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Abstract. Algebraic specification and transformational programming have been advc-ated as new
approaches to the development of software, tn order to solve some of the technical problems 1n
software engineering such as “early vahdation™, correctness of implementations, re-usability of
software, or re-usability of software design By means of a nontrivial example, viz an interactive
text editor, we demonstrate that the combined use of these approaches allows to bridge the gap
between verbally stated requirements and a runming program, even for non-toy, realistic problems

1. Introduction

Algebraic specification and transformational programming have been advocated
as new approaches to solving some of the technical problems in software engineering
such as “early validation”, correctness of implementations, re-usability of software,
or re-usability of software design.

A lot of effort has been invested and is still spent on research in algebraic
specification and transformational programming (for references to specific literature,
cf. e.g. [9], [15] or [6]). We will follow the basic philosophy and the methodological
lines as investigated in the Munich CIP project (cf. [4] and [13]).

For denoting algebraic types and programs we essentially use the Algol-like variant
of the language CIP-L (cf [2]), the essence of which we assume the reader to be
familiar with. We also assume having available algebraic definitions of certain basic
data structures (for respective formal definitions, cf. [2] and [12]) such as.

— (extended) sequences (defined by a type ESEQU) with

£ denoting the empty sequence,

first resp. last denoting the first (resp. last) element,

rest resp. lead denoting the remainder, after removing the first (resp last)
element, and

+ denoting concatenation (where attaching a single element 1s

subsumed as a special case).
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(first, last, rest, and lead are partially de~ .« 2. rations being undefined for
empty sequences Furthermore, in 2.rde = 2 ~1d v xcessive bracketing, these four
operations are assumed to bave r.<her » rivy than concatenation and test
operators.)

— stacks (defined by a type STA TK} z seg.reuces with restricted access, with

€ denoting th= cmpty sf 3¢k,

top denoting the top ¢t micnt of the stack,

pop denoting the remain der of the stack, after removing the top
element, and

push denoting the addition of an element to a stack.

(Again, top and pop are partially defined operations being undefined for empty
stacks.)

— tuple structures, where ( . . ) is used for denoting the tuple constructor and individual
identifiers are used for the respective selectors. In the sequel, we will just use
triples (detined by an approprnate type TRIPLE).

Rather than using the syntax of type instantiation as in CIP-L, we shortly write e g.
mode input = ESEQU(char)

to stand for an instantiation of the type scheme ESEQU with char (where just the
sort sequ is renamed to input and all other operations remain the same). Apart from
this shght deviation, we use the CIP-L type mechanism as it is defined in[2] and [17].

When demonstrating any methodology by means of examples, one is always
bothered by a trade-off between the size of an example and its comprehensibility.
Small problems are easily understood and thus can be used to stress methodological
aspects n all details. However, it is hard to convince a practitioner on the basis of
such small, unrealistic tov ¢x.amples. Large problems, on the other hand, need a lot
of effort to explain the prablem proper, to motivate design decisions, or to discuss
technical details, and run the risk of losing the methodologicai essence.

The example we are going to deal with—an interactive text editor—can be seen
as a kind of a compromise between small problems and realistic ones: it is realistic,
as 1t is “actually a subset of an editor which has been implemented on several
machines” (cf. the problem formulation in [16]), yet it 1s not too large for demonstrat-
ing methodological principles without getting lost in problem-specific technical
details Since we mainly aim at conveying methodology, rather than just doing an
example, we will deliberately skip details which we beiieve to be obvious (with
straightforward solutions) or which would lead to an inadequate level of detail.

According to its title the emphasis of this paper is on demonstrating how to
formalize an informally stated problem with the algebraic specification technique
and on how to transform the formal specification into a running program. The first
aspect already has been tackled with the same example in [11]. Nevertheless, we
will deal with this part here again for two reasons; first, we want to make this paper
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self-contained, second, we have made some (minor) changes in the formal
specification, mainly to keep the presentation at a reasonable length.

The text editor 1s one example out of a collection of examples presented at the
26th meeting of IFIP working group WG 2.1. This collection was intended and
successfully used as a common basis for discussing various specification and program
development techniques. In several discussions, this particular example has turned
out to be a real challenge for specification languages and specification methodologies
as well as for program development techniques, probably due to the difficulty
inherent in giving a reasonably high-level treatment of a system with an obviously
low-level procedural appearance.

The verbal statement of the problem is literally quoted from [16]

EXAMPLE NUMBER 4—TEXT EDITOR

This problem asks for the implementation of a simple line onented editor for use in
an interactive environment The specification 1s actually a subset of an editor which
has been implemented on several machines

The mput device 1s a keyboard/display Input from the keyboard is obtamed one
character at a time and ss one of the following characters letters, digits, blank, {cr} (line
return), {esc} (escape), {bs} (backspace)

The display device 1s controlled by outputting single characters from the following
set letters, digits, blank, {cr} (Ine return), {bs} (backspace), {vel} (scund alarm)

Note that the keyboard and display are completely independent, “echoing” of input
characters must be done by the program The effect of sending a {cr} 1s to roll the
screen up and set the cursor to the start of the next line {bs} moves the cursor back
one (no effect if at start of line) {bel} sounds an alarm, but has no effect on the cursor
position

The current text 1s a sequence of hnes which can be modified by entering edit
commands There 1s no need to consider the problem of opening files, reading text etc
Assume that the current text 1s available as a vaniable (or equivalent)

The editor outputs a prompt character “*”” to invite entry of commands The following
«ommands are available

Note that most commands are not terminated by a {cr}

b position to start of first hine 1n file and print out the first line

¢ position past last line of £*  and display (end-of-file).

m{old){cr}{new){cr} search for occurrence of the string (old) in the current line, and
replace it by string (new) Display the modified line

i enter msert mode The cursor moves to the start of the next
line and text can be entered (one or several lines) which 1s
inserted following the current line Each new line 1s terminated
by a {cr} To leave insert mode, {esc} 1s typed after the last
nserted line

k delete the current line and store it 1n a stack (see u command)
Display the hine after the one deleted
u retneve the line on top of the delete stack and nsert 1t just

before the current hine, then display the retrieved line (note
the sequence ku leaves the file as it was)

n+ move n (decimal integer) lines forward 1n the file and type new
current line
n- move n (decimal 1nteger) hines backward 1n the file and type

new current line
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s(hey)cr} search forward from the current position for a line containing
the string (key), and display the Iine

a(rep){cr} alter the (key) just found by the search (s) command to the
given replacement (rep) Display the modified hne

f forget (undo) the effect of the m or a command just entered

w display window consisting of the nine hines either side of the

current line

The {bel} character 1s transmitted to the display if any command syntax error 1s
detected or for an unsuccessful search etc The backspace key may be pressed during
entry of any text string, the effect 1s to erase the previous character and backup the
cursor If the backspace key 1s used to erase the m or s character which starts a command,
then a completely new type of command can be entered

We decided to use this informal problem description without any changes, since
we aimed at a “realistic” case study:

— It 15 a fact of real-world software development that an informal problem descrip-
tion and a formalization of the problem are given by different persons.

- Dealing with a problem stated by someone else forces oneself to solve even nasty
problems and thus prevents oneself from cheating by adapting the problem
statement to fit a nice and elegant treatment.

— Formalizing an mmformal problem statement given by someone else entails a lot
of design decisions which would never have appeared in a self-made problem
statement. These design decisions give us an opportunity to comment on alterna-
tives with respect to the specification

2. Formal specification

Given an informal description of a problem, in any approach to formal
specification a key question is “*how do we find the formalization in a systematic
way?”. Therefore we will start this section with some general considerations on
methodology

2.1. Methodological considerations

For our particular case study and similar ones (cf., e.g., [3]) a “strictly top-down™
approach using “hierachical decomposition” and “stepwise detailization™ turned
out to be adequate and profitable.

After having decided on an adequate “concept” (cf. [12]) underlying the formal
specification, the formahzation process starts by first describing the overall behaviour
of the system as a function on suitably defined abstract objects which model the
interface between the system and its environment.
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At least for non-toy systems it will usually be hard to define this function just in
terms of those cbjects (characterizing the system’s interface) and their basic
operations. Therefore, in a first decomposition step further “internal” object kinds
and operations are introduced to be used in the definition of the system’s function
In this way a complex system function 1s decomposed into smaller, and hopefully
more easily manageable functions.

Frequently part of the definition of the newly introduced operations over such
“internal” object kinds follows immediately from the original, informal description
(““detailization”). For the remaining parts of the respective definition (which often
are only detected after a check for formal completeness) we proceed as above, i.e.
we give meaning to functions by introducing new object kinds and new operations
(i e. further “decomposition™) which, in turn, are defined by detailization and/or
further decomposition. This iterated process ends as soon as we have arrived at a
suitable level of pragmatics where either all object kinds and operations are com-
pletely defined or only refer to object kinds and operations that are supposed to be
known.

Within the framework of algebraic specification the combination of decomposition
and detailization just described amounts to introducing a new type: “decomposition”
roughly corresponds to introducing the signature of a type (i . the syntactic part)
whereas “detailization” aims at providing meaning in the form of appropriate axioms
for the object kinds and operations introduced by the preceding decomposition
step. Particularly helpful in this context is the notion of “sufficient completeness”
(cf. [17]) which supports establishing completeness for each level of a hierachical
specification during construction (cf. also [14]).

