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1. Introduction

Let Y be a real, Hermitian, or quaternion normal random matrix with mean zero and covariance Xy.
Necessary and sufficient conditions are obtained for a quadratic form Q (Y) to have a Wishart-Laplace
distribution (the distribution of the difference of two independent central Wishart W}, (m;, X') random
matrices). Further, necessary and sufficient conditions are obtained for a family of quadratic forms
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{Qk(Y)} to be independent Laplace-Wishart. This is a generalization of Cochran’s Theorem [3]. For
history, see [15] and the references therein.

To obtain the most general solution to our problem requires the theory of Jordan algebras. To see
why, consider the case where Y is an n x p real normal random matrix and Q(Y) = Y'WY. Since Xy
and X (the Laplace-Wishart parameter) are symmetric, we should develop the theory needed within
families Sy, of N x N symmetric matrices where N may be p or np. Let A, B € Sy. The usual matrix
product AB may not be symmetric. So we introduce a Jordan product:

1
A%B= 5(AB+BA),
or more generally,
1
AxcB= E(ACB + BCA),

where C € Sy. Then (Sy, *¢) is an example of a Jordan algebra; see, e.g., [4]. Now consider the dis-
tribution of Qy = YWY through its moment generating function Mg, , where W is symmetric. From
Masaro and Wong [9],

Mo, (t) = Det[ly ® I, — 250> (W @ ) Z3/* 1712, t e AL,

where NV, = {t e Sp 1 [, ® I, — 22;/2(W ®t) 211,/2 is positive definite}, i.e., Mg, is determined by
the linear map p : S, — Sy with
pt) =y’ W0z’ tes,
It can be proved (see [9]) that YWY is Wishart with nonsingular scale parameter X if and only if
p is homomorphic from (S, *x) into (Sg, *), i.e,, it preserves the Jordan products:

p(AxxB) = p(A) x p(B), ABES,.

The mapping p is referred to as a representation in (Jordan) algebra theory.

Our main result, Theorem 4.3 and its corollaries extend the above result to a result for the Wishart-
Laplace distribution. The framework of Jordan algebras provides a unified and natural approach in
that the cases where Y is a real, complex or quaternionic normal random matrix can be dealt with
simultaneously as part of a general theory. In addition we feel that this point of view provides a deeper
insight into the nature of the Wishart-Laplace distribution.

We remark that the application of Jordan algebras to statistics and probability has appeared in
numerous papers (see [2,7,8,10,11,12,9]). For brevity, whenever convenient, we shall refer certain
notations and results to Faraut and Koryanyi [4], Masaro and Wong [9], and the references therein. In
particular, we shall assume the Jordan algebra results we need and for readers who are not familiar
with such results, give some remarks on the classical case of real symmetric matrices.

2. Preliminaries

Let A4 denote R, C or H according to d = 1,2 or 4, where R denotes the field of real numbers,
C denotes the field of complex numbers and H denotes the division ring of quaternions over R. Each
x € Hmay be represented asx = x; + ixy + jx3 + kxs, wherex; e R,i2 = j2 = k* = —1, ij = —ji =
k, jk = —kj = i and ki = —ik = j. The conjugate of x is X = x; — ix, — jx3 — kx4 and the real part of
x is Rex = x1. Analogous definitions apply to C. Note that multiplication in H is associative but not
commutative, and forx,y € H, Xy = yx.

Let Mﬁxp denote the family of n x p matrices over Ag. A matrix A € Mﬁxp may be written as

A = Ay +iAy + jA3 + kA4, where A; € M} The transpose, conjugate and adjoint of A are defined by

nxp-*
A = A] + A, + jA; + kA, A = Ay — iA; — jAs — kAgand A* = A' respectively. (Here Al is the usual
matrix transpose for a matrix over R.) Similar notions apply to ngp ford =1,2.ForA € M;Xp, it

follows that A = A, A* = A’ and ReA = A. We remark that the familiar formulas (AB)’ = B’A’ and
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AB = AB hold only for the cases d = 1 or 2, but the formulas (AB)* = B*A* and Re Tr(AB) = Re Tr(BA)
hold ford = 1,2 or 4.

Amatrix A € M4, is called Hermitian if A* = A. The family of n x n Hermitian matrices over .44
will be denoted by Hd We shall view ng pasa Euclidean vector space, i.e., a vector space over R with the
inner product (A, B) = Re Tr(AB*). Thus the dimension of Mnxp is npd. Also we have (A, B) = (A, B)
and (A, BC) = (B*A C) = (AC*, B) whenever the matrix multiplication is deﬁned.

Let End(MnXp) denote the (real) vector space of endomorphisms of M
End(MmY, ) is denoted by T*. So for all X, Y € M4

nxp nxp’
T* = T.The space of self-adjoint endomorphisms will be denoted by Ends(M¢

B e ngp, the Kronecker product A ® B is defined as the element in End(AM¢

(A® B)(C) = ACB*.

ForX € Mﬂxp.

basis for ngp and for T € End(/vtgxp), let ¢(T) (or [T]) be the matrix representation with respect

to this basis. Thus (X, Y) = (§(X),8(Y)) and (T (X)) = ¢(T)8(X). Also @(T*) = ¢(T)" and T is self-

adjoint (nonnegative definite, positive definite) according as ¢(T) is symmetric (nonnegative definite,
positive definite).

We shall view End(M?

nxp- 1he adjoint of T €
(T(X),Y) = (X, T*(Y)). T is called self- adjointif
).ForA e Mm% and
) such that

nxp nxn @

nxp

let § (X) (or [X]) be the coordinate vector of X in R4 with respect to an orthogonal

1 p) as a real inner product space with inner product

(S, T) = (9(S), p(T)) = Tr(p(S)p(T)").
One may also write (S, T) = Tr(ST*) since by definition, Tr(ST*) = Tr ¢ (ST*) = Tr(p(S)@(T)").
The following well known lemma will be useful. A proof may be found in Masaro and Wong [9].

