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1. Introduction

Let Y be a real, Hermitian, or quaternion normal randommatrixwithmean zero and covarianceΣY .

Necessary and sufficient conditions are obtained for a quadratic form Q(Y) to have aWishart–Laplace

distribution (the distribution of the difference of two independent centralWishartWp(mi,Σ) random
matrices). Further, necessary and sufficient conditions are obtained for a family of quadratic forms
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{Qk(Y)} to be independent Laplace–Wishart. This is a generalization of Cochran’s Theorem [3]. For

history, see [15] and the references therein.

To obtain the most general solution to our problem requires the theory of Jordan algebras. To see

why, consider the case where Y is an n × p real normal random matrix and Q(Y) = Y ′WY . SinceΣY

andΣ (the Laplace–Wishart parameter) are symmetric, we should develop the theory needed within

families SN , of N × N symmetric matrices where N may be p or np. Let A, B ∈ SN . The usual matrix

product AB may not be symmetric. So we introduce a Jordan product:

A ∗ B = 1

2
(AB + BA),

or more generally,

A ∗C B = 1

2
(ACB + BCA),

where C ∈ SN . Then (SN, ∗C) is an example of a Jordan algebra; see, e.g., [4]. Now consider the dis-

tribution of QY = Y ′WY through its moment generating function MQY
, where W is symmetric. From

Masaro and Wong [9],

MQY
(t) = Det[In ⊗ Ip − 2Σ

1/2
Y (W ⊗ t)Σ

1/2
Y ]−1/2, t ∈ N◦,

where N◦ = {t ∈ Sp : In ⊗ Ip − 2Σ
1/2
Y (W ⊗ t)Σ

1/2
Y is positive definite}, i.e., MQY

is determined by

the linear map ρ : Sp → Snp with

ρ(t) = Σ
1/2
Y (W ⊗ t)Σ

1/2
Y , t ∈ Sp.

It can be proved (see [9]) that Y ′WY is Wishart with nonsingular scale parameter Σ if and only if

ρ is homomorphic from (Sp, ∗Σ) into (Sq, ∗), i.e., it preserves the Jordan products:

ρ(A ∗Σ B) = ρ(A) ∗ ρ(B), A, B ∈ Sp.

The mapping ρ is referred to as a representation in (Jordan) algebra theory.

Ourmain result, Theorem 4.3 and its corollaries extend the above result to a result for theWishart–

Laplace distribution. The framework of Jordan algebras provides a unified and natural approach in

that the cases where Y is a real, complex or quaternionic normal random matrix can be dealt with

simultaneously as part of a general theory. In additionwe feel that this point of view provides a deeper

insight into the nature of the Wishart–Laplace distribution.

We remark that the application of Jordan algebras to statistics and probability has appeared in

numerous papers (see [2,7,8,10,11,12,9]). For brevity, whenever convenient, we shall refer certain

notations and results to Faraut and Koryányi [4], Masaro and Wong [9], and the references therein. In

particular, we shall assume the Jordan algebra results we need and for readers who are not familiar

with such results, give some remarks on the classical case of real symmetric matrices.

2. Preliminaries

Let Ad denote R, C or H according to d = 1, 2 or 4, where R denotes the field of real numbers,

C denotes the field of complex numbers and H denotes the division ring of quaternions over R. Each

x ∈ Hmay be represented as x = x1 + ix2 + jx3 + kx4, where xi ∈ R, i2 = j2 = k2 = −1, ij = −ji =
k, jk = −kj = i and ki = −ik = j. The conjugate of x is x̄ = x1 − ix2 − jx3 − kx4 and the real part of

x is Re x = x1. Analogous definitions apply to C. Note that multiplication in H is associative but not

commutative, and for x, y ∈ H, xy = ȳx̄.

Let Md
n×p denote the family of n × p matrices over Ad. A matrix A ∈ M4

n×p may be written as

A = A1 + iA2 + jA3 + kA4, where Ai ∈ M1
n×p. The transpose, conjugate and adjoint of A are defined by

A′ = A′
1 + iA′

2 + jA′
3 + kA′

4, A = A1 − iA2 − jA3 − kA4 and A∗ = A
′
respectively. (Here A′

i is the usual

matrix transpose for a matrix over R.) Similar notions apply to Md
n×p for d = 1, 2. For A ∈ M1

n×p, it

follows that A = A, A∗ = A′ and Re A = A. We remark that the familiar formulas (AB)′ = B′A′ and
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AB = AB hold only for the cases d = 1 or 2, but the formulas (AB)∗ = B∗A∗ and Re Tr(AB) = Re Tr(BA)
hold for d = 1, 2 or 4.

A matrix A ∈ Md
n×n is called Hermitian if A∗ = A. The family of n × n Hermitian matrices over Ad

will be denoted byHd
n.We shall viewMd

n×p as a Euclidean vector space, i.e., a vector space overRwith the

inner product 〈A, B〉 = Re Tr(AB∗). Thus the dimension of Md
n×p is npd. Also we have 〈A, B〉 = 〈A, B〉

and 〈A, BC〉 = 〈B∗A, C〉 = 〈AC∗, B〉 whenever the matrix multiplication is defined.

Let End(Md
n×p) denote the (real) vector space of endomorphisms of Md

n×p. The adjoint of T ∈
End(Md

n×p) is denoted by T∗. So for all X, Y ∈ Md
n×p, 〈T(X), Y〉 = 〈X, T∗(Y)〉. T is called self-adjoint if

T∗ = T . The space of self-adjoint endomorphisms will be denoted by EndS(M
d
n×p). For A ∈ Md

n×n and

B ∈ Md
p×p, the Kronecker product A ⊗ B is defined as the element in End(Md

n×p) such that

(A ⊗ B)(C) = ACB∗.
For X ∈ Md

n×p, let δ(X) (or [X]) be the coordinate vector of X in Rnpd with respect to an orthogonal

basis for Md
n×p and for T ∈ End(Md

n×p), let ϕ(T) (or [T]) be the matrix representation with respect

to this basis. Thus 〈X, Y〉 = 〈δ(X), δ(Y)〉 and δ(T(X)) = ϕ(T)δ(X). Also ϕ(T∗) = ϕ(T)′ and T is self-

adjoint (nonnegative definite, positive definite) according as ϕ(T) is symmetric (nonnegative definite,

positive definite).

We shall view End(Md
n×p) as a real inner product space with inner product

〈S, T〉 = 〈ϕ(S),ϕ(T)〉 = Tr(ϕ(S)ϕ(T)′).
One may also write 〈S, T〉 = Tr(ST∗) since by definition, Tr(ST∗) = Tr ϕ(ST∗) = Tr(ϕ(S)ϕ(T)′).

The following well known lemma will be useful. A proof may be found in Masaro and Wong [9].