Proceeding top-down here has the additional advantage that new object kinds
and operations are only introduced *“‘by need” rather than by somehow combining
existing operations into more complex ones without knowing whether they are
actually needed as in the strict bottom-up case. (Note that this does not imply that
top-down processing forbids the use of existing types and type schemes.) In this
sense top-down processing minimizes the number of such “internal” object kinds
and operations.

2.2. The overall behaviour of the editor

In contrast to many other problems, finding a suitable concept for the specification
is a critical issue for the editor problem, since it is an interactive system.

2.2.1. A concept for specifying interactive systems

Interactive systems are communicating systems. From this viewpoint it would be
straightforward to specify an interactive system using the formalisms developed for
describing communicating systems (e.g. CSP [7], CCS [10] or recursive stream
equations [5]). On the other hand, interactive systems are very specific communicat-
ing systems with only two (communicating) processes, viz. the user and the system.
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In addition, communication between these two processes takes place in a restricted,
rather “disciplined” way, viz in the form of a “dialogue™.

A dialogue in an interactive system can be seen (cf. [8]) as an alternating sequence
1,0,1,05 - - - 1,0; of “inputs” 1, and “outputs” o,,. An 1, usually originates from the
user’s unconstrained will, but an o, surely depends on the respective 1,, and probably
also on the “history™, i.e, the i, with n<m:

input 1, - output o,
mput 1, > output o .

put s PULO2 L ey sible effect”
input 1, - output o,

Thus, 1n an abstract view an interactive system can be seen as a “function” from
mput sequences to output sequences. Consequently, its behaviour can be adequately
spectfied by defining the system’s reaction to arbitrary input sequences

Following these lines the overall behaviour of the editor can be specified by a
function

funct edit = (input in) output
where the object kind input characterizes sequences of characters, i.e.
mode input = ESEQU(char)

and the object kind output characterizes sequences of certain actions to be observed
by the user of the editor, 1.e.

mode output = ESEQU(action).

Here, char and action are considered as primitive object kinds. A further detailization
can be found later.

2.22 Decomposition into subtasks
The formahization of the problem stated in Section 1 now aims at giving a definition

for edit Since, due to the complexity of the problem, such a definition is not at all
straightforward, we follow the methodological line sketched above, and decompose

the function edit into smaller, better manageable logical uvnits, viz.

- mapping from (concrete) input character sequences to sequences of (abstract)
commands;

~ effects of commands (or sequences of commands) within the system;

~ mapping from (abstract) effects to (concrete) physical output.

The objects to be manipulated by sequences of commands are texts, outputs (what-
ever that means), and an internal stack (see commands k and u). For the current
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level of refinement, however, we can abstract from these details and combine the
objects that are manipulated into the notion of a “state”. Thus the essential part of
the editor will be a mapping

funct effect = (commsequ cs, state s) state,

(where commsequ and state denote the object kinds characterizing ‘‘sequences of
commands” and “states”) which associates a new state with each sequence of
abstract commands and a given state.

We use

funct parse = (input in) commsequ

for mapping concrete 1nput to abstract commands,
state nitstate

for providing an initial “state™, and
funct unparse = (state s) output

for mapping abstract output to a concrete one, such that the overall behaviour of
the editor can be completely specified by

edit(in) = unparse(effect( parse(in), initstate)).

According to our global development strategy, we now aim at providing definitions
for the newly introduced operations effect, parse, and unparse, and for the constant
initstate. As outlined above, this either means considering individual cases or
referring to further new operations.

2.3. Translation between external and internal representation

The translation between external and internal representation of sequences of
commands is to deal with the operations parse and unparse. However, we will just
concentrate on the function parse and not deal with the formal specification of
unparse mainly for two reasons:

~ The informal specification is fairly imprecise about output Thus, a formalization
would require a proper extension of the informal description that goes substan-
tially beyond the original problem description. Our goal, however, is to solve the
task as given in [16].

— If the information about output had been more precise and complete, a formaliz-
ation of unparse would be rather analogous to thc one of parse (as dealt with
below) and thus would add no real substance to our considerations.
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23.1 Definition of the data structures involved
In order to be able to give a formal specification of

funct parse = (input in) commsequ,

we first have to define the data structures involved.
For being complete, the definition

mode input = ESEQU(char)

(as introduced above) requires a further definition of admissible characters
Therefore, according to the informal requirements, we define

mode letter=(a,b,c,. ),
and
mode digit=(0,1,2,. )

The set of possible input characters is then characterized by
mode char = letter|digit |blank | {bs} | {esc}|{cr}

(where we have simply adopted the notation for the special characters that was
used 1n the informal description).

For the definition of parse we will also need input strings that do not contain the
characters {cr} and {esc}. These strings are defined by

mode string = ESEQU(char c. ¢ £ {cr, esc}).
Furthermore we need sequences composed of digits and {bs}, defined by
meode dstring = ESEQU(digit | {bs}).

According to the informal description commands are either simple, consisting of a
single letter (such as, e g., b) or are “parameterized”, consisting of a letter and
“arguments” {(such as, e.g , m{old)(new)). For the definition of commands we use

mode command = (b|e|k|u|f|w|m|s|a]i|+|—]i’|ec),
where

- b, e, k, u, f, and w are to denote the respective (simple) commands;

- m,s, a, 1, +, and — are shorthand notations for the respective ‘“parameterized”
commands They are supposed to stand for tuples consisting of the respective
command letter and the types of the “arguments” of the command. Thus, e g,
m abbreviates (m, string, string), s is short for (s, string), + is short for (+, nat), etc,

- 1" and ec are commands produced by parse that are not available to the user; ec
denotes an additional error command in case of syntactically illegal input (cf.
below) and i’ 1s used for the decomposition of an insertion command into linewise
nsertions (cf also below).

For sequences of commands we simply use the definition

mode commsequ = ESEQU(command).
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2.3.2. The problem of backspaces

According to the informal description a {bs} character may erase certain preceding
characters. In case of certain “‘parameterized” commands it even may be used to
erase the respective command letter

One might be tempted to try a specification where first all {bs} characters are
removed from the input string before parsing takes place. However, a closer look
at the informal description tells us immediately that the erasing effect of a {bs}
character depends on the respective state of the parsing process when the {bs} 1s
detected.

Thus, e.g., an input string of the form

(*)  bibs}k{bs}{bslc...
has the same effect as
bkec...

provided a new command is currently being recognized. If, however, the string (*)
is the beginning of a text to be inserted, then 1t has the same effect as

C...

(if we assume that an i command cannot be undone by {bs}, cf below). And if the
above string (*) is the beginning of the argument for a search, then even the preceding
command letter 1s to be erased.

It is exactly for this interrelation between parsing and backspace removal why 1t
is appropnate to specify the effect of backspaces jointly with parsing rather than
specifying both tasks independent of each other

For modelling the effect of {bs} we will use the auxiliary operations

funct mbl = (string t) nstring (*‘move backspaces left”),
and
funct dlb = (nstring n) nbsstring (“delete leading backspaces™),
where
mode nbsstring = (string s. {bs} £ s),
defines strings containing no backspaces,
mode bsstring = ESEQU({bs}),
defines strings consisting of backspaces only, and
mode nstring = (string s: 3 nbsstring n, bsstring b: s =b+n)

defines (“‘normalized”) strings having backspaces only at the beginning

The operation mbl deletes pairs of characters consisting of a character (different
from {bs}) and an immediately following {bs} character. Remaining {bs} characters
accumulate to the left of the resulting string, as can be seen from the property
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mbl{{bs}+ s) = {bs}+ mbl(s). Formally this operation 1s defined by
V string s, 5,, S5, char ¢. ¢ {cr, esc}:
mbl(s) = mbl(s,+ s,) provided s = s,+c+{bs}+s,,
mbl(s)=s provided s # s, + c+{bs}+s,.

The operation dIb simply skips all leading {bs} characters (from a string where
all backspaces are at the beginning) until a character different from {bs} is encoun-
tered. It is defined by

dib(e) =&,
dib({bs}+s) = dIb(s),
dlb(c+ s) = c+ s provided ¢ # {bs}.

For both operations completeness of the definition is obvious.

For the formal specification of parsing it is convenient to have furthermore an
auxiliary predicate that checks for a given string whether all backspaces can be
removed:

funct nbs = (string t) bool
mbl(t) = e V first(mbl(1)) # {bs}
(where V denotes sequential disjunction)
2 3 3. Parsing correct input
Now we have all prerequisites to give a formal specification for the operation
parse. We first concentrate on those cases that are obvious from the verbal problem

description
Assuming the general quantification

V input sc, char c, string ¢, 1,, dstring 14:

we define parse as follows:
Empty input yields an empty command sequence, i.e.,

parse(e) = ¢.
A single b, e, k, u, f, w character is recognized as the respective command, 1.e.,
parse(c+ sc) = ¢+ parse(sc) provided ce {b, e, k, u, f, w}.