Lemma 2.1. Let A, C € MY

nxn

d .
and B,D € My, Then:

(@) (A® B,C ® D) = d{A,C)(B,D);
(b) Tr(A ® B) = dRe Tr(A)Re Tr(B).

Let Ni(y, X) denote the usual normal distribution over R¥ with mean y and nonnegative definite

covariance matrix X'. A random variable Y taking values in Mnxp, d = 1,2 or 4, is said to have a
real, complex or quaternion normal distribution with mean uy € MnXp and covariance matrix Xy €
Ends(MnXp) if §(Y) ~ Nypa (8 (pey), a(p(Ey)). In this case, we write Y ~ nxp(ﬂy, Xy). Note that

Ni(y, X)) = N,}xl (y, ¥ ® 1). For more information on the complex and quaternion normal models
see [1,13,14] and the references therein.

Arandom variable U taking values in %, d = 1,2, 0r4, is said to have a real, complex or quaternion
Wishart distribution with m degrees of freedom and scale matrix X € Hg if U < Z*Z, where Z ~

mxp(O Im ® X). In this case, we write U ~ Wd(m ).

Remark 2.1. Usually, in the case d = 2, one defines the Wg (n, X) distribution to be the distribution
of Y- ; Y;Y[*, where the Y;’s are iid N2 1(0, £ ® 1) (see [5]). Note that one may also write Y/ ; Y;Y;
asYY,where Y = [Yy,Ya,..., Vsl LetZ =Y.ThenZ*Z = Y'Y and since the Y;"’s are iid N%XP(O, 1Q
2),Z~ Ny, (0,1; @ X).

Arandom variable V taking values in H4, d = 1,2, 0r4, is said to have a real, complex or quaternion

Wishart-Laplace distribution with (mjy, mz) degrees of freedom and scale matrix X' € Hd ifv £ Z*KZ,

where K = diag[ly,, —In,] and Z ~ (0,I; ® X). In this case, we write V ~ DWd(m1 my, X).

m><p
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It is clear that DWﬁ(mL my, X) is the distribution of the difference V; — V5, where V; and V, are
independent Wg (mq, X) and Wg (my, X).
Let § : Hy — Ends(M§, ) be alinear map. Foreachy € M3,

space Hg defined by t — (y, ¥ (t)y) is given by an inner product on Hg. (For simplicity, ¥ (t)(y) is
abbreviated as v (t)y.) Thus there is an element in Hg depending y and ¥, call it Qy (y), such that

W ¥ @©y) = (t,Qy(¥)) (2.1)

d
nxp

the linear form on the real vector

forallt Hg. We call the map Qy : M
linear map .

Ify ~ N,‘fxp (0, Xy), then Qy (Y) is arandom quadratic form taking values in Hg. The mean of Qy (Y)
can be obtained as follows:

(0 E@ (1)) = (50, 0). 22)
Indeed, (£, E(Qy(Y))) = E{t, Qy (Y)) = E(Y, ¥ ()(Y)) = E(S(Y), @ ()8(Y)) = E(8(Y)8(Y),
e(P () = (o(Zy), e (©)) = L(Zy, ¥ (©).

We shall now give an example of random quadratic form.

— Hg the Hg—valued quadratic form associated with the

Example 2.1. Let Y ~ NJ, (0, Zy), W € 1 and ¢ : H3 — Ends(M3, ), ¥(t) =W ®t. Then
(£, Qu(YV)) = (Y, ¥ (D)(Y)) = (Y, WYt¥) = (Y*W*Y, t*) = (Y*WY, ¢).

Thus Qy (Y) = Y*WY.Further,inthe case W = diag[l,,, —Is,]and £y = I, ® ¥,wehave Qy (Y) ~

DW¢(ny, ny, ¥) and by (2.2)and Lemma 2.1, (t, EQy (Y))) = (I ® Z,W @ t) = J(n1 — np)d(Z, 1).
Hence

EQy(Y)) =(m —np) X, (2.3)

3. Jordan algebras

In this section we shall summarize the notions and results from the theory of Jordan algebras that
we require for the statements and proofs of our results. Where convenient we illustrate a concept
with an example from the Jordan algebra of symmetric matrices. Only some results are proven. Other
results are known and can be found in Faraut and Koryanyi [4] or Jacobson [6]. We shall not repeat the
content of Masaro and Wong [9] unless it affects the lucidity of the present paper.

A Jordan algebra V over the set R of real numbers is a real vector space with a product ab such that
ab = ba, A(ab) = (Aa)b, (a3 + a2)b = a;b + azb and a(a®b) = a?(ab) for AinRanda, a;, a; and b
in V. An element e in V will be called an identity if ex = x forall x in V.

An element c in V is an idempotent if c> = c. Two idempotents ¢ and d are called orthogonal if
cd = 0. An idempotent is said to be primitive, if it is non-zero and cannot be written as the sum of
two non-zero idempotents. A set of idempotents {c1, ¢y, ..., cn} in V is called a Jordan frame if all c;
are primitive with ¢jc; = 0 for i # j and X["c; = e. A mapping ¢ of V to a Jordan algebra (W, #) is a
homomorphism if ¢ is linear and ¢ (ab) = ¢ (a) # ¢ (b) for all q, b in V. Since the polarization identity
Xy = W holds in V, the linear map ¢ will be a homomorphism iff ¢ (a®) = ¢ (a) # ¢ (a) for
all ain V.If ¢ is one to one and onto W, then ¢ is called an isomorphism of V onto W and V and W are
said to be isomorphic. A subset I of V is an ideal in V if I is a linear subspace of V and for any x in [, y in
V, xy belongs to I; V is said to be simple if its only ideals are {0} and V itself.