Lemma 2.1. Let A, C ∈ Md
n×n and B, D ∈ Md

p×p. Then:

(a) 〈A ⊗ B, C ⊗ D〉 = d〈A, C〉〈B, D〉;
(b) Tr(A ⊗ B) = dRe Tr(A)Re Tr(B).

Let Nk(γ ,Σ) denote the usual normal distribution over Rk with mean γ and nonnegative definite

covariance matrix Σ . A random variable Y taking values in Md
n×p, d = 1, 2 or 4, is said to have a

real, complex or quaternion normal distribution with mean μY ∈ Md
n×p and covariance matrix ΣY ∈

EndS(Md
n×p) if δ(Y) ∼ Nnpd(δ(μY ),

1
d
ϕ(ΣY )). In this case, we write Y ∼ Nd

n×p(μY ,ΣY ). Note that

Nk(γ ,Σ) = N1
k×1(γ ,Σ ⊗ 1). For more information on the complex and quaternion normal models

see [1,13,14] and the references therein.

A random variable U taking values in Hd
p, d = 1, 2, or 4, is said to have a real, complex or quaternion

Wishart distribution with m degrees of freedom and scale matrix Σ ∈ Hd
p if U

d= Z∗Z , where Z ∼
Nd
m×p(0, Im ⊗Σ). In this case, we write U ∼ Wd

p (m,Σ).

Remark 2.1. Usually, in the case d = 2, one defines the W2
p (n,Σ) distribution to be the distribution

of
∑n

i=1 YiY
∗
i , where the Yi’s are iid N2

p×1(0,Σ ⊗ 1) (see [5]). Note that one may also write
∑n

i=1 YiY
∗
i

as YY , where Y ′ = [Y1, Y2, . . . , Yn]. Let Z = Y . Then Z∗Z = Y ′Y and since the Y∗
i ’s are iid N2

1×p(0, 1 ⊗
Σ), Z ∼ N2

n×p(0, In ⊗Σ).

A random variable V taking values in Hd
p, d = 1, 2, or 4, is said to have a real, complex or quaternion

Wishart–Laplace distributionwith (m1, m2) degrees of freedom and scale matrixΣ ∈ Hd
p if V

d= Z∗KZ ,
where K = diag[Im1

,−Im2
] and Z ∼ Nd

m×p(0, Im ⊗Σ). In this case, we write V ∼ DWd
p (m1, m2,Σ).
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It is clear that DWd
p (m1, m2,Σ) is the distribution of the difference V1 − V2, where V1 and V2 are

independentWd
p (m1,Σ) andWd

p (m2,Σ).

Letψ : Hd
p → EndS(Md

n×p) be a linear map. For each y ∈ Md
n×p, the linear form on the real vector

space Hd
p defined by t → 〈y,ψ(t)y〉 is given by an inner product on Hd

p. (For simplicity, ψ(t)(y) is

abbreviated asψ(t)y.) Thus there is an element in Hd
p depending y andψ , call it Qψ(y), such that

〈y,ψ(t)y〉 = 〈t, Qψ(y)〉 (2.1)

for all t ∈ Hd
p. We call the map Qψ : Md

n×p → Hd
p the Hd

p-valued quadratic form associated with the

linear mapψ .

If Y ∼ Nd
n×p(0,ΣY ), thenQψ(Y) is a randomquadratic form taking values inHd

p. ThemeanofQψ(Y)

can be obtained as follows:

〈t, E(Qψ(Y))〉 = 1

d
〈ΣY ,ψ(t)〉. (2.2)

Indeed, 〈t, E(Qψ(Y))〉 = E〈t, Qψ(Y)〉 = E〈Y,ψ(t)(Y)〉 = E〈δ(Y), ϕ(ψ(t))δ(Y)〉 = E〈δ(Y)δ(Y)′,
ϕ(ψ(t))〉 = 〈 1

d
ϕ(ΣY ), ϕ(ψ(t))〉 = 1

d
〈ΣY ,ψ(t)〉.

We shall now give an example of random quadratic form.

Example 2.1. Let Y ∼ Nd
n×p(0,ΣY ), W ∈ Hd

n and ψ : Hd
p → EndS(Md

n×p), ψ(t) = W ⊗ t. Then

〈t, Qψ(Y)〉 = 〈Y,ψ(t)(Y)〉 = 〈Y,WYt∗〉 = 〈Y∗W∗Y, t∗〉 = 〈Y∗WY, t〉.
ThusQψ(Y) = Y∗WY . Further, in thecaseW = diag[In1 ,−In2 ]andΣY = In ⊗Σ ,wehaveQψ(Y) ∼

DWd
p (n1, n2,Σ)andby(2.2)andLemma2.1, 〈t, E(Qψ(Y))〉 = 1

d
〈In ⊗Σ , W ⊗ t〉 = 1

d
(n1 − n2)d〈Σ , t〉.

Hence

E(Qψ(Y)) = (n1 − n2)Σ. (2.3)

3. Jordan algebras

In this section we shall summarize the notions and results from the theory of Jordan algebras that

we require for the statements and proofs of our results. Where convenient we illustrate a concept

with an example from the Jordan algebra of symmetric matrices. Only some results are proven. Other

results are known and can be found in Faraut and Koryányi [4] or Jacobson [6]. We shall not repeat the

content of Masaro and Wong [9] unless it affects the lucidity of the present paper.

A Jordan algebra V over the set R of real numbers is a real vector space with a product ab such that

ab = ba, λ(ab) = (λa)b, (a1 + a2)b = a1b + a2b and a(a2b) = a2(ab) for λ in R and a, a1, a2 and b

in V . An element e in V will be called an identity if ex = x for all x in V .

An element c in V is an idempotent if c2 = c. Two idempotents c and d are called orthogonal if

cd = 0. An idempotent is said to be primitive, if it is non-zero and cannot be written as the sum of

two non-zero idempotents. A set of idempotents {c1, c2, . . . , cm} in V is called a Jordan frame if all ci
are primitive with cicj = 0 for i /= j and Σm

1 ci = e. A mapping φ of V to a Jordan algebra (W,#) is a
homomorphism if φ is linear and φ(ab) = φ(a)#φ(b) for all a, b in V . Since the polarization identity

xy = (x+y)2−(x−y)2

4
holds in V , the linear map φ will be a homomorphism iff φ(a2) = φ(a)#φ(a) for

all a in V . If φ is one to one and ontoW , then φ is called an isomorphism of V ontoW and V andW are

said to be isomorphic. A subset I of V is an ideal in V if I is a linear subspace of V and for any x in I, y in

V, xy belongs to I; V is said to be simple if its only ideals are {0} and V itself.

It can be shown (see [6]) that there exists a unique integer r > 0 and unique functions aj : V → R

such that the aj ’s are homogeneous of degree j and for all x in V ,

xr − a1(x)x
r−1 + a2(x)x

r−2 − · · · + (−1)rar(x) = 0.
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The polynomialmx(X) = Xr − a1(x)X
r−1 + a2(x)X

r−2 − · · · + (−1)rar(x) is called the generic min-

imum polynomial for x; the degree ‘r’ of mx(X) is called the rank of the Jordan algebra V . The generic

trace and generic determinant of x in V are defined by

tr(x) = a1(x) and det(x) = ar(x).