With respect to the m, s, and a command we have to differentiate according to
the form of their first “argument”. If all backspaces in this argument can be removed,
1¢. if nbs(t,) holds, we follow the verbal description and define

parse(m++ t,+ {cr}+ t,+ {cr} + s¢) = (m, mbl(t,), dIb(mbl(t,))) + parse(sc)
provided nbs(t,),
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parse(s+ t,+{cr} + sc) = (s, mdl(t,)) + parse(sc) provided nbs(t,),
parse(a+ i, +{cr}+sc) = (a, mbl(t,)) + parse(sc) provided nbs(t,).

In case —inbs(t,) holds, mbl(t,) starts with a backspace which erases the preceding
command letter. Therefore we specify

parse(c+ 1, + sc) = parse(rest(mbl(1,)) + sc)
provided —nbs(t,) A ce{m,s, a}.
Note that this axiom implies the axiom
parse(c+{bs}+ sc) = parse(sc) provided c € {m, s, a}

which formalizes the informal requirement that the backspace key may be used to
erase an m or s character which starts a command.

With respect to the i command we have to make a decision. Obviously, the 1
command could be specified analogous to the m, s, or a command above. However,
taking into account the particular “insertion mode” mentioned in the informal
description, it also seems reasonable to assume that an i character starting an
insertion command cannot be erased by a following {bs}. Deciding in favour of the
latter possibility we specify:

parse(i+ t,+{cr}+ sc) = (1, dIb(mbl(t,)) + {ct}) + parse(1+ sc),
parse(i+t,+{esc}+ sc) = (i’, dIb(mbl(1,)) +{cr}) + parse(sc)

Here the pseudo-command i’ is used to signal that the last line of an insertion
command has been recognized.
A correct move command requires a non-empty sequence of digits followed by
a + or — sign. Hence, parsing a move command can be specified by
parse(ty+ s1g + sc) = (sig, conv(mbl(t,), 0)) + parse(sc)
provided (mbl(ty) # ¢ A first(mbl(1,)) # {bs}) A sig e {+, -}

(where A denotes sequential conjunction).
Here we have used another auxiliary operation, viz.

funct conv = (nbsdstring d, nat n) nat
(““‘convert” a string of digits into a number),

where
mode nbsdstring = ESEQU(digit),

characterizes strings consisting of digits only.
conv describes the translation of a sequence of digits into a decimal number. It
is formally defined by

conv(e, in) = in,

conv(n+ sd, in) = conv(sd, in X 10+ n).
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2 3.4 Parsing mcorrect input

One of the major benefits of using the algebraic specification technique is the
availability of the theoretical notion of “sufficient completeness™ (cf.[17]) that
considerably helps in detecting incompleteness, even 1n a seemingly complete verbal
specification as ours In our particular example, for instance, we imn.ediately find
out that the informal requirements contain no information on how to react to
erroneous situations which may come up in connection with syntactically wrong or
mcomplete input

Obviously, incomplete input has no effect, i.e., yields an empty command
sequence:

parse(c+1,) = ¢ provided c € {m, a, s, 1} A £bs(¢,),
parse(m+ t,+{cr}+t,} = € provided nbs(t,),

parse(ty) = € provided mbl(t,) # €

Contrary to this, syntax errors result in an “error command” ec. Syntax errors
occur, whenever, 1n a situation where a command is expected, a character appears
that does not start a legal command:

parse(c+ sc) = ec+ parse(sc)
provided c # ({b, e, m, i, k, u, s, a, f, w} U digit).

Another erroneous situation 1s the 1llegal use of an {esc} character in connection
with an m, s, or a command

parse(c+t,+{esc}+ sc) = ec+ parse(sc) provided nbs(t,) A ce {m, a, s},
parse(m+ t,+{cr} + 1, + {esc} + sc) = ec+ parse(sc) provided nbs(t,).

Finaily, an error situation occurs, if a sequence of digits is not followed by a +
or — sign:

parse(ty+ ¢+ sc}=ec+ parse(sc)
provided (mbl(ty) # € A first(mbl{t,)) # {bs}) A c & ({+, —} L digit).

Here we have specified a very simplistic view of error handling. We simply indicate
the presence of an error or ignore incomplete mput. Of course, we also could have
specified a much better error diagnosis by informing the user on the kind of error
that has occurred With little additional effort, we also could have made a
specification in such a way that in case of an incomplete command the system
attempts to process the available part of the input and requests the missing part
from the user With respect to the length of our presentation, however, we have
abandoned this possibulity.

Above, we have treated leading {bs}, {esc}, or {cr} characters as an erroneous
situation One also could imagine simply ignoring them, but only at the expense of
an additional axiom for parse.
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23.5. Summary

In order to provide for easier checks of consistency and formal completeness, we
now simply summarize the definition of parse by collecting all axioms given so far
As a kind of first step towards an implementation, in this summary we rearrange
and rephrase the above axioms in such a way that the left-hand sides of the axioms
just differentiate between empty and non-empty input sequences and that, further-
more, in the case of non-empty input sequences, axioms concerning the same leading
character are grouped together:

V input 1n, sc, char ¢, digit d, string 1, , 1,, dstring ¢,:
parse(e) =&,
parse(c+in) = c+ parse(in) provided ce {b, e, k, u, f, w},

parse(c+in) =ec+ parse(in)
provided c £ ({b, e, m, i, k, u, s, a, f, w} U digit),

parse(m+n) = (m, mbl(t,), dib(mbl(t,)))+ parse(sc)

provided in = t, + {cr} + 1, +{cr} + sc A nbs(t,),
parse(m+ in) = parse(rest(mbl(t,)) + sc) provided in = t,+ sc A —nbs(t,),
parse(m+m)=¢

provided (in € string 4 nbs(in)) v (in = t, +{cr} + t, A nbs(t,)),
parse(m+n) = ec+ parse(sc)

provided (in = t, +{cr}+ 1, +{esc}+ sc A nbs(1,))

v (in = t,+{esc}+sc A nbs(t,)),

parse(i+ ) = (i, dib(mbl(1,)} + {cr}) + parse(i+ sc)
provided in = t, + {cr} + sc,

parse(i+ ) =(i’, dlb{ mbl(t,))+{cr})+ parse(sc)
provided in = t, -+ {esc} + sc,

parse(i+n) = ¢ provided in € string,

parse(s+n) = (s, mbl(t,)) + parse(sc) provided in = t,+{cr}+ sc A nbs(1,),
parse(s+n) = parse(rest(mbl(t,)) + sc) provided in = t,+ sc A nbs(t,),
parse(s+n) = ¢ provided in € string A nbs(in),

parse(s+in) = ec+ parse(sc) provided in = t,+{esc}+ sc A nbs(t,),

parse(a+in) = (a, mbl(t,))+ parse(sc) provided in = t,+{cr} + sc A nbs(t,),
parse(a+ in) = parse(rest(mbl(t,))+ sc) provided in = t, + sc A inbs(t,),
parse(a-+ )= ¢ provided in € string 4 nbs(in),

parse(a+in) = ec+ parse(sc) provided in = t, +{esc} + sc A nbs(t,),
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parse(d +n) = (sig, conv(mbl(t,), 0))+ parse(sc)
provided in = f,+ sig + sc
A (mbl(t,) # € A first(mbl(1,)) # {bs}) A sige {+, -},
parse(d + in) = parse(rest(mbl(t,)) + sc) provided in = t,+ sc A —nbs(t,),
parse(d +in) = ¢ provided in € dstring A mbl(d +1n) # ¢,
parse(d +n) = ec+ parse(sc)
provided d +m =14+ c+sc
A (mbl(ty) # £ A first(mbl(14)) # {bs}) A c & ({+, —} L digit).

Now the proofs of sufficient completeness and soundness (i.e , non-overlapping
left-hand sides) of the specification are straightforward, although not trivial. These
are left as an exercise to the interested reader.

2 4. The kernel of the editor

The “kernel” of the editor (or its “abstract”, “internal” behaviour) is captured
by the operation effect that maps a sequence of commands and a state to a new
state The state transition affected by a single command is described by an auxiliary
operation apply

2.4 1. The effect of sequences of commands
A sequence 1s either empty, or it can be decomposed into an individual element
and a sequence. Thus an unreflected formalization would immediately lead to

effect(e, s)="- -
effect(c+cs, s)="--

where s denotes an arbitrary state, cs a sequence of commands, and ¢ an individual
command.,

However, at a closer inspection of the verbal requirements for an individual
command we will soon find out that there are commands of different quality, namely
commands having effects on states, and others (such as a or f), having effects on
other commands. In particular this latter observation suggests that in our formaliz-
ation below always two leading elements of a sequence should be considered
simultaneously

Using the definitions of command and commsequ as introduced in the previous
section, the overall behaviour of the editor may be specified, according to the verbal
description, by

V command ¢, ¢’, commsequ cs, state s:
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(1) effect(e, s)=s,

(2a) effect(c+ e, s)=s provided ce {a, I},

(2b) effect(c+ ¢, s) = apply(c, s) provided c £ {a, f},

(3a) effect(c+c'+cs, s) = effect(c’'+ cs, s) provided c€ {a, f},

(3b) effect(c+ '+ cs, s) = effect(c’ + cs, apply(c, s))
provided c £ {a,f} A c’'2{a, f},

(3¢c) effect(c+f+ cs, s) = effect((s, key) + cs, s) provided ¢ = (m, key, rep),

(3d) effect(c+c'+ cs, s) = effect({m, key, rep)+ cs, apply((s, key), 5))
provided ¢’ = (a, rep) A c = (s, key),

(3e) effect(c+f+cs, s) = effect’c+cs, s) provided c £ {a, f, m},

(3f) effect(c+a+cs, s) = effect(c+cs, s) provided c £ {a, f, s}.