It can be shown (see [6]) that there exists a unique integer r > 0 and unique functionsa; : V. — R
such that the g;’s are homogeneous of degree j and for all x in V,

X —a ()X N+ a2 — -+ (=D "a(x) = 0.
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The polynomial my(X) = X" — a1 (X)X~ + a2 (x)X" ™% — - - - 4+ (—=1)"a;(x) is called the generic min-
imum polynomial for x; the degree ‘r’ of my(X) is called the rank of the Jordan algebra V. The generic
trace and generic determinant of x in V are defined by

tr(x) = a1(x) and det(x) = a;(x).

We shall use upper case notation, Det, Tr to denote the usual trace and determinant for matrices
(endomorphisms) and lower case notation det, tr to denote the generic trace and determinant of an
element in a Jordan algebra. When required, the notation try and dety will be used to denote the
generic trace and determinant with respect to a specific Jordan algebra W.

The spaces Hf, d = 1,2,4 are Jordan algebras when endowed with the Jordan product Ao B =
%[AB + BA], with the product on the right side being the usual matrix product. In the case d = 1 the
generic trace and determinant correspond to the usual trace and determinant for matrices.

AJordan algebra V is Euclidean if there exists an inner product (-, -) on V that is associative: {ab, c¢) =
(b, ac) for all a, b and c in V. In every Euclidean Jordan algebra with identity, the generic trace form,
(x,y) — tr(xy) is positive definite and associative. Unless otherwise stated, we assume that the inner
productin afinite dimensional Euclidean Jordan algebra V with identity is given by (x,y) = tr(xy), x,y € V.

The Jordan algebras He, d=1,24are simple and Euclidean. The generic trace and corresponding
inner product are given by tr A = Re Tr Aand (A, B) = tr(A o B). Note that since A and B are Hermitian,
ReTrA = TrAand (A B) = Re Tr(AB) = Re Tr(AB*) so that the inner product for Hf is simply the inner
product inherited from the space MY, , as described in Section 2.

For x in V, the linear map L(x) : V — V is defined by L(x)(v) = xv. Further, we define P(x) =
2L(x)? — L(x*) and P(x,y) = L(x)L(y) + L(y)L(x) — L(xy). Since the inner product is associative, L(x),
P(x) and P(x,y) are self-adjoint. The map x — P(x) is called the quadratic representation of V. In the
Jordan algebra H} (with product Ao B = %[AB + BA]), we have

1
P(A)B = ABA and P(A B)C = _[ACB + BCA].

An element x in V is said to be positive definite (nonnegative definite) if L(x) is positive definite
(nonnegative definite). InthecaseV = Hl this agrees with the usual matrix definitions. We let £2 (V) =
{x € V : xis positive definite} and £2(V) = {x € V : x is nonnegative definite}.

For an idempotent c in V, the Pierce spaces V(c, i) are defined by

Vici)={xeV:x=ix}, i=01/21.
It is well known that
V=V(1)®V(,1/2) ®&V(,0) (avector space direct sum).

This decomposition (called the Pierce decomposition) is orthogonal with respect to any associative
inner product on V. Also, V(c, 1) and V(c, 0) are Jordan subalgebras of V and c is an identity for V(c, 1).
The projections of V onto V(c, 1), V(c,1/2) and V(c, 0) are P(c), I — P(c) — P(e — c) and P(e — ¢)

respectively. For example, if we take V = H!, r = p+gand c = [Ig 8], then
V(c,l):{[g 8i|:A€H:,},
V(c,O):{[g g]:BeH;},
V(e 1/2) = {[8, g] :DeM;Xq}.

If V is simple, the value d = dim [V <a, %) nv (b, %)} is invariant for any pair of orthogonal prim-
itive idempotents a, b. The value d is called the Pierce invariant and it is related to the dimension and

rankof Vbyn =r 4+ r(r — 1)%. Moreover, when V is simple, sois V(c, 1) (this follows from Proposition
IV.1.2 of [4]); if c is not primitive, the Pierce invariant for V(c, 1) is also equal to d.
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Suppose that the rank of V is r. Then for each x in V, there exists a Jordan frame {cq, ¢y, . . ., ¢/} and
Ai € Rsuch that

X=XAc1+ A2+ F+ Arcr. (3.1)
The numbers A; (with their multiplicities) are uniquely determined by x and are called the eigenvalues of
x.Further, tr(x) = Y_I_; A;and det(x) = []i_; A;. The decomposition (3.1)is called the spectral decom-
position of x. The rank of x, rk(x), is the number of non-zero eigenvalues (with multiplicities counted)

in its spectral decomposition. For V = ! rk(x) agrees with the usual definition of matrix rank.
Let

xt = Z Ai_lci, XL = Z ¢ and x* = Z Alc, (3.2)

LiF0 Ai#0 Li#0
where o may be any real number if all A; are positive and & may be an integer if some A; are negative.
Then x*, x°, x* are well-defined (see [9]). In the special case V = H} of Hermitian (symmetric)
r x r matrices over R these definitions correspond to the usual notions of Moore-Penrose inverse,

orthogonal projection and matrix powers in linear algebra arising from the consideration of Wishart
distributions with singular scale matrix.

Let V be a Jordan algebra over R and M a vector space over R. A representation of V on M is a linear
map 7 : V — End(M) such that

1
T(xy) = 5(r(x)f(y) +T@T(),

i.e., the map 7 is a Jordan algebra homomorphism of V into End (M) equipped with the Jordan product
AoB= %(AB + BA).The representation t is said to be self-adjoint if forany x € V, t(x) is a self-adjoint
endomorphism on M.

For example, the standard representation for ¢, is given by: 7 : Hf — End(R%) with

1. ForA € H}, T(A) = A.
. 2 A A
2.ForA=A1+iA e H;, T(A) = [Az A ]

Ay A1 Ay

Aq —Ay —A3 —Ag
3. ForA = Ay + iAy + jAs + kAy € 14, T(A) = [ﬁ; A A A3 }
Ay —A3 —Ap A1

The generic trace and determinant for Hf may be obtained from
dirA=dReTrA=Trt(A) and (detA)" = Dett(A).

