelberg/New York, 1983) 42-55 

[ 151 H Partsch and R Stembruggen, Program transformation systems, ACM Comput Surveys 15 (1983) 
199-236 

[16] Working matenal of the IFIP WG 2 1 meeting, Brussels, Belgmm, December 17-21, 1979 
[17] M Wlrsmg, P Pepper, H Partsch, W Dosch and M Broy, On hierarchies of abstract data types, 

Acta Informatrca 20 (1983) l-33 