Here we deliberately have used shorthand notations such as eg. c£{a,f} for
—13 string x: c=(a, x) A c # 1.

Of course, we could have combined, e.g , axioms (2a) and (3a) into one axiom.
However, the form used above has the advantage that the formal completeness of
this specification, as well as its soundness, are obvious: Axiom (1) covers empty
command sequences; axioms (2a) and (2b) deal with the case of singleton command
sequences; and the axioms (3a)-(3f) deal with all possibilities of command sequences
containing at least two elements.

In fact, the above specification is essentially equivalent to the one given in [11],
the only differences being

— an “evaluation” of command sequences from “left-to-right” rather than “right-to-
left’;
- a different way of processing consecutive b or ¢ commands.

As before, the above specification also had to take care of problems not mentioned
in the informal requirements, such as, e.g.,

— “what is the effect of an f command applied after a command that is not an a or
m command?”

— “what is the effect of an a command applied to a command different from an s
command?”

both of which were simply decided to have no effect.

2.4.2. Definition of state

In order to be able to specify the function apply used in the above specification,
we first have to define what a “state” is.

As already outlined, the abstract notion of state served for collectively referring
to the “internal” objects of the editor, i.e. the text file, the delete stack (see commands
k and u) and the output sequence. Thus, an obvious definition for state is a triple
consisting of these entities, i.e.,

mode state = TRIPLE(file, stack, output).
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Consequently, the constant initstate denoting the imtial state can be defined by

state initstate =g, e4, £,+ 7

where ¢, denotes the empty file, &4 the empty stack, and ¢, the empty output. The
“?" in the output sequence reflects the verbal requirement that “‘the editor outputs
a prompt character “?” to invite the entry of commands”.

Of course, one also could imagine other definitions of initstate such as

state mutstate = (inut(tf ), g4, €5+

where tf 1s a function for retrieving a (non-empty) text from some secondary store
and it initializes the file for text processing. The specification of the editor itself,
however, 1s not influenced by this decision.

From the informal requirements we know that a “text 1s a sequence of lines”.
Obviously, a (proper) line 1s a (possibly empty) string composed of letters, digits,
and blanks, that i1s furthermore terminated by a {cr}, i e,

mode pline = (input /: 3 nbsstring n- | = n+ {cr}),

and, hence, a text can be specified by

mode text = ESEQU(pline)

(where €, 1s used to denote the empty text).

Phrasings like “first Iine in the file”, “next hine”, “‘current line”, etc., suggest
considering the *‘current text file” as a triple consisting of some piece of text (that
rmight be empty), an actual hine, followed by .a0other piece of (possibly empty) text.
However, there 1s also the case of the empty file, i.e, the file containing nothing at
all In order not to be forced to always distinguish between empty and non-empty
files, we introduce a “pseudo-line” (denoted by ¢,), extend the above definition of
a hne to be either a proper line (as defined above) or a pseudo-hne, 1.¢.,

mode line = (pline| ¢,),
and define files umformly by triples consisting of text, (extended) line, and text,
1¢e. by

mode file = TRIPLL(text, line, text)

(where g, denotes the triple (¢,, £, £,) which models the empty file).
Furthermore we assume

mode action = (d(.), p( ),t(.), ..)

(1e a collection of output actions where d(.), p( ), ... are abstract representations
for the actions “‘display”, *“print”, “type”, etc, that are used in the informal
description)
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2.4.3. Application of single commands

Based on the above decomposition of state, we are now in a position to attempt
a formal definition of the function apply used above.

Obviously (inherited by the above level of our specification) apply only has to
deal with commands that are not an a or f command. Therefore it suffices to consider

funct apply = (command’ ¢, state s) state,

where

mode command’ = (commend x: x £ {a, f}),

since, according to the axioms (2b), (3b), and (3d), f or a commands may not occur
as arguments of apply.

For defining the semantics of the ir.dividual commands we have to give appropriate
axioms, at least one for each of them. From the aspect of presentation, it seems
reasonable to point out similarities between different commands whenever there are
any.

Thus, obviously all commands (except for the e, i, i’, and the u command) display
the {bel}, if the text file is empty, i.e.

V command’ ¢, stack d, output o: c € {e, i, i’, u}:

apply(c, (¢, d, 0)) = (e, d, 0+ d({bel}) + 7).

This means that, in the sequel, for all commands (except for e, i, i’, and u) a
non-empty text file may be assumed. Therefore, for the remaining axioms we assume
the general quantification

Vitextt,,t,, t;, pline |, [, stack d, output o: t; # ¢,:

which will be supplemented by additional restrictions when dealing with individual
commands.

From the informal requirements the specification of the “regular” behaviour of
the editor (i.e., in cases where t; denotes a non-empty text and /, I, denote proper
lines) is straightforward.

(a) The b command:

apply(bs «tl ’ I’ t2>a d’ 0>)
={&,, first(t,+ 1+ t.), rest(t, + [+ ,)), d, o+ p(first(t, + [+ t;)) + 7).

The prerequisite for the definedness of the partial operations first and rest is
fulfilled here, as t,+ [+, # ¢, 1s guaranteed by the definition of pline.
(b) The e command:

appl)’(e, «tl ’ 19 t2>a d’ 0)) =«tl+ l+ t23 &y, E!)a d’ 0+d({e0f})+ ?),
app’y(es <€l’s d, 0)) = <£f1 ds 0 +d({60f}) + ?>-
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(c)

(d)

(e)

(f)

(g)
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The m command:
V nbsstring x, y:
apply((m, x, y),{t,, |, 12), d, 0)) =41, repl(l, x, y), t;), d, 0+ re(l, x, )+ ).

Here repl means the replacement of x by y in [ and re means repl in case of
a successful search and {bel} otherwise. Due to our strict top-down design
philosophy repl and re can be defined on the next level of refinement, e.g.,
in connection with hnes. These definitions then have to deal also with the
question which occurrence 1s to be replaced, if there are several. Note also,
that according to the defimtion of nbsstring both x and y may be empty.
The i command:

apply((1, 1), (&, d, 0)) ={e,, |, &), d, o +d(I)),

apply((, 1,4t I, ), d, o)) =, + 1, 1, 15), d, o +d(1)),
apply((v', 1), (¢, d, 0)) = (&, |, &), d, 0 +d(D) +),

apply((', ), €t,, 1, 1), d, 0)) =1, + 1}, 1, 1), d, o +d(1) + ),

For the 1 command we used the fact that the syntactic analysis converts a
“complex” i command (i.e. insertion of several lines of text) into a sequence
of msertions of lines. Only after the last line to be inserted (signalled by the
pseudo-command i’} a prompt has to be output Note also, that by the
definmition of parse the argument ! of an i command is always guaranteed to

be a (proper) line
The k command.

apply(k, {1, L, 15), d, 0)) ={1,, first t;, rest t3), push(d, I), o+ d(first 1;)+ ?).
The u command.

apply(u, (¢, pusl{d, 1), 0)) =(e,, I, &), d, 0 +d() + ),

apply(u, {t,, I, t-), push{d, 1), 0)) ={t,, I, 1 +1,),d, o +d(],)+ ).
The move commands:

V nat 1:

apply((+,0),(t,, [, 15}, d, 0)) ={t,, I, t2), d, o +t(1) + ),

apply((+9 1+ 1), «Il ’ I, t'l), d’ 0))
= appl}’((+, '), «tl + 15 ﬁrSt t'h rest '3)1 d’ 0))7

and simularly
appl}’((_, 0)’ «tl ] Ia t2>’ d1 0)) z«tla 11 t2>9 d’ 0+t(1)+ ?>9

apply((—, 1+1),{t:, |, 1,), d, 0))
= apply((—, 1), {lead t;, last t;, I +1,), d, 0)).
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(h) The s command:

V nbsstring key:
aPI’I}’((S, ke.)’), «tl ’ la t!)a d9 0)) = «tl ’ l’ t2)’ d’ 0+d(l)+ ?) prOVided key isin I,

apply((s’ ke}’), « tl ] l’ t3>’ d9 0))
= apply((s, key), {t, + 1, first t;, rest t,), d, o))provided —(key isin /).

Here isin denotes a predicate checiing whether the string key occurs in |/,
(1) The w command

aPPI}'(W, «tl ’ l, t2)a d’ 0)) =«rl ’ l’ 12>’ d1 0+d(Wind(tl, I, t2))+ ?>-

Again, wind denotes an auxiliary operation that generates a window of the
desired size.