We shall use upper case notation, Det, Tr to denote the usual trace and determinant for matrices

(endomorphisms) and lower case notation det, tr to denote the generic trace and determinant of an

element in a Jordan algebra. When required, the notation trW and detW will be used to denote the

generic trace and determinant with respect to a specific Jordan algebra W .

The spaces Hd
r , d = 1, 2, 4 are Jordan algebras when endowed with the Jordan product A ◦ B =

1
2
[AB + BA], with the product on the right side being the usual matrix product. In the case d = 1 the

generic trace and determinant correspond to the usual trace and determinant for matrices.

A Jordan algebraV is Euclidean if there exists an inner product 〈·, ·〉 onV that is associative: 〈ab, c〉 =
〈b, ac〉 for all a, b and c in V . In every Euclidean Jordan algebra with identity, the generic trace form,

(x, y) → tr(xy) is positive definite and associative. Unless otherwise stated, we assume that the inner

product inafinitedimensionalEuclidean JordanalgebraV with identity is givenby 〈x, y〉 = tr(xy), x, y ∈ V .

The Jordan algebras Hd
r , d = 1, 2, 4 are simple and Euclidean. The generic trace and corresponding

inner product are given by tr A = Re Tr A and 〈A, B〉 = tr(A ◦ B). Note that since A and B are Hermitian,

Re Tr A = Tr A and 〈A, B〉 = Re Tr(AB) = Re Tr(AB∗) so that the inner product forHd
r is simply the inner

product inherited from the space Md
r×r as described in Section 2.

For x in V , the linear map L(x) : V → V is defined by L(x)(v) = xv. Further, we define P(x) =
2L(x)2 − L(x2) and P(x, y) = L(x)L(y)+ L(y)L(x)− L(xy). Since the inner product is associative, L(x),
P(x) and P(x, y) are self-adjoint. The map x → P(x) is called the quadratic representation of V . In the

Jordan algebra H1
r (with product A ◦ B = 1

2
[AB + BA]), we have

P(A)B = ABA and P(A, B)C = 1

2
[ACB + BCA].

An element x in V is said to be positive definite (nonnegative definite) if L(x) is positive definite

(nonnegativedefinite). In thecaseV = H1
r this agreeswith theusualmatrixdefinitions.We letΩ(V) =

{x ∈ V : x is positive definite} andΩ(V) = {x ∈ V : x is nonnegative definite}.
For an idempotent c in V , the Pierce spaces V(c, i) are defined by

V(c, i) = {x ∈ V : cx = ix}, i = 0, 1/2, 1.

It is well known that

V = V(c, 1)⊕ V(c, 1/2)⊕ V(c, 0) (a vector space direct sum).

This decomposition (called the Pierce decomposition) is orthogonal with respect to any associative

inner product on V . Also, V(c, 1) and V(c, 0) are Jordan subalgebras of V and c is an identity for V(c, 1).
The projections of V onto V(c, 1), V(c, 1/2) and V(c, 0) are P(c), I − P(c)− P(e − c) and P(e − c)

respectively. For example, if we take V = H1
r , r = p + q and c =

[
Ip 0
0 0

]
, then

V(c, 1) =
{[

A 0

0 0

]
: A ∈ H1

p

}
,

V(c, 0) =
{[

0 0

0 B

]
: B ∈ H1

q

}
,

V(c, 1/2) =
{[

0 D

D′ 0

]
: D ∈ M1

p×q

}
.

If V is simple, the value d = dim
[
V
(
a, 1

2

)
∩ V

(
b, 1

2

)]
is invariant for any pair of orthogonal prim-

itive idempotents a, b. The value d is called the Pierce invariant and it is related to the dimension and

rankofV byn = r + r(r − 1) d
2
.Moreover,whenV is simple, so isV(c, 1) (this follows fromProposition

IV.1.2 of [4]); if c is not primitive, the Pierce invariant for V(c, 1) is also equal to d.



J. Masaro, C.S. Wong / Linear Algebra and its Applications 432 (2010) 1578–1594 1583

Suppose that the rank of V is r. Then for each x in V , there exists a Jordan frame {c1, c2, . . . , cr} and
λi ∈ R such that

x = λ1c1 + λ2c2 + · · · + λrcr . (3.1)

Thenumbersλi (with theirmultiplicities) areuniquelydeterminedby x andare called the eigenvaluesof

x. Further, tr(x) = ∑r
i=1 λi and det(x) = ∏r

i=1 λi. The decomposition (3.1) is called the spectral decom-

position of x. The rank of x, rk(x), is the number of non-zero eigenvalues (with multiplicities counted)

in its spectral decomposition. For V = H1
r rk(x) agrees with the usual definition of matrix rank.

Let

x+ = ∑
λi /=0

λ−1
i ci, x0 = ∑

λi /=0

ci and xα = ∑
λi /=0

λαi ci, (3.2)

where α may be any real number if all λi are positive and α may be an integer if some λi are negative.

Then x+, x0, xα are well-defined (see [9]). In the special case V = H1
r of Hermitian (symmetric)

r × r matrices over R these definitions correspond to the usual notions of Moore–Penrose inverse,

orthogonal projection and matrix powers in linear algebra arising from the consideration of Wishart

distributions with singular scale matrix.

Let V be a Jordan algebra over R andM a vector space over R. A representation of V onM is a linear

map τ : V → End(M) such that

τ(xy) = 1

2
(τ (x)τ (y)+ τ(y)τ (x)),

i.e., the map τ is a Jordan algebra homomorphism of V into End(M) equipped with the Jordan product

A ◦ B = 1
2
(AB + BA). The representation τ is said to be self-adjoint if for any x ∈ V, τ(x) is a self-adjoint

endomorphism onM.

For example, the standard representation for Hd
r , is given by: τ : Hd

r → End(Rdr)with

1. For A ∈ H1
r , τ(A) = A.

2. For A = A1 + iA2 ∈ H2
r , τ(A) =

[
A1 −A2
A2 A1

]
.

3. For A = A1 + iA2 + jA3 + kA4 ∈ H4
r , τ(A) =

⎡
⎣A1 −A2 −A3 −A4
A2 A1 −A4 A3
A3 A4 A1 A2
A4 −A3 −A2 A1

⎤
⎦.

The generic trace and determinant for Hd
r may be obtained from

d tr A = dRe Tr A = Tr τ(A) and (det A)d = Det τ(A).

For brevity wewill only state Theorem 3.1 leaving its proof as an exercise for those readers familiar

with Jordan algebras.