For brevity we will only state Theorem 3.1 leaving its proof as an exercise for those readers familiar
with Jordan algebras.

Theorem 3.1. I. Let:

(i) L be a Jordan algebra with identity e; and A be an associative algebra;
(ii) p : L — A be alinear map;
(iii) E = p(er);
(iv) (A, %) and (A, xg) be the Jordan algebras obtained from A using the products A « B = %(AB + BA)
and Axg B = 3 (AEB + BEA).

Then (a)-(c) below are equivalent:
(@) p : L — (A, *g) is a Jordan algebra homomorphism such that Ep(x) = p(x)E forallxin L;

(b) p(x) = p1(x) — p2(x), where p1 and p, are Jordan algebra homomorphisms of L into (A, ) such
that p1(x) p2(¥) = p2(¥)p1(x) = 0 forallx,y in L;
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(c) p(x) = p1(x) — p2(x), where p1 and p; are Jordan algebra homomorphisms of L into (A, %) such
that p1(e) p2(er) = p2(er)p1(er) = 0.

II. In the case that one of (a)-(c) holds, the homomorphisms py and p; are uniquely determined and
are given by

_ p(X)+Ep(x) _ —p(x) +Ep(x)
=" and pp(x) = —— ",

P1(%) 5 5

Let V be a Euclidean Jordan algebra with identity e. Given an element u in V, one may define a
new composition x x y = P(x, y)u. Then V equipped with the product * is also a Jordan algebra and is
called the mutation of V with respect to u and is denoted by MV (u). Also MV (u) = M1V (u) & M,V (u)
where M1V (u) = P(u°)V and MV (u) = (I — P(u®))V. Note that M1V (u) is just the mutation of the
Pierce space V(u®, 1) with respect to u.

The following example will provide a more concrete understanding of mutations.

Example 3.1. LetV = Hg be the Jordan algebra of r x r Hermitian matrices over R with composition
AoB= %(AB + BA) and let ¥ € H} be nonnegative definite. Then:

> is the Moore—Penrose inverse of X;

¥°=xXx7", theorthogonal projection of R" onto Im X;
MiV(Z)={AeV:X°AZ° = A};

MyV(X) ={AeV:X°AX° =0).

Moreover in MV(X'), A% B = %[AEB + BXA] and in M1V (X)),
tri(A) = Tr(2'/?2Ax1/?%)

and
det; (A) = Det(I — X° + $'/24ax1/?),

where trq, det; are the generic trace and determinant for the Jordan algebras MV;(X') (see Lemma
3.5.1 of [9]).

Theorem 3.2 is an extension of Theorem 3.5.2 in Masaro and Wong [9] so we state it without proof.
This theorem is the key to our main result (Theorem 4.3) in Section 4. It is important to note that
Theorem 3.2 was, in part, motivated by Example 3.1. Indeed, the conditions (1)-(3) of Theorem 3.2 are
satisfied by Example 3.1 with V = H},] =MV(Y), L=MV(Y), K=MV(X), PL =P(X°), and
Py =1, — P(X°).

Theorem 3.2. Suppose that (1)-(5) hold:

(1) Jis a Jordan algebra.
(2) ] = L @ K, a vector space direct sum, where

(i) Lis aJordan subalgebra of ] of rank r with identity e; and L is simple and Euclidean;
(ii) K is anidealin].

(3) P and Py are the projections of ] onto L and K respectively.

(4) M is a vector space over R of dimension m, A = End(M) and As = Ends(M) with the usual com-
position product in A and As denoted by AB; (A, *), (A, *xc), (As, *) and (As, *c) will denote the
Jordan algebras obtained from A and As with Jordan products A x B = %(AB + BA) and A*¢ B =
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%(ACB ~+ BCA) and Iy; will denote the identity mapping in End(M). The usual trace and determinant
for members of End(M) will be denoted by Tr and Det.

(5) p : ] = Wsisalinear map, E = p(ey) and p1, p2 : ] — W are linear maps defined by

p(X) +Ep(x) a _ —p(X) +Ep(x)

nd pp(x) = ——— "y e,

p1(x) = 5

Then:

I. (a)-(e) below are equivalent:

(a) p is a Jordan algebra homomorphism of | into (As, *g) with K = kerp and Ep(x) = p(x)E
forallxin];

(b) p1, py are Jordan algebra homomorphisms of | into (As, *) such that py(e;)p2(e;) = 0 and
K = ker p1 = ker py;

(c) there exist integers sq, s > 0 such that for allx € J,

Det(Iyy — p(x)) = det;(e; — Prx)*'det; (e + Px)*?; (3.3)
(d) there exist integers sy, s > O such that forallx € Jandk = 1,2,...,
Tr p()* = [s1 + (=D*s,)er (P’ (34)

(e) there exist integers s1, s, > 0such that forallx € J, Tr ,oj(x)k = SjtTL(PL(X))k, ji=12;j=
1,2, and p1(ey) p2(er) = pa(er)p1(e) = 0.
II. In the case one of (a)—(e) holds, s; = Trp%(e“ = Tr(pj(c)), where c is any primitive idempotent in
L. Further, if r > 2, then s; = m;d, j = 1, 2, where d is the Pierce invariant of L and m; is a positive
integer. Also p1(x)p2(y) = Oforallx, yinL.

4. Characterization of the Wishart-Laplace distributions

We shall, in Theorem 4.3, characterize the Wishart-Laplace distributions in terms of Jordan algebra
representations (Theorem 4.4). This is accomplished by linking the moment generating function of the
Wishart-Laplace distributions with these homomorphisms via Theorem 3.2. For the convenience of
the reader, we shall reintroduce some of our earlier notation: Hg, d = 1, 2,4, will denote the simple

Euclidean Jordan algebras as described in Section 3 and MHS(A) its mutation with respect to an

element A € Hg. Lower case notation ‘tr’, ‘det’ refers to the generic trace and determinant and upper
case notation ‘Tr’ ‘Det’ is the usual trace and determinant for matrices (operators), in this case, for
endomorphisms in End(MﬁXp) or End(R™9). We will also make use of the functions § and ¢ as
described in Section 2. Note that End(/vlﬁxp) is a Euclidean Jordan algebra with identity I, ® I,. Thus
forT € End(MﬂXp), P(T) is the linear operator given by P(T)S = TST, S € End(MgXp). Finally note
that for any U in §(Hg) and «, B in R we have P(U%)P(UP) = P(U*T#) where U is defined as in
(3.2) (see Lemma 3.3.1 of [9]).
We begin with some results on moment generating functions of quadratic forms.