2 4.4. Erroneous situations

So far we have specified what has been required from the commands in the verbal
specification. A simple formal examination, however, will again yield that the
specification of apply is not complete, since borderline cases (that do not appear
in the verbal specification) still have to be dealt with.

Of course, there are several possibilities to get rid of these marginal cases. One
way 1s to use partial functions. However, in contrast to other applications, using
partial functions does not make sense in our particular example, since it is hard to
imagine what “undefined” should mean (should it mean that the screen bursts, or
what else?). Another (simpler) way in our particular example would be to transmit
the {bel} character as a kind of “universal” error message. This would be similar
(and, hence, similarly unsatisfactory) to what in error handling in compilers 1s
known as “panic mode”. What is really tacitly expected (at least from the customer’s
side) is a “‘friendly” behaviour, 1.e. whenever in such a borderline case there is a
chance still to do something reasonable, the s:~tem should do so. It also seems
reasonable to additionally output {bel} in order - - -ignal a “‘warning” in these cases.

Aiming at such a friendly behaviour, we d iine:

ad (e)
apply(ks «tl ) ls 8(), d9 0))
={t1, &, &), push(d, 1), o+ d({eof})+d({bel}) + 2).

In the verbal specification 1t is required to display the line after the one deleted.
However, if there is none, 1t cannot be displayed

ad ()
aPPIJ’(U, «tl > ” t2)a €4, 0)) = «th Is t2>a €4, 0 +d({bel})+ ?)‘
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Here we have assumed that the u command has no effect on the state, if the delete
stack 1s empty—again a case that 1s not consiaered 1n the verbal requirements.

ad (g)
apply((+,1+1),4t,, L, e, d, 0)) ={1,, |, &), d, o+ d({bel})+ ?)

(and, of course, analogously for (-, 1+1)).
The informal requirements might suggest that + and — have converse effects, e g

(—,(m—n)) ifm>n,
(=, m)+(+,n)={(+,(n—m)) 1fn>m,
(+,0) Hn=m

(and analogously for (+, m)+(—, n)).

If we had specified in this way, we not only have forgotten that each move
command also generates output even If the file i1s not changed. We also would have
prevented any “user-friendly” solution to the above-mentioned borderline case.

ad (h)

V nbsstring key

apply((s, key), {t,, 1, €), d, 0)) ={t,, |, &), d, o +d({bel}) + )
provided —(key isin I)

Still two more questions have to be tackled.

First, we have not yet specified what happens, if the current line of the file is the
pseudo-line & As we assume that files only can be created using the editor
operations, the case (1, ¢,, 1) always implies t,=¢,, since (for a non-empty file)
(t), £y, t:) can only result from applying an e or k command Hence, the case(t,, ¢, 1,)
with 1, # ¢ needs not to be considered explicitly, and an appropriate invariant
assertion can be added to apply

funct apply

= (command’ ¢, state s
dstack d, output o, text t,, t, s={1,, £, 1), d, 0)=>t, = g,) state

For the current line being the pseudo-line we have
V command’ c& {1,1,u, b, e, -}

apply(c,{t,, £, ), d, 0)) =1y, €1, #), d, 0 +d({bel}) + )
and

appl"((l, 1)’ ((Il ’ El’ El)a d’ O)) = «tl 2 l’ £t>, d’ 0+d(1)>,

applv(("’ l)’ «tl s &1y gt), d’ 0)) = «tl ’ l’ 8()7 d’ 0+d(1)+ 9)’

apply(u, {t,, €, €, push(d, 1), 0)) ={1,, 1, £), d, o +d(I) + ?),
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apply(b,{t;, &, &), d, 0)) = (&, first 1, rest t;), d, o + p(first 1;)+ ?),
apply(e,{t,, &, &), d, 0)) ={1,, €, &), d, o +d({eof}) + ),

apply((=,0), (1., &1, &), d, 0)) ={1,, &, &), d, 0 +d({bel}) + ?),

apply((—, 1+1),{t;, &, £), d, 0)) = apply((—, 1), {lead t;, last t;, ), d, 0)).

Secondly we have to deal with the fact that any syntactically incorrect input is
mapped to an (abstract) error command ec. This error command simply can be
specified by

v file f:
apply(ec,(f, d, 0)) =(f, d, o+ d({bel})+ ).

2.4.5. Summary

As for the function parse we now summarize the axioms of apply and rearrange
and rephrase them in order to ease the proofs of soundness and formal completeness.
Thus we get altogether:

funct apply
= (command’ c, state s:
I stack d, output o, text t,, t,: s ={t,, &, t»), d, 0)= 1, = g,) state,

V file f, stack d, output o, nat ¢, text 1, , t», pline /, /|, nbsstring x, y:

apoly(b, (g, d, 0)) =(g,, d, o+ d({bel})+ ?),
apply(b,{t,, 1, t-), d, 0))
={g,, tirst(t; + 1+ 1), vest(t,+ [+ 1,)), d, o+ p(first(t, + 1+ 1,))+ D,
apply(b, {t,, €, ), d, 0)) ={ &, first t,, rest t,), d, o+ p(first t;) + ?)
provided 1, # £,

apply(e,{t,, I, tz), d, 0)) ={t, +1+ 15, &, £, d, 0 +d({eof}) + ),
apply(es «tl s €1, Et)a d, 0)) =<(tl s €1, El)a ds 0+d({e0f})+ ?),

appl)’((m, X, ,V), «tl ’ I, t2>s d’ 0)) =<<tl b repI(L x’ y)a l?,), ds 0+ re(la x, }’)"‘ ?>a
appiy((m’ X, y)9 «tl s €1, 8!)1 d, 0)) =<<tl » €1 8!), d, 0+d({bel})'+ ‘7>a

apply((1, 1), {4y, I, ), d, 0)) =1, + 1, 1, 1), d, 0 +d(1)),
apply((1, 1), {1, &1, £, d, 0)) =11, |, e, d, o +d(I}),
apply((1', 1), 44, Iy, ), d, 0)) ={t,+ 1, |, 1), d, o+ d(I) + ),
apply((V, 1), 41y, &, £), d, 0)) =41, |, &), d, 0 +d(]) + ),

apply(k,{t,, L, t,), d, 0)) =(t,, first t,, rest 1,), push(d, 1), o+ d(first t,)+ ?)
provided ¢, # ¢,

apply(k,{t,, 1, £, d, 0)) ={t,, &, &), push(d, I}, o+ d({bel}) +?),

apply(k,{t,, €, €, d, 0)) ={t,, &1, &), d, o+ d({eof}) + d({bel}) + ),
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apply(u,{t,, I, 1), d, 0)) ={1,, top d, |+ t;), pop d, o +d(top d) + ?)
provided d # ¢,,

apply(u, (f, £4, 0)) =(/, ¢4, 0+ d({bel}) + ?),

apply(u, {1y, ), £), d, )V --{t,, top d, £,), pop d, o+ d(top d) + ?)
provided d # ¢ 4,

apply((+,0),€t,, |, 2, d, 0)) =i\, I t5),d, 0+ (1) + ?),

apply((+,1), 41, &, ), d, 0)) =1y, &\, &), d, o +d({bel}) + ?),

apply((+,1+1),4¢t,, 1, 1), d, 0)) = apply((+, 1), {1, + |, first t,, rest 1), d, 0))
provided 1, # ¢,

apply((+,1+1),41,, L e}, d, 0)) ={1,, 1, &), d, o+d({bel})+ ),

apply((—,0),4t,, L, 12),d, 0)) =(t,, |, 2), d, 0 +t(]) + ),

appiy{(—,0), €1y, &1, €), d, 0)) =1y, &, £), d, o+ d({bel}) + ),

apply((—, 1+1),4{t, I, 1), d, 0)) = apply((—, 1), {lead t,, last t,, | + 1.}, d, 0))
provided 1, # .,

apply((—, 1+ 1\, (e, |, t2), d, 0)) ::{&,, |, t2), d, o+ d({bel}) + ?),

apply((—, 1+1),41,, 1, &), d, 0)) = apply((—, 1), {lead 1,, last t,, &), d, 0))
provided ¢, # ¢,,

applv((~, 1+ 1), (¢, d, 0)) =(¢g(, d, 0o +d({bel})+ ?),

apply((s, x), {ty, I, 1), d, 0)) ={1,, |, t-), d, o +d(I)+ ?) provided x isin /,
apply((s, x),{t,, I, 15), d, 0)) = apply((s, x), {t, + I first t,, rest t,), d, 0))
provided 1, # £ A (X isin /),
apply((s, x), {1\, |, ), d, 0)) ={t,, 1, &), d, o +d({bel}) + ?)
provided —i(x isin /),
apply((s, x), {1, 01, €9, d, 0)) =1, &, &), d, o +d({bel}) + ),

apply(w, (1., |, 1), d, 0)) ={1,, |, t2), d, 0+ d(wand (1, , ], 1,)) + ?)
provided | # ¢,
appr(W, «tl s €1, Et)a d, 0)) =«tl s €1, €l>, d, ()+d({be]})+ ?)9

apply(ec, {f, d, 0)) ={f, d, o +d({bel})+ ?).