Theorem 3.1. I. Let:
(i) L be a Jordan algebra with identity eL and A be an associative algebra;
(ii) ρ : L → A be a linear map;
(iii) E = ρ(eL);
(iv) (A, ∗) and (A, ∗E) be the Jordan algebras obtained from A using the products A ∗ B = 1

2
(AB + BA)

and A ∗E B = 1
2
(AEB + BEA).

Then (a)–(c) below are equivalent:
(a) ρ : L → (A, ∗E) is a Jordan algebra homomorphism such that Eρ(x) = ρ(x)E for all x in L;
(b) ρ(x) = ρ1(x)− ρ2(x), where ρ1 and ρ2 are Jordan algebra homomorphisms of L into (A, ∗) such

that ρ1(x)ρ2(y) = ρ2(y)ρ1(x) = 0 for all x, y in L;
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(c) ρ(x) = ρ1(x)− ρ2(x), where ρ1 and ρ2 are Jordan algebra homomorphisms of L into (A, ∗) such
that ρ1(eL)ρ2(eL) = ρ2(eL)ρ1(eL) = 0.

II. In the case that one of (a)–(c) holds, the homomorphisms ρ1 and ρ2 are uniquely determined and

are given by

ρ1(x) = ρ(x)+ Eρ(x)

2
and ρ2(x) = −ρ(x)+ Eρ(x)

2
.

Let V be a Euclidean Jordan algebra with identity e. Given an element u in V, one may define a

new composition x ∗ y = P(x, y)u. Then V equipped with the product ∗ is also a Jordan algebra and is

called themutation of V with respect to u and is denoted byMV(u). AlsoMV(u) = M1V(u)⊕ M2V(u)
where M1V(u) = P(u◦)V and M2V(u) = (I − P(u◦))V . Note that M1V(u) is just the mutation of the

Pierce space V(u◦, 1)with respect to u.

The following example will provide a more concrete understanding of mutations.

Example 3.1. Let V = H1
r be the Jordan algebra of r × r Hermitian matrices over Rwith composition

A ◦ B = 1
2
(AB + BA) and letΣ ∈ H1

r be nonnegative definite. Then:

Σ+ is the Moore–Penrose inverse of Σ;
Σ◦ = ΣΣ+, the orthogonal projection of Rr onto ImΣ;
M1V(Σ) = {A ∈ V : Σ◦AΣ◦ = A};
M2V(Σ) = {A ∈ V : Σ◦AΣ◦ = 0}.

Moreover inMV(Σ), A ∗ B = 1
2
[AΣB + BΣA] and in M1V(Σ),

tr1(A) = Tr(Σ1/2AΣ1/2)

and

det1(A) = Det(I −Σ◦ +Σ1/2AΣ1/2),

where tr1, det1 are the generic trace and determinant for the Jordan algebras MV1(Σ) (see Lemma

3.5.1 of [9]).

Theorem 3.2 is an extension of Theorem 3.5.2 in Masaro andWong [9] so we state it without proof.

This theorem is the key to our main result (Theorem 4.3) in Section 4. It is important to note that

Theorem 3.2 was, in part, motivated by Example 3.1. Indeed, the conditions (1)–(3) of Theorem 3.2 are

satisfied by Example 3.1 with V = H1
r , J = MV(Σ), L = M1V(Σ), K = M2V(Σ), PL = P(Σo), and

PK = Ir − P(Σo).

Theorem 3.2. Suppose that (1)–(5) hold:
(1) J is a Jordan algebra.
(2) J = L ⊕ K, a vector space direct sum, where

(i) L is a Jordan subalgebra of J of rank r with identity eL and L is simple and Euclidean;
(ii) K is an ideal in J.

(3) PL and PK are the projections of J onto L and K respectively.
(4) M is a vector space over R of dimension m,A = End(M) and AS = EndS(M) with the usual com-

position product in A and AS denoted by AB; (A, ∗), (A, ∗C), (AS, ∗) and (AS, ∗C) will denote the

Jordan algebras obtained from A and AS with Jordan products A ∗ B = 1
2
(AB + BA) and A ∗C B =
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1
2
(ACB + BCA) and IM will denote the identity mapping in End(M). The usual trace and determinant

for members of End(M) will be denoted by Tr and Det.
(5) ρ : J → WS is a linear map, E = ρ(eL) and ρ1, ρ2 : J → W are linear maps defined by

ρ1(x) = ρ(x)+ Eρ(x)

2
and ρ2(x) = −ρ(x)+ Eρ(x)

2
, x ∈ J.

Then:
I. (a)–(e) below are equivalent:

(a) ρ is a Jordan algebra homomorphism of J into (AS, ∗E) with K = kerρ and Eρ(x) = ρ(x)E
for all x in J;

(b) ρ1, ρ2 are Jordan algebra homomorphisms of J into (AS, ∗) such that ρ1(eL)ρ2(eL) = 0 and

K = ker ρ1 = ker ρ2;
(c) there exist integers s1, s2 > 0 such that for all x ∈ J,

Det(IM − ρ(x)) = detL(eL − PLx)
s1detL(eL + PLx)

s2; (3.3)

(d) there exist integers s1, s2 > 0 such that for all x ∈ J and k = 1, 2, . . . ,

Tr ρ(x)k = [s1 + (−1)ks2]trL(PLx)k; (3.4)

(e) there exist integers s1, s2 > 0 such that for all x ∈ J, Tr ρj(x)
k = sjtrL(PL(x))

k, j = 1, 2; j =
1, 2, and ρ1(eL)ρ2(eL) = ρ2(eL)ρ1(eL) = 0.

II. In the case one of (a)–(e) holds, sj = Tr ρj(eL)

r
= Tr(ρj(c)), where c is any primitive idempotent in

L. Further, if r � 2, then sj = mjd, j = 1, 2, where d is the Pierce invariant of L and mj is a positive

integer. Also ρ1(x)ρ2(y) = 0 for all x, y in L.

4. Characterization of the Wishart–Laplace distributions

We shall, in Theorem 4.3, characterize theWishart–Laplace distributions in terms of Jordan algebra

representations (Theorem 4.4). This is accomplished by linking themoment generating function of the

Wishart–Laplace distributions with these homomorphisms via Theorem 3.2. For the convenience of

the reader, we shall reintroduce some of our earlier notation: Hd
p, d = 1, 2, 4, will denote the simple

Euclidean Jordan algebras as described in Section 3 and MHd
p(A) its mutation with respect to an

element A ∈ Hd
p. Lower case notation ‘tr’, ‘det’ refers to the generic trace and determinant and upper

case notation ‘Tr’ ‘Det’ is the usual trace and determinant for matrices (operators), in this case, for

endomorphisms in End(Md
n×p) or End(Rnpd). We will also make use of the functions δ and ϕ as

described in Section 2. Note that End(Md
n×p) is a Euclidean Jordan algebra with identity In ⊗ Ip. Thus

for T ∈ End(Md
n×p), P(T) is the linear operator given by P(T)S = TST, S ∈ End(Md

n×p). Finally note

that for any U in Ω(Hd
p) and α, β in R we have P(Uα)P(Uβ) = P(Uα+β) where Uα is defined as in

(3.2) (see Lemma 3.3.1 of [9]).