Theorem 4.1

(a) LetY ~ Ngxp(o, Xy), ¥ Hg — Endg(MgXp) be a linear map and Qy; : ngp — Hg the asso-
ciated quadratic form. Then the moment generating function of Qy (Y) is

5 ~1/2
Mo, (0 = Det [ @ by ~ 2P(z)Hu 0]
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fort € Hg such thatl, ® I, — %P(Z‘;/Z)lp(t) is positive definite.

(b) LetU ~ DWI‘}(mL my, X), X € §(Hg). Then the moment generating function of U is

2 —myd/2
_ 1/2
My () = det [1,, - 2P(z )t]

2 —mpd/2
det [1,, + EP(El/z)t}

fort € Hg such that I, + %P(E”Z)t € .Q(HZ).

Proof. The proof of (a) may be found in Masaro and Wong [9].

(b) Since U L 7*KZ where Z ~ N,‘flxp(o, Im ® ¥) and K = diag[lin,, —Im,], we may apply (a) with
n=m=m;+my, Xy =I,® X and ¥ (t) = K ® t to obtain

r 2 —1/2
My(t) = Det | Iy ® I, — EP(I,T, R Ik ® t)]
_ 2 —1/2
=Det|In ®I, —K® EP(Z‘]/z)t]

= Det _dia — 2 1/2 2 172 o

2 —1/2 2 —-1/2
= Det |Ip, ® (1 — fP(Z‘l/z)t>] Det [1 ® (1 + fP(Z’l/z)t)]
i myp p d my p d

Since themapx — In,; ® xisaself-adjoint representation ong on Mﬁn xp suchthatl, — Iy, ® I,

we can apply Proposition IV.4.2 of [4] (with N = m;pd and r = p) to obtain

2 12 —myd/2 2 12 —mpd/2
My (t) = det [Ip — EP(E )t] det [Ip + EP(E )t]

fort € Hg such that [, £ %P(Zl/z)t € .Q(Hg). O

Corollary 4.2. LetY, v, Qy beasinTheorem4.1,my, my € {1,2,3,...}and X € E(Hg). Then (a)—(c)
below are equivalent:

(@) Qy (Y) ~ DWd(my, my, X).
(b) Forallt € H5,

Det[l, ® I, — P(Zy/ )y (0)] = det[l, — P(£V/*)t]™det[I, + P(X"/*)1]™. (4.1)

(c) Forallt € Hlandk =1,2,...,

TPy )y ()1 = [my + (—1)*my]der (P(Z/?)0)*. (4.2)

Proof. First assume Qy (Y) ~ DWI‘} (my, my, X). Then by Theorem 4.1(a) and (b),

-1/2
Det [In ®I,— gp(zj/z)l//(t)}

(4.3)

2 7m1d/2
= det [1,, — EP(E”z)t]

2 —myd/2
det [1,, + EP(El/Z)t}
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for all %r € Np, where Ny is a neighbourhood of 0 in Hg. Now (4.3) amounts to

Det[l, ® I, — P(Zy/*)yr(t)] = det[l, — P(X'/?)t]1™ det[l, + P(x'/?)t]™* (44)
for all t € Np. Then by analytic continuation, (4.4) holds for all t € Hg, proving (b).
Conversely, it is clear that (4.1) implies (4.3), which in turn (by Theorem 4.1) implies Qy (Y)
~ DWE(my, my, X).
To prove the equivalence of parts (b) and (c), let t € Hg, let aq, o, .. ., oy be the eigenvalues of

P(Z‘,],/z)lp(t) and choose a Jordan frame ¢y, ¢, . . ., ¢p such that P2yt = Zle Mici.Thenforz € R,

we have
np
D(z) = Detlly ® I, — P(Zy/ ")y @) = [[(1 — zar)
i=1

and

p p
d(z) = det[l, — P(Z"/?)zt 1™ det(l, + P(Z"/2)zt1™4 = [T(1 — 2™ [](1 + za)™".
i=1

i=1

Now a comparison of the coefficients of z¥ in the power series expansions of In D(z) and In d(z)
shows that In D(z) = Ind(z) if and only if (4.2) holds, which proves the equivalence of (b) and (c). [

We now prove our main result. For better understanding one should keep Example 3.1 in mind.
Theorem 4.3. 1. Suppose that:

(1) Y ~NE (0, Zy);

nxp
2) ¢ Hg — Endg(/\/lgxp) is a linear map;
(3) Qy : ngp — Hg is the quadratic form associated with the linear map ;

@) p: Hg — EndS(ngp) is the linear map defined by p (x) = P(E:,/z)l//(x);
(5) (A, %) is the Jordan algebra Ends(MY. ) with the product A x B = %(AB ~+ BA) and (A, xg) is the

nxp

Jordan algebra Ends(M&, ) with the product A*g B = ] (AEB + BEA).

nxp

Then Qy (Y) has a Wishart-Laplace distribution if and only if (a)—(c) hold:

(a) There exists an element X € §(Hg) such that p : MHg(ZJ) — (A, xg) is a Jordan algebra homo-
morphism with Ep(x) = p (X)E for all x in MHZ(E), where E = p(Z™T).

(b) ker p = MZHS(ZJ).