3. Transformational development

The subsequent transformational development will deal with the functions effect,
apply, and parse Its emphasis 1s on the transition from the respective algebraic
specifications to equivalent (tail recursive) applicative programs working in an
“on-line” fashion, 1 e , processing one unit after the other (without knowing the full

history)

The overall strategy we are going to follow 1s faiily simple- first, we transform
the algebraic specification into an applicative program, second, we apply suitable
transformations to improve this program The main techniques to be used are
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rephrasing of axioms on the level of algebraic specification, and abstraction, embed-
ding, case introduction, and unfold/fold for the operational improvement.

3.1. Development of an operational version of effect

The operation effect, describing the overall behaviour of the editor, was defined
on sequences of commands rather than on individual commands to be processed
one at a time. In tkis way we were able to specify the effects of the commands a
and f, which depend on “previous” commands, in a very elegant way. In the sequel
we are going to transform this abstract specification into an equivalent one where
commands are individually processad.

3.1.1. Condensing the specification of effect

The formulation of the axioms for effect in Section 2.4.1 was primarily guided
by the intention to ease a completeness proof. This led to a fairly large number of
axioms. Therefore our first development step aims at reducing this number while
simultaneously providing somewhat more uniformity for the right-hand sides of the
axioms in order to keep the presentation reasonably short.

To this end we introduce

funct apply’ = (command c, state s) state:
if c{a, f} then s else apply(c, s) fi

(which allows us to combine the axioms (2a) and (2b) as well as (3a) and
(3b)) and furthermore combine (3e) and (3f) into one axiom. Thus we get a new
(equivalent) specification for effect:

V command c, ¢’, commsequ cs, state s:

(1) effect(e, s)=s,

(2ab)  effect(c+ ¢, s)=apply'(c, s),

(3ab)  effect(c+c'+cs, s) = effect(c' + cs, apply'(c, s))
provided c< {a, f} v ¢'¢ {a, f},

(3¢) effect(c+c'+cs, 5) = effect((s, key) + cs, apply'(c', s))
provided ¢’ =f A ¢ =(m, key, rep),

(3d) effect(c + c'+ cs, 5) = effect((m, key, rep)+ cs, apply'(c, s))
provided ¢’ = (a, rep) A ¢ = (s, key),

(3ef) effect(c+ '+ cs, 5) = effect(c + cs, apply’(c', s))
provided c2 {a,f} A ((c'=fac#m)v(c'=anc#s))

312 Introduction of delimiter symbols

We still have to differentiate between empty sequences, singleton sequences, and
sequences with more than one element. Hence our next efforts aim at making this
distinction vanish, Intuitively, we use a technique that 1s well-known in the areas
of compiler construction or string processing. There, frequently, strings are supple-
mented by (unique) delimiter symbols such that recognizing an empty siring is
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reduced to recognize the respective delimiter symbol, and therefore “normal’ cases
and “borderline” cases can be treated ahke

Formally, we perform a simple data type transformation changing a command
sequence into one which is delimited at both ends by the (new) delimiter symbols
# (acting as dummy commands). To this end we introduce

~ sequences consisting of commands and delimiter symbols, defined by
mode commsequ’ = ESEQU(command™)
where
mode command” = command |{#},
- sequences of commands that have a delimiter symbol at therr right end,

mode commsequ” = (commsequ’ s'* 3 commsequ 3: 5" = s+ #),
and

- sequences of commands that have delimiter symbols at both ends,
mode commsequ”” = (commsequ’ s’ 3 commsequ s s’ =# + 5+ #).

Next we adjust apply’ and effect to these new data types, i.e we transform them into
functions apply” and effect” that work on delimited command sequences, but
otherwise are the same (Note, that by definition, for all objects cs of types commsequ™
and commsequ”” respectively, ¢s # & hoids )

We get

funct apply” = (command” ¢, state s) state.
if ce{a,f, #} then s else apply(c, s) fi,
and
funct (commsequ””, state) state effect”,
defined by

YV command” ¢, command ¢’, commsequ” cs, state s.

(1/2)  effect”(c+#,s)=apply”(c, s),

(3ab) effect” (c+c'+cs, 5) = effect” (' + cs, apply” (¢, 5))
provided ce {a, f, #} v ¢’ {a, f},

(3c) effect” (c+ c'+cs, s) = effect” ((s, key)+ cs, apply”(c’, s))
provided ¢’ = f A ¢ = (m, key, rep),

(3d) effect” (c+ ¢’ + cs, s) = effect” ((m, key, rep) + cs, apply” (¢, s5))
provided ¢’ = (a, rep) A ¢ = (s, key),
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(3ef)  effect”(c+c'+cs, s) = effect” (c + cs, apply” (', 5))
provided c g {a,f, #} A ((c'=fac#m)v(c'=anc#s)).

The right-hand sides of (3¢) and (3ef) can be further simplified using the respective
premises and the definition of apply”. We get

(3¢) ...=-effect”((s, key)+ cs, s) provided . ..,
(Bef) ...=effect”(c+cs, s) provided. . ..
Of course, the definition of edit has also to be adapted to these new data types
edit(in) = unparse(effect” (# + parse(in) + #, initstate))

such that the previous transformation step technically amounts to an embedding
(cf. [12]).

3.1.3. Shifting the focus of the computation

Due to the fact that commands may have effects on other commands the definition
of effect has to take into account always two commands at a time. In the previous
definition of effect this fact was reflected by looking one command ahead, Of course,
the same situation also can be handled by remembering the command that has been
considered before

In order to achieve this shift of the focus of the computation we add two arguments
to effect which are to remember the previous command and the previous state.
Technically, this 1s achieved by another embedding. We introduce

funct (commsequ*cs, state s', command” ¢, state s:
s' = apply” (¢, 5)) state eff,

defined by
eff(cs, apply™(c, 5), ¢, 5) = effect™ (c + cs, ),
and transform the definition of edit into
edit(in) = unparse(eff( parse(1n)+ #, inustate, # , tnustate)).

Obviously, this defimition 1s equivalent to the previous one, as (according to the
definition of apply™)

apply” (#, imitstate) = mnitstate.

The goal now 1s to derive a definition of eff which is independent of effect”.

Using the above defimition of eff, the axioms for effect” directly translate to
V command™ ¢, command ¢’, commsequ” cs, state s, s": s’ = apply®(c, s).

(1/2)  eff(#,5,¢,5s)=5,
(3ab)  eff(c'+cs, s, ¢, 5) = eff(cs, apply#(ci, s, c’,s")
provided ce {a, f, #} v ¢'#{a, f},
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eff (¢’ +cs, 5", ¢, ) = eff (cs, apply” ((s, key), s), (s, key), s)
provided ¢’ = f a ¢ = (m, key, rep),

effi(c'+cs, 8, ¢, 5) = eff(cs, apply” ((m, key, rep), '), (m, key, rep), s')
provided ¢’ = (a, rep) A ¢ = (s, key),

eff(¢'+cs, 8, ¢, 8)=eff(cs, 5", ¢, §)
provided c 2 {a,f, #} A ((¢'"=fArc#m)v(c'=anc#s)).

Fmally, apply” can be eliminated:
By simple unfolding the assertion translates to

s'=if ce{a,f, #} then s else apply(c, s) fi

which can be further simplified to

(cela,f, #} As'=5)V s'=apply(c, s).

Unfolding apply” in the axioms 1s trivial for (3¢) and (3d) and leads to a case
distinction for 3(ab).
Altogether we get

(1/2)
(3a)
(3b)
(3¢)

(39)

(3ef)

V command” ¢, command c¢’, commsequ” cs, state s, s’

(ce{a,f, #} As'=5)V s'=apply(c, s).

efl(#,s,¢,8)=¢,
eff(c’+cs, 8, ¢, s)=eff(cs, s', ¢, s') provided ce {a,f, #} A c'e{a, f},
eff(c’'+es, s', ¢, s)=eff(cs, apply(c’, s'), ¢, s') provided ¢’ {a, f},
eff(¢'+cs, s, ¢, 5)=eff(cs, apply((s, key), s), (s, key), s)

provided ¢’ = f A ¢ = (m, key, ren),
effic’+cs, s, ¢, 5)=eff(cs, apply((m, key, rep), s'), (m, key, rep), s’)
provided ¢’ = (a, rep) A ¢ = (s, key),
efl{ce' +es, s, ¢, s)y=eff(cs, s', ¢, 8)

provided cz {a,f, #}a ((¢'=(ac#m)v{c'=anc#s)).

Note that this version also could have been derived without introducing the auxiliary
operations apply’ and apply” respectively, however, at the expense of considerably
more effort 1n keeping the number of axioms as small as possible

3.14 An equwalent applicative program
According to the rules given in [3], our last version of eff can immediately be
converted into the definition of an applicative function

funct eff ' = (commsequ” cs, state s, command” ¢, state s:

(cefa,f,#} 435 =5)V s '=apply(c, s)) state.
begin command” ¢’ = first cs,
if ¢'= # then s’
else commsequ” cs’ =rest cs,
ifce{a,f #}ac'e{a,f}theneff'(cs’, s, c',s')
Oc¢'z{a,f} then eff'(cs', apply(c', s'), ', s')
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Oc'=fac=(m,key, rep) then eff'(cs', apply((s, key), s), (s, key), s)
Oc'=(a, rep) A c = (s, key)

then eff'(cs’, apply(m, key, rep), s'), (m, key, rep), s')
Ocef{a,f,#}a((c’=fac#m)v(c'=anc#s))

then eff'(cs’, ', ¢, s) fifiend

where, by definition, the last branch of the guarded expression simply can be
abbreviarted to else.