We begin with some results on moment generating functions of quadratic forms.

Theorem 4.1

(a) Let Y ∼ Nd
n×p(0,ΣY ), ψ : Hd

p → EndS(Md
n×p) be a linear map and Qψ : Md

n×p → Hd
p the asso-

ciated quadratic form. Then the moment generating function of Qψ(Y) is

MQψ (t) = Det

[
In ⊗ Ip − 2

d
P(Σ

1/2
Y )ψ(t)

]−1/2
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for t ∈ Hd
p such that In ⊗ Ip − 2

d
P(Σ

1/2
Y )ψ(t) is positive definite.

(b) Let U ∼ DWd
p (m1, m2,Σ), Σ ∈ Ω(Hd

p). Then the moment generating function of U is

MU(t) = det

[
Ip − 2

d
P(Σ1/2)t

]−m1d/2

det

[
Ip + 2

d
P(Σ1/2)t

]−m2d/2

for t ∈ Hd
p such that Ip ± 2

d
P(Σ1/2)t ∈ Ω(Hd

p).

Proof. The proof of (a) may be found in Masaro and Wong [9].

(b) Since U
d= Z∗KZ where Z ∼ Nd

m×p(0, Im ⊗Σ) and K = diag[Im1
,−Im2

], we may apply (a) with

n = m = m1 + m2, ΣY = Im ⊗Σ andψ(t) = K ⊗ t to obtain

MU(t)= Det

[
Im ⊗ Ip − 2

d
P(Im ⊗Σ1/2)(K ⊗ t)

]−1/2

= Det

[
Im ⊗ Ip − K ⊗ 2

d
P(Σ1/2)t

]−1/2

= Det

[
diag[Im1

⊗
(
Ip − 2

d
P(Σ1/2)t

)
, Im2

⊗
(
Ip + 2

d
P(Σ1/2)t

)
, ]
]−1/2

= Det

[
Im1

⊗
(
Ip − 2

d
P(Σ1/2)t

)]−1/2

Det

[
Im2

⊗
(
Ip + 2

d
P(Σ1/2)t

)]−1/2

.

Since themap x → Imi
⊗ x is a self-adjoint representation ofHd

p onMd
mi×p such that Ip → Imi

⊗ Ip,

we can apply Proposition IV.4.2 of [4] (with N = mipd and r = p) to obtain

MU(t) = det

[
Ip − 2

d
P(Σ1/2)t

]−m1d/2

det

[
Ip + 2

d
P(Σ1/2)t

]−m2d/2

for t ∈ Hd
p such that Ip ± 2

d
P(Σ1/2)t ∈ Ω(Hd

p). �

Corollary 4.2. Let Y, ψ , Qψ be as in Theorem 4.1, m1, m2 ∈ {1, 2, 3, . . .} andΣ ∈ Ω(Hd
p). Then (a)–(c)

below are equivalent:
(a) Qψ(Y) ∼ DWd

p (m1, m2,Σ).

(b) For all t ∈ Hd
p,

Det[In ⊗ Ip − P(Σ
1/2
Y )ψ(t)] = det[Ip − P(Σ1/2)t]m1ddet[Ip + P(Σ1/2)t]m2d. (4.1)

(c) For all t ∈ Hd
p and k = 1, 2, . . . ,

Tr[P(Σ1/2
Y )ψ(t)]k = [m1 + (−1)km2]dtr(P(Σ1/2)t)k. (4.2)

Proof. First assume Qψ(Y) ∼ DWd
p (m1, m2,Σ). Then by Theorem 4.1(a) and (b),

Det

[
In ⊗ Ip − 2

d
P(Σ

1/2
Y )ψ(t)

]−1/2

= det

[
Ip − 2

d
P(Σ1/2)t

]−m1d/2

det

[
Ip + 2

d
P(Σ1/2)t

]−m2d/2

(4.3)
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for all 2
d
t ∈ N0, where N0 is a neighbourhood of 0 in Hd

p. Now (4.3) amounts to

Det[In ⊗ Ip − P(Σ
1/2
Y )ψ(t)] = det[Ip − P(Σ1/2)t]m1ddet[Ip + P(Σ1/2)t]m2d (4.4)

for all t ∈ N0. Then by analytic continuation, (4.4) holds for all t ∈ Hd
p, proving (b).

Conversely, it is clear that (4.1) implies (4.3), which in turn (by Theorem 4.1) implies Qψ(Y)

∼ DWd
p (m1, m2,Σ).

To prove the equivalence of parts (b) and (c), let t ∈ Hd
p , let α1,α2, . . . ,αnp be the eigenvalues of

P(Σ
1/2
Y )ψ(t) and choose a Jordan frame c1, c2, . . . , cp such that P(Σ1/2)t = ∑p

i=1 λici. Then for z ∈ R,

we have

D(z) ≡ Det[In ⊗ Ip − P(Σ
1/2
Y )ψ(zt)] =

np∏
i=1

(1 − zαi)

and

d(z) ≡ det[Ip − P(Σ1/2)zt]m1ddet[Ip + P(Σ1/2)zt]m2d =
p∏

i=1

(1 − zλi)
m1d

p∏
i=1

(1 + zλi)
m2d.

Now a comparison of the coefficients of zk in the power series expansions of lnD(z) and ln d(z)
shows that lnD(z) = ln d(z) if and only if (4.2) holds, which proves the equivalence of (b) and (c). �

We now prove our main result. For better understanding one should keep Example 3.1 in mind.

Theorem 4.3. I. Suppose that:
(1) Y ∼ Nd

n×p(0,ΣY );
(2) ψ : Hd

p → EndS(Md
n×p) is a linear map;

(3) Qψ : Md
n×p → Hd

p is the quadratic form associated with the linear mapψ;
(4) ρ : Hd

p → EndS(Md
n×p) is the linear map defined by ρ(x) = P(Σ

1/2
Y )ψ(x);

(5) (A, ∗) is the Jordan algebra EndS(Md
n×p) with the product A ∗ B = 1

2
(AB + BA) and (A, ∗E) is the

Jordan algebra EndS(Md
n×p) with the product A ∗E B = 1

2
(AEB + BEA).

Then Qψ(Y) has a Wishart–Laplace distribution if and only if (a)–(c) hold:

(a) There exists an elementΣ ∈ Ω(Hd
p) such that ρ : MHd

p(Σ) → (A, ∗E) is a Jordan algebra homo-

morphism with Eρ(x) = ρ(x)E for all x in MHd
p(Σ), where E = ρ(Σ+).

(b) ker ρ = M2Hd
p(Σ).