(c) Eitherrk(X)>2orrk(X) = 1 and Tr pj(2+) is divisible by d, j = 1, 2, where

01(x) = M and py(x) = M' x e Hg'

I1. In the case that (a)—(c) hold, Qy (Y) is DW (my, mp, X) withmy — my = % andmy +my =
%. Also mjd = tr(pj(c)), j = 1,2, where c is any primitive idempotent in Mng(E) and for all

x in MHg(E) and k=1,2,..., Tr pj(x)" = mjdtr(El/zxZJl/z)" and Tr p(x)* = d(m; + (—1)kmy)
X tr(Z‘”szl/z)k.
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111. Condition (a) above may be replaced by the condition (a)’ : p1, o3 : MHS(Z) — (A, %) are Jordan
algebra homomorphisms such that p1 (X 1) p2(EX 1) = 0.

Proof. I.Assume that Qy (Y) ~ DWd(my, my, X), ¥ € 2(HJ).Thenforx € MH3(X), XF — P(X°)x
€ MiH3(¥) and P(X'/?)x = P(£1/2)P(x°)x. So by Lemma 3.5.1(d) of [9] and Corollary 4.2, we have

Det[l, ® I, — p(x)] = det[l, — P(X/?)x]™%det[l, 4+ P(X/?)x]™¢
= det[l, — P(ZV?) (5T — (2T — P(Z°)x)]™det[l, + P(SV/?) (=T — (51 — P(Z°)x))]™*

=det;[ZF — P(Z°)x]™det;[EF + P(Z°)x]™2,

where det and det; are the generic determinants in Hg and M Hg(ZJ) respectively.

Now by Theorem 3.2 (with] = MH3(X), L = MiH3(X), K = MyHI(X), W = Ends(M§, ) and
sj = m;d), conditions (a)-(c) hold.

Conversely, assume that (a)-(c) hold. Since this includes condition I(a) of Theorem 3.2 (with ], L, K
and W as indicated above), we may apply the equivalent condition I(c) of Theorem 3.2 together with

. +
Trﬁjg) ), j =1,2,such that

Lemma 3.5.1(d) of [9] to conclude that there exist positive integers s; =
Det[l, ® I, — p(x)]
=det;[ 2T — P(Z°)x]*! det;[ 2T + P(X°)x]*
= det[l, — P(XV/?)P(2°)x] det[l, — P(Z/*)P(2°)x]*
= det[l, — P(X"/?)x]* det[l, — P(X/?)x]*
forallx € MHg(E). If rk(X) > 2, then by Theorem 3.2(II), there exist integers m; > 0 such thats; =

mjd, j = 1,2. So by Corollary 4.2, Qy (Y) ~ Dw;j (mq, my, X0).
Finally, Il and I1I follow from Theorem 3.2 and Lemma 3.5.1(c) and (d) of [9]. [

Corollary 4.4. 1. Suppose that:

(1) Y ~ Ni,, (0, Zy);
(2) Q(Y) = Y*WY, where W € 1Y,
3) p: Hg — Ends(/\/(gxp) is the linear map defined by p(x) = 2;/2(W ® X) Z‘;/z.

Then Q(Y) follows a Wishart-Laplace distribution if and only if there exists an element X € 5(7{3)
such that (a)—(c) below hold:

(@) forallx € Hg, o(xZx) = px)p(ENpx)and p(ET)p(x) = p(x)p(X7T), that is:

SPWexs Dyt = 2P W oDy W e sHsy(W @ x5y (4.5)
and
5P we s wensy = 5/ wensywe sy (456)

(b) kerp ={x € Hg 1 XxX =0}
(c) eitherrk(X) >2 orrk(X) = 1 and Tr pj(2+) is divisible by d,j = 1, 2, where

p1(x) = ) +Ep(x) and pr(x) = —PX) +EpXx) w

> ithE = p(X™T).
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II. In the case that (a)—(c) hold, Q(Y) is DW (my, my, X') with m; — my = ﬁ&) and mqy +my =

zaTrrkEZz)- Also mjd = tr(pj(c)), where c is any primitive idempotent in M1Hg(2) and for all x in

MHY(Z) and k=1,2,...,.Tr pj(x)* = mdtr(ZV2x V2%, j=1,2, and Trpx)* =d(m; +

(=D¥mp)tr(Z1/2x 212k,
111. Condition (a) above may be replaced by the condition (a)’ : forallx € e pi(xXx) = pj x)?% j=
1,2, and p1(ZT)pp(ZF) = 0.

Proof. This follows from Theorem 4.3 on noting that Q(Y) = Qy (Y), where ¥ (x) = W ® x and that
from Lemma 3.5.1(a) of [9], MZHg(2)=kerP(2) ={xe€ Hg :XxX¥ =0} O

Remark 4.1

(a) In Corollary 4.4, we may replace p(x) = 2}1,/2 W x)E}],/2 by p(x) = M(W ® x)M*, where

M*M = Xy is any factorization of Xy. This follows from the cancellation law for matrices: if
A*AB = A*AC, then AB = AC. For example, one may take M*M as the Cholesky decomposition
oran M*M with M € Mgxnp, @ = rank(M) = rank(Zy). Note also that Tr p (x) = Tr p(x).

(b) Let g be a Hilbert space isomorphism of/v(nxp onto a Hilbert space F. Then the map

T— T, =glg""
is an algebra isomorphism of End(/\/lgxp) onto End(F). Let ¢ and p be as in Theorem 4.3 and
define /¢ and pg by

Vg (x) = (Y (x))g and pg(x) = (p(x))g.
Then g, pg : Hj — Ends(F) and

1/2
pe(®) = PU(Zy/ 1)) g ().
Further, p is a self-adjoint representation of the Jordan algebra MHZ(E) on Mﬂx P if and only if

pg is a self-adjoint representation of MHg(Z‘) on F. Also ker p = ker pg. Thus in Theorem 4.3
(and Corollary 4.4), it may be easier to verify condition (5) (conditions (i) and (ii)) by making
a judicious choice for g and using ¥; and p; in place of ¥ and p. In particular, if one takes

F= ngn andg(X) = X* X € ngp, then forallA € MY, and B € ngp.
(A®B); = BRA.