3.2. Introduction of on-line processing

The previous definition of eff” still assumes that the complete input sequence is
already parsed into a sequence of commands. Our next intermediate goal is the
introduction of “on-line” behaviour, i.e. the parsing and processing of single com-
mands one after the other rather than considering (pre-parsed) command sequences
as done so far.

3.2.1. Combiming parsing and processing of single commands

Technically, the introduction of “on-line” behaviour is achieved by simple func-
tion composition, applied to eff’ and parse in the right-hand side of the definition
of edit, viz.

edit(in) = unparse(eff’'( parse(in) + #, initstate, #, initstate)).

This function composition simply can be done by using the unfold/fold strategy.
First, we redefine edit into

edit(in) = unparse(eff’(in, initstate, #, initstate)),
where

funct eff” = (input in, state s’, command” c, state s:
(cefa,f, #} As'=s)V s'=apply(c, s)) state:
eff (parse(in)+#,s', ¢, 5).

~

By unfolding (the s»mp "% i version of) eff’ we get

funct eff" = anir  » - te s’,command” ¢, state s:
(ceia,f, #} 4 s =5)V s'=apply(c, s)) state.
begin command” ¢’ = first( parse(in)+ #);
if ¢'=# then s’
else commsequ” cs’ = rest( parse(in) -+ #);
ifce{a,f,#}rc'c{a,f}then ef(cs’, s', c', s')
O c'#{a, f} then eff '(cs’, apply(c’, s'), ¢', s)
Oc¢'=fac=(m, key, rep) then eff '(cs’, apply((s, key), s), (s, key), s)
Oc' =(a, rep) nc=(s, key)
then eff '(cs', apply((m, key, rep), s'), (m, key, rep), s')
else eff '(¢s', 5', ¢, s) fifiend
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This last version still contains sequences of commands that have to be eliminated.
We do this in two steps. First, by abstraction, we ntroduce auxiliary operations

funct nexicommand = (input in) command”.
first( parse(in) + #)

and

funct inputrest = (input in parse(in) # €) input:
some input z parse(z)+# =rest{parse(in) + #).

Obviously, parse(inputrest(in)) + # = rest( pcrse(in) + #), and, hence, our next inter-
mediate version reads

funct eff” = (iaput in, state s, command” ¢, state s
(ce{a,f, #} As' =)V s'=apply(c, s)) state
begin command” ¢’ = nextcommand (in),
if ¢'=# then s’
else input :n’ = inputrest,in); commsequ™ cs’ = parse’m )+,
ifce{a,f, #;ac' ei{a, f} then eff '(cs', s', ¢, 5')
Oc'¢qa, f} then eff {c¢s', apply(c', s'), ¢, s°)
Oc¢" =fAc=(m,key, rep) then eff (cs’, apply((s, key), s), (s, key), s)
Oc¢' =(a, rep)rc=(s, key)
then eff '(¢s’, apply((m, key, rep), s'), (m, key, rep), s')
else eff'(¢s’,s’, ¢,s) fifiend

Next, by simply unfolding the declaration of ¢s’, we get

fuact eff” = (input in, state s’, command” c, state s:
(cef{a,f, #} A s =5)V s'=apply(c, s)) state.
begin cemmand” ¢’ = nextcommand (in),
if ¢'=# then s’
else input 1n’ = inputrest(in),
ifce{a,f, #} a ¢’ €{a,f} then eff (parse(in’)+#,s’, ¢, 5')
O ¢’z {a, f} then eff'( parse(in’)+ #, apply(c’, 5'), ¢', ")
Oc¢"=fnc=(m, key, rep)
then eff '( parse(in’)+ #, apply((s, key), s), (s, key), s)
0 =(a, rep) n c=(s, key)
then eff ( parse(in’) + #, apply((m, key, rep), s'),
(m, key, rep), s)
else eff '(parse(in’)+#,s',r.s) fifiend

Now folding (with assertton) of eff” is possible and our final result 1s

funct eff” = (input n, state s’, command” c, state s
(cefa,f,#} As'=5) Vs’ =apply(c, s)) state
begin command” ¢’ = nextcommand (in),
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itc'=# thens'’
else input in' = inputrest(in);

if cef{a,f, #}ac'e{a,f}thenef"(in',s', c, s')

Oc'¢{a, f} then eff "(in’, apply(c', s'), ¢', s')

Oc =fnac={(m, key, rep)
then eff "(an’, apply((s, key), s), (s, key), s)

Oc'=(a, rep) n c=(s, key)
then eff "(in’, apply(m, key, rep), s'), (m, key, rep), s')
else eff "(in’, s', ¢, s) fifiend

where commands are recognized (by nextcommand) and processed one at a time.

3.2.2. A more detailed version
Obviously, within the given context,

c'e{a,f} © c'=ecvc’'=bvc'=evc =(m,key, rep)v
=@Dvc=0,0Dv
c=kve'=uve'=(+,n)ve'=(—,n)vc'=slkey)vc' =w

Hence the respective branch 1n the above program can be further detailed. Addi-
tionally, we combine the auxiliary operations nextcommand and inputrest 1nto a
single new auxiliary operation

funct nextcomm = (input 1n) (command”, input):
(nextcommand (1n), if parse(in) = ¢ then ¢ else inputrest(in) fi)

This leads to

funct eff” = (input in, state s’, command” c, state s-
(ce{a,f,#} As' =5s)V s"=apply(c, s)) state.
begin (command” ¢’, input in’) = nextcomm(in),
if ¢'=# then s’
elseif ce{a,f, #}nc'e{a,f} theneff "(in’, s', ', s)
0 c'=ecthen eff "(cs’, apply(ec, s'), ec, 5')
O c'=b then eff "(cs’, apply(b, s'), b, 5)
00 ¢'=e then eff "(cs’, apply(e, s'), e, s)
00 ¢'=(m, key, rep)
then eff"(cs’, apply((m, key, rep), s'), (m, key, r=p), s')
Oc¢ =@, 1) then eff "(cs', apply((i, 1), 5'), (i, 1), s)
Oc¢ =", 1) then eff "(cs’, apply((1', 1), "), (i, 1), s)
0 ¢’ =k then eff "(cs’, apply(k, 5), Kk, s)
0 ¢’ =u then eff "(¢s’, apply(u, '), u, s)
0 c¢'=(+, n) then eff "(cs', apply((+, n), 57), (+, n), s")
0 ¢ =(—, n) then eff "(cs’, apply((—, n), s'), (=, n), s")
O ¢'=(s, key) then eff "(cs’, apply((s, key), s'), (s, key), s’)
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Oc’'=w then eff "(cs’, apply(w, s'), w, ")

O¢ =fac=(m, key, rep)
then eff "(in’, apply((s, key), s), (s, key), s5)

0 c¢'=(a, rep) rn c = (s, key)
then eff "(in’, apply(\m, key, rep), s ), (m, key, rep), s’)
else eff "(in', s, c,s) fifiend

3.2.3. An exphcu, axiomatic definition of nextcomm

So far, the auxiliary operation nextcomm is defined using the operation parse.
Our next intermediate goal is to derive a definition of nextcomm which is independent
of parse.

First, by unfolding the respective definitions of nextcommand and inputrest, we get

An axiomatic definition of nextcomm can be obtained from the axioms of parse in
a straightforward way (again by using unfold/fold steps and the definition of

funct nextcomm = (input in)(command”, input):
(first(parse(in) + #),
if parse(in) = ¢ then ¢ else some input z:
parse(z)+ # = rest( parse(in) + #) fi).

nextcommy):