(c) Either rk(Σ)� 2 or rk(Σ) = 1 and Tr ρj(Σ
+) is divisible by d, j = 1, 2, where

ρ1(x) = ρ(x)+ Eρ(x)

2
and ρ2(x) = −ρ(x)+ Eρ(x)

2
, x ∈ Hd

p.

II. In the case that (a)–(c) hold, Qψ(Y) is DW(m1, m2,Σ)with m1 − m2 = Tr E
2d rk(Σ)

and m1 + m2 =
Tr E2

2drk(Σ)
. Also mjd = tr(ρj(c)), j = 1, 2, where c is any primitive idempotent in M1Hd

p(Σ) and for all

x in MHd
p(Σ) and k = 1, 2, . . . , Tr ρj(x)

k = mjdtr(Σ
1/2xΣ1/2)k and Tr ρ(x)k = d(m1 + (−1)km2)

× tr(Σ1/2xΣ1/2)k.
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III. Condition (a) above may be replaced by the condition (a)′ : ρ1, ρ2 : MHd
p(Σ) → (A, ∗) are Jordan

algebra homomorphisms such that ρ1(Σ
+)ρ2(Σ+) = 0.

Proof. I. Assume thatQψ(Y) ∼ DWd
p (m1, m2,Σ), Σ ∈ Ω(Hd

p). Then for x ∈ MHd
p(Σ), Σ

+ − P(Σ◦)x
∈ M1Hd

p(Σ) and P(Σ1/2)x = P(Σ1/2)P(Σ◦)x. So by Lemma 3.5.1(d) of [9] and Corollary 4.2, we have

Det[In ⊗ Ip − ρ(x)] = det[Ip − P(Σ1/2)x]m1ddet[Ip + P(Σ1/2)x]m2d

= det[Ip − P(Σ1/2)(Σ+ − (Σ+ − P(Σ◦)x))]m1ddet[Ip + P(Σ1/2)(Σ+ − (Σ+ − P(Σ◦)x))]m2d

= det1[Σ+ − P(Σ◦)x]m1det1[Σ+ + P(Σ◦)x]m2 ,

where det and det1 are the generic determinants in Hd
p andM1Hd

p(Σ) respectively.

Now by Theorem 3.2 (with J = MHd
p(Σ), L = M1Hd

p(Σ), K = M2Hd
p(Σ), W = EndS(Md

n×p) and

sj = mjd), conditions (a)–(c) hold.
Conversely, assume that (a)–(c) hold. Since this includes condition I(a) of Theorem 3.2 (with J, L, K

and W as indicated above), we may apply the equivalent condition I(c) of Theorem 3.2 together with

Lemma 3.5.1(d) of [9] to conclude that there exist positive integers sj = Tr ρj(Σ
+)

rk(Σ)
, j = 1, 2, such that

Det[In ⊗ Ip − ρ(x)]
= det1[Σ+ − P(Σ◦)x]s1 det1[Σ+ + P(Σ◦)x]s2
= det[Ip − P(Σ1/2)P(Σ◦)x]s1det[Ip − P(Σ1/2)P(Σ◦)x]s2
= det[Ip − P(Σ1/2)x]s1det[Ip − P(Σ1/2)x]s2

for all x ∈ MHd
p(Σ). If rk(Σ)� 2, then by Theorem 3.2(II), there exist integers mj > 0 such that sj =

mjd, j = 1, 2. So by Corollary 4.2, Qψ(Y) ∼ DWd
p (m1, m2,Σ).

Finally, II and III follow from Theorem 3.2 and Lemma 3.5.1(c) and (d) of [9]. �

Corollary 4.4. I. Suppose that:
(1) Y ∼ Nd

n×p(0,ΣY );
(2) Q(Y) = Y∗WY, where W ∈ Hd

n;
(3) ρ : Hd

p → EndS(Md
n×p) is the linear map defined by ρ(x) = Σ

1/2
Y (W ⊗ x)Σ

1/2
Y .

Then Q(Y) follows a Wishart–Laplace distribution if and only if there exists an element Σ ∈ Ω(Hd
p)

such that (a)–(c) below hold:
(a) for all x ∈ Hd

p, ρ(xΣx) = ρ(x)ρ(Σ+)ρ(x) and ρ(Σ+)ρ(x) = ρ(x)ρ(Σ+), that is:
Σ

1/2
Y (W ⊗ xΣx)Σ

1/2
Y = Σ

1/2
Y (W ⊗ x)ΣY (W ⊗Σ+)ΣY (W ⊗ x)Σ

1/2
Y (4.5)

and

Σ
1/2
Y (W ⊗Σ+)ΣY (W ⊗ x)Σ

1/2
Y = Σ

1/2
Y (W ⊗ x)ΣY (W ⊗Σ+)Σ1/2

Y . (4.6)

(b) ker ρ = {x ∈ Hd
p : ΣxΣ = 0}.

(c) either rk(Σ)� 2 or rk(Σ) = 1 and Tr ρj(Σ
+) is divisible by d, j = 1, 2, where

ρ1(x) = ρ(x)+ Eρ(x)

2
and ρ2(x) = −ρ(x)+ Eρ(x)

2
with E = ρ(Σ+).
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II. In the case that (a)–(c) hold, Q(Y) is DW(m1, m2,Σ) with m1 − m2 = Tr E
2drk(Σ)

and m1 + m2 =
Tr E2

2drk(Σ)
. Also mjd = tr(ρj(c)), where c is any primitive idempotent in M1Hd

p(Σ) and for all x in

MHd
p(Σ) and k = 1, 2, . . . , Tr ρj(x)

k = mjdtr(Σ
1/2xΣ1/2)k, j = 1, 2, and Tr ρ(x)k = d(m1 +

(−1)km2)tr(Σ
1/2xΣ1/2)k.

III. Condition (a) above may be replaced by the condition (a)′ : for all x ∈ Hd
p, ρj(xΣx) = ρj(x)

2, j =
1, 2, and ρ1(Σ

+)ρ2(Σ+) = 0.

Proof. This follows from Theorem 4.3 on noting that Q(Y) = Qψ(Y), where ψ(x) = W ⊗ x and that

from Lemma 3.5.1(a) of [9], M2Hd
p(Σ)=kerP(Σ) = {x ∈ Hd

p : ΣxΣ = 0}. �

Remark 4.1

(a) In Corollary 4.4, we may replace ρ(x) = Σ
1/2
Y (W ⊗ x)Σ

1/2
Y by ρ̃(x) = M(W ⊗ x)M∗, where

M∗M = ΣY is any factorization of ΣY . This follows from the cancellation law for matrices: if

A∗AB = A∗AC, then AB = AC. For example, one may take M∗M as the Cholesky decomposition

or anM∗M with M ∈ Mq×np, q = rank(M) = rank(ΣY ). Note also that Tr ρ(x) = Tr ρ̃(x).