Also,
(Zy)g = Zyx.

Thus in Corollary 4.4, one may replace p (x) and ¥ (x) by
pg(x) = 2}1,12(x ® W)E;iz and Yg(x) =xQ@W

or by

pg(x) = L(x @ W)L* and ¥4 (x) = x @ W, where Zy+ = L*L.

Example 4.1. Let Y ~ N}, (0, Zy), where ¥y = A ® ¥ with

5/8 —3/8 1/8  1/8
-3/8 5/8 1/8  1/8
1/8 1/8 5/8 —3/8
1/8 1/8 —3/8 5/8

and X =1I,.
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Let W € H} and L = I, ® R with

o 1 12 1/2 17242 17242 1/242  1/2/2
N DR TR V2 Vo) IR I VIV T UV B 0
W=112 12 1 o] ™ER=["4 0 —1/y2 1/y2
12 12 0 1 0 0 0 0

Then Xy+ = L*L. By Corollary 4.4 and the last four lines of Remark 4.1(b), Y*WY ~ DWzl 2,1, 2).

The following result is a consequence of Corollary 4.4 and we leave its proof to the reader (the case
d = 1 was shown in [15]).

Corollary 4.5. Let Y ~ Ngxp(O,A ® X),rk(X)>2,W € Hﬁ. Then Y*WY has a Wishart-Laplace distri-
bution with scale matrix X if and only if

(a) AWA = 0.
(b) AWA = AWAWAWA.

In this case, Y*WY ~ DW,(my, my, X) with mqy — my = Tr(WA) and mq + my = Tr(WA)2.

Remark 4.2. Corollary 4.5 may be extended to the case where rk(X) = 1 by including condition (c)
from Corollary 4.4.

The following theorem shows how a random quadratic form that has a Wishart-Laplace distribution
may be written in a natural way as the difference of two independent random quadratic forms each
with a Wishart distribution.

Theorem 4.6. Let (1) —(5) be as in Theorem 4.3 and suppose that Qy, (Y) has a Wishart-Laplace distribu-
tion DW§(m1, my, X'). Then (a) and (b) below hold:

(@) Qy (Y) = Qy,; (Y) — Qy, (Y), where Qy, (Y) and Qy, (Y) are independent Wishart Wg (mq, X) and

W (my, X) respectively and yry and v, are linear maps of g into Ends(M, ) given by

1
Y1) = S @) + ¥ () xs Y (Z )]

and
1
Ya(x) = 5[—W(X) + ¥ ) x5, Y2

(b) In the case that Xy = A® X and ¥ (x) = W @ x, Qy (Y) = Y*WY and Y1 and v, in (a) can be
so chosen that

Qy, (V) =Y*

W + WAW —W + WAW
(%) Y and Qy,(Y) = Y* <+7) %

Proof

(a) By Theorem 4.3 (using the notation therein), we have p(x) = p1(x) — p2(x) with

p() = P(E/HY ), p(x) =P(ZyHYn (0, and py(x) = P(Sy 3y (),

where p1(x) and p; (x) are Jordan algebra homomorphisms of MHS(E) into (A, x) withker p; =
ker py = MzHg(Z‘) and p1 (X 1) p2(ZT) = 0.Then by Theorem 4.10 of [9], Qy,, (Y) and Qy, (Y)
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Tr (£ 1)

k(D) It is also

are independent Wishart Wg(m1, X)and Wg(mz, X)) respectively with m; =
straightforward to check that ¢ = ¥y — V> and Qy = Qy, — Qy,.
(b) In this case,

1 YOx +xX°
Yi1(x) = 2 <W®x+WAW® (2>>
and

1 ox +xX°
Yo (x) = 3 <—W®x+ WAW ® <2)> .

Since X1/2 (M) 12 = 12k 5172 we may replace the term M in the definition
of the v; by x without affecting the values of p; (x) = P(E:,/z) Y1(x)and pa (x) = P(E;/z) Yo (X).
The desired result then follows as in part (a). [

The following theorem shows that the Jordan algebra homomorphism associated with a quadratic
form that has a Wishart-Laplace distribution may, through a change of basis, be put in a diagonal form.

Theorem 4.7. Let (1) —(5) be as in Theorem 4.3 and suppose r = rank(X') > 3 and « is an isomorphism
of H? onto MyH3(X) so that a(I;) = . Then:

Y*WY ~ DW,(my, my, X) iff there exists an orthonormal basis B of Mﬂxp (viewed as a Euclidean
vector space over R) such that:
(a) forallz € Hf and for all x € MZHS(Z’),
I, ® 7(2) 0 0
[p(a@)]s = 0 —Im, ®7(2) 0 and [p(X)]s = Oppa;  (4.7)
0 0 0 npd xnpd
equivalently,
(b) forallx € MHg(E),
Iy @ T(a@™1(Z°xX°)) 0 0
[p(0)]s = 0 —Im, @ T(@71(Z°%Z°)) 0 . (48)

0 0 0 npdxnpd

where T is the standard representation of Hf given in Section 3.

Proof. Note that Mng(Z’) is a simple Euclidean Jordan algebra of rank r. So by Theorem V.3.7 of [4],
there exists an isomorphism « of Hf onto M HS(Z) with @ (I;) = X 7. Recall that the Jordan product
in ¢ is given by a o b = 1 (ab + ba).

In what follows below, [T] will denote the matrix representation of an operator T with respect to
the standard basis of the associated vector space while [T]z will denote the matrix representation
with respect to a basis B.