V input 1n, sc, char ¢, digit d, string t,, 1,, dstring 7,:
nextcomm(e) = (#, &),
nextcomm (c+n) =(c, in) provided ce {b, e, k, u, f, w},

nextcomm(c +in) = (ec, in)
provided c2 ({b, e, m,i,1,k, u, s, a, f, w}u digit),

nextcomm(m+ n) = ((m, mbl(t,), dib(mbl(t,))), sc)

provided in = 1, +{cr} + t, +{cr} + sc A nbs(t,),
nextcomm(m++ in) = nextcomm(rest(mbl(t,)) + sc)

provided n = t,+ sc A nbs(t,),
nextcomm(m+n) =(#, €)

provided (in € string 4 nbs(in)) v (in = t,+{cr}+ 1, A nbs(1,)),
nextcomm(m++ ) = (ec, sc)

provided (in = 1, +{cr} -+ t,+ {esc} + sc A nbs(1,))

v (in = t,+{esc}+sc A nbs(t,)),

nextcomm(i+ ) = ((i, dIb(mbl(t,))+{cr}), i+ sc)
provided in = t, + {cr}+ sc,

nextcomm(1+n) = ((i’, dIb(mbl(t,)) +{cr}), sc)
provided 1n = 1, + {esc} + sc,

nextcomm(1+n) = (#, &) provided in € string,

nextcomm(s -+ ) = ((s, mbl(t,)), sc) provided in = ¢, + {cr} + sc A nbs(t,),
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nextcomm(s+ in) = nextcomm(rest(mbl(t,))+ sc)

provided in = t,+ sc A "inbs(t,),
nextcomm(s+ in) = (#, ¢) provided in € string A nbs(in),
nextcomm(s+ n) = (ec, sc) provided in = t, +{esc}+ sc A nbs(t,),

nextcomm(a+in) = ((a, mbl(1,)), sc) provided in = t, +{cr}+ sc A nbs(t,),
nextcomm(a+ in) = nextcomm(rest(mbl(t,)) + sc)
provided in = t, + sc A inbs(t,),
nextcomm(a+in) = (#, &) provided in < string A nbs(in),
nextcomm(a+ in) = (ec, sc) provided in = t, +{esc} + sc A nbs(t,),

nextcomm(d + in) = ((s1g, conv(mbl(t,), 0)), sc)
provided in = t4+ sig + sc A (mbl(d,) # € A first(mbl(t,)) # {bs})
Asige{+, -},
nextcomm(d + in) = nextcomm(rest(mbl(t,)) + sc)
provided in = t; + sc A —nbs(t,),
nextcomm(d + in) = (#, £) provided in € dstring A mbl(d + in) # &,
nextcomm(d + in) = (ec, sc)
provided d + in = ty+ ¢+ sc A (mbl(t,) # € A first(mbl(t,)) # {bs})
A cg{+, —}udigit.

3.2.4. An operationcl defimtion for nextcomm
It remains to derive operational versions for nextcomm starting with the axiomatic
definition given above As a representative we will deal with the s command in detail.
First, we redefine (by abstraction) the respective axioms, viz.

1 nextcomm(s+ in) = ((s, mbl(t,)), sc) provided in = t,+{cr}+ sc A nbs(t,),
2) nextcomm(s+ in) = nextcomm(rest(mbl(t,)) + sc)
provided in = t,+ sc A nbs(t,),
(3) nextcomm(s+n) = (#, ) provided in € string A nbs(in),
4) nextcomm(s+n) = (ec, sc) provided in = 1, +{esc} + sc A nbs(t,),

into

nextcomm(s+in) =
if in=¢ then (#, ¢)
else if first in = {bs} then nextcomm(rest in)
else ps(first in, first in, rest in) fi

where the auxiliary operation ps parses an s command and 1s defined by

funct ps = (nstring p, string o, input in:
p = mbl(0) A (0 # ¢ A first o # {bs})) (command”, input):
nextcomm(s+ o+ in).

Next, we derive axioms for ps using its definition, the assertion on the parameters,
unfold and folding with assertion. As we specified nextcomm in such a way that all
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axioms are disjoint, no special care with respect to “overlapping” cases has to be
taken. We get
V nstring p, string o, input in, char ¢, ¢": ¢’ {bs, cr, esc} A c & {bs, cr, esc}:
ps(p, o, €) = nextcomm(s+o0+¢) =(#,e) [accordingto (3)]
ps(p+c, o, {bs}+in) = nextcomm(s+ o+ {bs}+m) = ps(p, o +{bs}, in)
[by folding, as p+ ¢ = mbl(0) A (0 # ¢ A first 0 # {bs})=>
p = mbl(0+4{bs}) A (0 +{bs} # ¢ A first (o +{bs}) # {bs})]
ps(g, o, {bs}+ in) = nextcomm(s+ o +{bs} + in) = nextcomm(in)
[according to (2), as € = mbl(0)=>mbl(o +{bs}) = {bs}
=>—nbs(o +{bs})]
ps(p, o, {cr} +1n) = nextcomm(s+ o +{cr}+in) =((s, p), in)
[according to (1), as p € nstring A p = mbl(0) A nbs(0)]
ps(p, o, {esc}+ in) = nextcomm(s+ o +{esc} +in) = (ec, in)
[according to (4), as p € nstring A p = mbl(0) A nbs(0)]
ps(p, 0, c'+1n) = nextcomm(s+o+c'+in)=ps(p+c’,o+c’,n)
[by folding, as ='¢& {bs, cr, esc} A p = mbl(0) A (0 # £ A first 0 # {bs})=>
ptc'=mbl(o+c') a0+ # e A first (0 +{bs}) # {bs})]

This definition of ps can be transformed into a recursive function 1n a straightforward
way-
funct ps = (pstring p, striag o, input in:
p=mbl(0) A (0 # ¢ A first 0 # {bs})) (command”, input):
if in = ¢ then (#, £)
else if first in = {bs}
then if p = £ then nextcomm(rest in)
else ps(p, o +{bs}, rest in) fi
U first tn = {cr} then ((s, p), rest in)
O first in = {esc} then (ec, rest in)
else ps( p +first 1, 0 +first 4, rest in) fi fi.

In an analogous way also the remaining axioms of nextcomm for a, s, m, i, or
move commands can be treated to finally obtain a fully operational version of
nextcomm.

The result obtained so far does not yet exhibit true “on-line” behaviour, since
unparse (in the definition of edit) is applied just to the “final” state rather than
successively to all intermediate states thus producing output in an “on-hne” way

Obviously, another function composition (here of unparse and eff”) 1s necessary
which, although straightforward analogous to the treatment of parse, cannot be
demonstrated in detail due to the lacking specification of unparse

3.3 Remarks on the further development

We have stopped our derivation at the level of applicative programs, since we
are convinced that the still missing steps towards a conventional programming
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language such as, e.g., Pascal are fairly obvious. Nevertheless we would like to add
a few more comments on these final optimization steps.

First, the definition of apply has to be transformed such that for each command
there is exactly one axiom. Starting with the definition of apply from above this 1s
straightforward and left as an exercise to the reader.

Next, we can get rid of the auxiliary structures state and file by simply unfolding
the respective definitions. Of course this also requires unfolding of all calls of apply
in eff” (where the recursively defined axioms have to be made into appropriate
auxiliary operations). This also leads to a redefimtion o5 »c:1 into

edit(ln) = unparse(eﬂ*(ln9 €, €, &4, &, -fi’ Eys 1y ~ts Edy 80))
where the explicit definition of

funct eff * = (input mn, text ¢, line /, text 1,, stack d,
output o, command” c, text ot,,
line o/, text ot., stack od, output 00)
(taxt, line, text, stack, output),

which 1s characterized by

eff*(in, 1,, 1 15, d, o, c, ot,, 0l, 0t,, od, 00)
= eﬁ"(ln’ «tl b Ia t2>1 da 0>a C, «Otla OI, 0t2>s Od’ 00))’

again is straightforward.

The definition of eff* also allows a possible further optimization according to
the general idea of saving storage at the expense of additional computationai effoii
Rather than keeping the “old state” {ot,, ol, ot,), od, 00) explicitly, it 1s maybe more
economic to just have the “current state” {t,, , t,), d, o), some information nf, and
an operation restore, such that

reStore(«tl ] I’ 12), d’ 0)9 inf) = «Otl ] 019 OtZ)s Od, 00>’

i.e. to recompute the information contained in {ot,, ol, ot,), od, 00) 1n case it 1s
needed. Whether this last transformation, which in some sense is a counterpart to
the technique of “finite differencing” (cf. [12]), is really an improvement, depends
on further facts that go beyond the scope of this paper.

The function eff* and its further optimized versions are all tail-recursive such
that the well-known transformation from tail recursion to iteration (including final
polish-up transformations for imperative programs) could be added as a final
optimization step.

4. Conclusion

By means of a realistic case study we have demonstrated how the paradigms of
algebraic specification and transformational programming can be used to bridge
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the gap between informally stated requirements and a running program. In particular,
we have demonstrated how an abstract view taken in an algebraic specification is
to be transformed into a practically reasonable operational version.

A reader unexperienced in using formal techniques in program development might
be intimidated by the amount of formulas that were needed for a detailed formal
problem description and discouraged or even bored by persisterice necessary to
follow its development. This very reader should be simply reminded of the fact that
writing a program (without formal development) would require at least the same
amount of formulae (called “statements”) and of the well-known difficulty to make
sure that the program really does what it should do.

Likewise, the ratio between specification and development, i.e., more effort for
the specification than for the development, might appear strange to some readers.
We think that this phenomenon is a simple consequence of the fact that formal
specifications require a precise and complete statement of the problem and thus
leave no room for “handwaving” or for hiding aspects of the problem in the
development of an algorithm. Thus, program development starting from a formal
specification can exclusively concentrate on making constructs operational and
efficient without being bothered by aspects of problem analysis, which obviously
reduces the effort compared to the traditional approach to software development.

Althcugh still some more effort has to be invested in order to complete this sample
derivation, e.g , by adding a suitable treatment of cursor positions (which we have
deliberately left out due to the lack of respective information in the informal
requirements), the general way how to deal with such kinds of problems should
have become obvious. In particular, an attentive reader with basic knowledge in
algebraic specification and transformational programming should be able to do
similar developments, e.g for existing, commercially available editors, himself.
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