(b) Let g be a Hilbert space isomorphism of Md
n×p onto a Hilbert space F . Then the map

T → Tg = gTg−1

is an algebra isomorphism of End(Md
n×p) onto End(F). Let ψ and ρ be as in Theorem 4.3 and

defineψg and ρg by

ψg(x) = (ψ(x))g and ρg(x) = (ρ(x))g .

Thenψg , ρg : Hd
p → EndS(F) and

ρg(x) = P((Σ
1/2
Y )g)ψg(x).

Further, ρ is a self-adjoint representation of the Jordan algebraMHd
p(Σ) on Md

n×p if and only if

ρg is a self-adjoint representation of MHd
p(Σ) on F . Also ker ρ = ker ρg . Thus in Theorem 4.3

(and Corollary 4.4), it may be easier to verify condition (5) (conditions (i) and (ii)) by making

a judicious choice for g and using ψg and ρg in place of ψ and ρ . In particular, if one takes

F = Md
p×n and g(X) = X∗, X ∈ Md

n×p, then for all A ∈ Md
n×n and B ∈ Md

p×p,

(A ⊗ B)g = B ⊗ A.

Also,

(ΣY )g = ΣY∗ .

Thus in Corollary 4.4, one may replace ρ(x) andψ(x) by

ρg(x) = Σ
1/2
Y∗ (x ⊗ W)Σ

1/2
Y∗ and ψg(x) = x ⊗ W

or by

ρg(x) = L(x ⊗ W)L∗ andψg(x) = x ⊗ W, whereΣY∗ = L∗L.

Example 4.1. Let Y ∼ N1
4×2(0,ΣY ), whereΣY = A ⊗Σ with

A =
⎛
⎜⎜⎝

5/8 −3/8 1/8 1/8
−3/8 5/8 1/8 1/8
1/8 1/8 5/8 −3/8
1/8 1/8 −3/8 5/8

⎞
⎟⎟⎠ and Σ = I2.
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LetW ∈ H1
n and L = I2 ⊗ R with

W =
⎛
⎜⎜⎝

0 1 1/2 1/2
1 0 1/2 1/2

1/2 1/2 1 0

1/2 1/2 0 1

⎞
⎟⎟⎠ and R =

⎛
⎜⎜⎝
1/2

√
2 1/2

√
2 1/2

√
2 1/2

√
2

1/
√

2 −1/
√

2 0 0

0 0 −1/
√

2 1/
√

2

0 0 0 0

⎞
⎟⎟⎠ .

ThenΣY∗ = L∗L. By Corollary 4.4 and the last four lines of Remark 4.1(b), Y∗WY ∼ DW1
2 (2, 1,Σ).

The following result is a consequence of Corollary 4.4 and we leave its proof to the reader (the case

d = 1 was shown in [15]).

Corollary 4.5. Let Y ∼ Nd
n×p(0, A ⊗Σ), rk(Σ)� 2, W ∈ Hd

n. Then Y∗WY has a Wishart–Laplace distri-

bution with scale matrixΣ if and only if

(a) AWA /= 0.

(b) AWA = AWAWAWA.

In this case, Y∗WY ∼ DWp(m1, m2,Σ) with m1 − m2 = Tr(WA) and m1 + m2 = Tr(WA)2.

Remark 4.2. Corollary 4.5 may be extended to the case where rk(Σ) = 1 by including condition (c)

from Corollary 4.4.

The following theoremshowshowa randomquadratic formthathas aWishart–Laplacedistribution

may be written in a natural way as the difference of two independent random quadratic forms each

with a Wishart distribution.

Theorem 4.6. Let (1)–(5) be as in Theorem 4.3 and suppose that Qψ(Y) has a Wishart–Laplace distribu-

tion DWd
p (m1, m2,Σ). Then (a) and (b) below hold:

(a) Qψ(Y) = Qψ1
(Y)− Qψ2

(Y), where Qψ1
(Y) and Qψ2

(Y) are independent Wishart Wd
p (m1,Σ) and

Wd
p (m2,Σ) respectively andψ1 andψ2 are linear maps of Hd

p into EndS(Md
n×p) given by

ψ1(x) = 1

2
[ψ(x)+ ψ(x) ∗ΣY

ψ(Σ+)]
and

ψ2(x) = 1

2
[−ψ(x)+ ψ(x) ∗ΣY

ψ(Σ+)].
(b) In the case that ΣY = A ⊗Σ and ψ(x) = W ⊗ x, Qψ(Y) = Y∗WY and ψ1 and ψ2 in (a) can be

so chosen that

Qψ1
(Y) = Y∗

(
W + WAW

2

)
Y and Qψ2

(Y) = Y∗
(−W + WAW

2

)
Y .

Proof

(a) By Theorem 4.3 (using the notation therein), we have ρ(x) = ρ1(x)− ρ2(x)with

ρ(x) = P(Σ
1/2
Y )ψ(x), ρ1(x) = P(Σ

1/2
Y )ψ1(x), and ρ2(x) = P(Σ

1/2
Y )ψ2(x),

whereρ1(x) andρ2(x) are Jordan algebra homomorphismsofMHd
p(Σ) into (A, ∗)with ker ρ1 =

ker ρ2 = M2Hd
p(Σ) and ρ1(Σ

+)ρ2(Σ+) = 0. Then by Theorem 4.10 of [9], Qψ1
(Y) and Qψ2

(Y)
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are independentWishartWd
p (m1,Σ) andWd

p (m2,Σ) respectively withmj = Tr ρj(Σ
+)

drk(Σ)
. It is also

straightforward to check thatψ = ψ1 − ψ2 and Qψ = Qψ1
− Qψ2

.

(b) In this case,

ψ1(x) = 1

2

(
W ⊗ x + WAW ⊗

(
Σ◦x + xΣ◦

2

))

and

ψ2(x) = 1

2

(
−W ⊗ x + WAW ⊗

(
Σ◦x + xΣ◦

2

))
.

SinceΣ1/2
(
Σ◦x+xΣ◦

2

)
Σ1/2 = Σ1/2xΣ1/2, wemay replace the term Σ◦x+xΣ◦

2
in the definition

of theψj by xwithout affecting thevaluesofρ1(x) = P(Σ
1/2
Y )ψ1(x)andρ2(x) = P(Σ

1/2
Y )ψ2(x).

The desired result then follows as in part (a). �

The following theorem shows that the Jordan algebra homomorphism associated with a quadratic

form that has aWishart–Laplace distributionmay, through a change of basis, be put in a diagonal form.