First assume that Y*WY ~ DW,(my, my, X).Let p = p1 — p7 as in Theorem 4.3 and let p; = pj o
«,j = 1,2.Thenthe p;’s are 1-1 Jordan algebra homomorphisms ofH‘ri into Ends (ngp). Thus for each
xin H‘ri, the matrix representations [0;(x)] of the p;(x)’s belong to the family of npd x npd symmetric
matrices over R. Now since pj(I;) = pj(Iy o It) = pj(I;)? and p1 () p2 () = p1(Z ) p2(ZT) =0,
there exists an orthogonal matrix P such that
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P*[f1(ee(Iy))1P = diag(ly,, Ok,, Ok, |
and
P* [ﬁz (a(lr))]P = diag[ol<211k21 Ok3]v

where kj = rk(pj(I;)) = rk(pj(Z1)) = Tr(p;j(2T)), j = 1,2 and k3 = npd — k; — ka.
Also since pj(z) = pj(I; 0 z) = %[ﬁj(z)ﬁj(lr) + p;jI;) 6j(2)], we must have

P* [161 (Z)]P = dlag[/gl (Z)v Okzv 0](3]
and

P*[62(2)]P = diag[Oy,, B2(2), Ok, ],

where the [S;]'s are 1-1 Jordan algebra homomorphisms of H‘r’ into the family of k; x k;j symmetric
matrices over R, with 8(I;) = Iy, j = 1, 2. Then by Theorem 3 of [7], there exist orthogonal matrices

. (T
P;,j = 1,2 such that for all z in Hf, Pj*[ﬂj(z)]Pj = I; ® 7(2), where n; = lr% = % =m;jand T

is the standard representation of Hf as described in Section 3.4. Setting U = P diag[P1, P2, Ik, ] yields
the first representation in (4.7); the second representation follows since kerp = MzHg(E). To obtain
(4.8), note that forx in MH3(X), x = X°xX° 4 (I, — X°xX°),where £°x¥° € MyH3(X)and (I, —
Y°xX°) e MzHg(E) = ker p. Then replace z in (4.7) by & "1 (X°xX°) and use the fact that p(x) =
p(X°xX°).

Assume that (4.7) (equivalently (4.8)) holds. Since for all x € MzHg(E), [p(x)]5 = Opp, it is clear
that kerp = MZHS(E). By (4.7),

[E]ls = [p(ZD)]s = [p(ar)]s = diaglln, @ lir, —Im, ® lgr, O].
By (4.7) together with the fact that « and 7 are Jordan algebra homomorphisms, we have, for @ (z)
in My H3(X),
[p(a(z) x5 a(2))]s = [p(a(z02))]5
= diag[ly, @ t1(z02), —Im, ® T(z 02),0]
= diag[ly, ® 1(2)% —In, ® 7(2)%0]
= [p(a(@)]s *E15 [0 (2(2)]5-

Finally, by (4.8),itis easily seen that for all xin MHg(E), [Elslp(x)]s = [p(x)]5[E]. Thus by Theorem
43,Y*WY ~ DW,(my, mp, ¥). O

Remark 4.3. In the case that d = 1 or 2, we may define « in Theorem 4.7 as follows: let R be a uni-
tary matrix such that R* ¥R = diag[D,, 0], where D, = diag[o1, 03, ...,0r],0; > 0.Define « : Hf —

MiHI(Z) by

a(z) = Rdiag[D; /2D V2,01 R*, a~'(x) = [I, OJR* £V/2x = V/2R[l,, 0]*.

We now prove a very general version of Cochran Theorem.
Theorem 4.8 (Cochran Theorem). Let I be a finite set. Suppose that:

d .
(1) Y ~ N, (0, Zy);
2) ¥ : Hg — Ends(MgXp) is a linear map, i € I;

(3) Qy; : Mﬁxp — Hg is the quadratic form associated with the linear map ;i € I,

(4) pi : HY — Ends(M3, ) is the linear map defined by pi(x) = Py )i (x),i € I;

nxp
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(5) (A, %) is the Jordan algebra Ends(M9. ) with the product A x B = %(AB ~+ BA) and (A, *g) is the

nxp

Jordan algebra Ends (ngp) with the product A g B = %(AEB + BEA).

Then {Qy; (Y) }ie is an independent family of DW (my;, mp;, £') random matrices if and only if for all i
inI, (a)—(d) hold:

) pi: MHZ(E) —> (A, *g,) isaJordan algebra homomorphism and for all x in MHg(E), Eipi(x) =
0i(X)E;, where E; = pi(Z);

(b) ker pi = MZH,C,'(E);

(c) eitherrk(X) >2orrk(X) = 1and Tr pj,-(2+) is divisible by d, j = 1, 2, where

Pi(x) + Eipi(x) —pi(x) + Eipi(x)

pri(x) = == and p2i(x) = e HY

2 L
(d) forallj #iinl, pi(Z1)pi(ZT) = 0.

In case that (a) —(c) hold, each Qy, has a DW (myj, my;, X) distribution with md rk(X 1) =Tr p(Z™T),
ji=1,2.

Proof. Let {Qy,(Y)} be an independent family of DW (my;, my;, ¥) random matrices. Then by Theorem
4.3 and Lemma 4.8 of Masaro and Wong [9], (a)-(d) hold.
Conversely, suppose that (a)-(d) hold. By Theorem 4.3, Qy, (Y) ~ DW (my;, my;, X'). Also by Theorem

4.4, p1i, P2i : MHg(ZJ) — (A, x) are Jordan algebra homomorphisms with ker pj; = MzHg(E). Now,
by (d) and the definition of py; and py;, we have fori # jand k, [ = 1,2, ,ok,-(2+)p,j(2+) = 0. Then
by Lemma 3.4.2, oy (x) 0jj(y) = 0 for all x,y in M, Hg(Z‘) and therefore for all x,y in MHg(ZJ). Since

Pi = p1i — p2i, it follows that p;(x) oj(y) = 0. So by Lemma 4.8 of Masaro and Wong [9], the quadratic
forms Qy, (Y) are independent. [

Remark 4.4. Inthe usual way (using Theorem 4.8), Corollary 4.5 may be extended to a Cochran theorem
(see [3]).
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