Theorem 4.7. Let (1)–(5) be as in Theorem 4.3 and suppose r = rank(Σ)� 3 and α is an isomorphism

of Hd
r onto M1Hd

p(Σ) so that α(Ir) = Σ+. Then:
Y∗WY ∼ DWp(m1, m2,Σ) iff there exists an orthonormal basis B of Md

n×p (viewed as a Euclidean

vector space over R) such that:
(a) for all z ∈ Hd

r and for all x ∈ M2Hd
p(Σ),

[ρ(α(z))]B =
⎡
⎣Im1

⊗ τ(z) 0 0

0 −Im2
⊗ τ(z) 0

0 0 0

⎤
⎦
npd×npd

and [ρ(x)]B = 0npd; (4.7)

equivalently,

(b) for all x ∈ MHd
p(Σ),

[ρ(x)]B =
⎡
⎢⎣Im1

⊗ τ(α−1(Σ◦xΣ◦)) 0 0

0 −Im2
⊗ τ(α−1(Σ◦xΣ◦)) 0

0 0 0

⎤
⎥⎦
npd×npd

, (4.8)

where τ is the standard representation of Hd
r given in Section 3.

Proof. Note that M1Hd
p(Σ) is a simple Euclidean Jordan algebra of rank r. So by Theorem V.3.7 of [4],

there exists an isomorphism α of Hd
r ontoM1Hd

p(Σ)with α(Ir) = Σ+. Recall that the Jordan product

in Hd
r is given by a ◦ b = 1

2
(ab + ba).

In what follows below, [T] will denote the matrix representation of an operator T with respect to

the standard basis of the associated vector space while [T]B will denote the matrix representation

with respect to a basis B.
First assume that Y∗WY ∼ DWp(m1, m2,Σ). Let ρ = ρ1 − ρ2 as in Theorem 4.3 and let ρ̂j = ρj ◦

α, j = 1, 2. Then the ρ̂j ’s are 1–1 Jordan algebra homomorphisms ofHd
r into EndS(Md

n×p). Thus for each

x in Hd
r , the matrix representations [ρ̂j(x)] of the ρ̂j(x)’s belong to the family of npd × npd symmetric

matrices over R. Now since ρ̂j(Ir) = ρ̂j(Ir ◦ Ir) = ρ̂j(Ir)
2 and ρ̂1(Ir)ρ̂2(Ir) = ρ1(Σ

+)ρ2(Σ+) = 0,

there exists an orthogonal matrix P such that
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P∗[ρ̂1(α(Ir))]P = diag[Ik1 , 0k2 , 0k3 ]
and

P∗[ρ̂2(α(Ir))]P = diag[0k2 , Ik2 , 0k3 ],
where kj = rk(ρ̂j(Ir)) = rk(ρj(Σ

+)) = Tr(ρj(Σ
+)), j = 1, 2 and k3 = npd − k1 − k2.

Also since ρ̂j(z) = ρ̂j(Ir ◦ z) = 1
2
[ρ̂j(z)ρ̂j(Ir)+ ρ̂j(Ir)ρ̂j(z)], we must have

P∗[ρ̂1(z)]P = diag[β1(z), 0k2 , 0k3 ]
and

P∗[ρ̂2(z)]P = diag[0k2 ,β2(z), 0k3 ],
where the [βj]’s are 1-1 Jordan algebra homomorphisms of Hd

r into the family of kj × kj symmetric

matrices over R, with βj(Ir) = Ikj , j = 1, 2. Then by Theorem 3 of [7], there exist orthogonal matrices

Pj, j = 1, 2 such that for all z in Hd
r , P

∗
j [βj(z)]Pj = Inj ⊗ τ(z), where nj = kj

rd
= Tr(ρj(Σ

+)
rd

= mj and τ

is the standard representation of Hd
r as described in Section 3.4. Setting U = P diag[P1, P2, Ik3 ] yields

the first representation in (4.7); the second representation follows since kerρ = M2Hd
p(Σ). To obtain

(4.8), note that for x inMHd
p(Σ), x = Σ◦xΣ◦ + (Ip −Σ◦xΣ◦), whereΣ◦xΣ◦ ∈ M1Hd

p(Σ) and (Ip −
Σ◦xΣ◦) ∈ M2Hd

p(Σ) = ker ρ . Then replace z in (4.7) by α−1(Σ◦xΣ◦) and use the fact that ρ(x) =
ρ(Σ◦xΣ◦).

Assume that (4.7) (equivalently (4.8)) holds. Since for all x ∈ M2Hd
p(Σ), [ρ(x)]B = 0np, it is clear

that kerρ = M2Hd
p(Σ). By (4.7),

[E]B = [ρ(Σ+)]B = [ρ(α(Ir))]B = diag[Im1
⊗ Idr ,−Im2

⊗ Idr , 0].
By (4.7) together with the fact that α and τ are Jordan algebra homomorphisms, we have, for α(z)

inM1Hd
p(Σ),

[ρ(α(z) ∗Σ α(z))]B = [ρ(α(z ◦ z))]B
= diag[Im1

⊗ τ(z ◦ z),−Im2
⊗ τ(z ◦ z), 0]

= diag[Im1
⊗ τ(z)2,−Im2

⊗ τ(z)2, 0]
= [ρ(α(z))]B ∗[E]B [ρ(α(z))]B.

Finally, by (4.8), it is easily seen that for all x inMHd
p(Σ), [E]B[ρ(x)]B = [ρ(x)]B[E]B . ThusbyTheorem

4.3, Y∗WY ∼ DWp(m1, m2,Σ). �

Remark 4.3. In the case that d = 1 or 2, we may define α in Theorem 4.7 as follows: let R be a uni-

tary matrix such that R∗ΣR = diag[Dr, 0], where Dr = diag[σ1, σ2, . . . , σr], σi > 0. Define α : Hd
r →

M1H
d
p(Σ) by

α(z) = R diag[D−1/2
r zD−1/2

r , 0] R∗, α−1(x) = [Ir , 0]R∗Σ1/2xΣ1/2R[Ir , 0]∗.
We now prove a very general version of Cochran Theorem.

Theorem 4.8 (Cochran Theorem). Let I be a finite set. Suppose that:
(1) Y ∼ Nd

n×p(0,ΣY );
(2) ψi : Hd

p → EndS(Md
n×p) is a linear map, i ∈ I;

(3) Qψi
: Md

n×p → Hd
p is the quadratic form associated with the linear mapψi, i ∈ I;

(4) ρi : Hd
p → EndS(Md

n×p) is the linear map defined by ρi(x) = P(Σ
1/2
Y )ψi(x), i ∈ I;
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(5) (A, ∗) is the Jordan algebra EndS(Md
n×p) with the product A ∗ B = 1

2
(AB + BA) and (A, ∗E) is the

Jordan algebra EndS(Md
n×p) with the product A ∗E B = 1

2
(AEB + BEA).

Then {Qψi
(Y)}i∈I is an independent family of DW(m1i, m2i,Σ) random matrices if and only if for all i

in I, (a)–(d) hold:
(a) ρi : MHd

p(Σ) → (A, ∗Ei) is a Jordanalgebra homomorphismand for all x inMHd
p(Σ), Eiρi(x) =

ρi(x)Ei, where Ei = ρi(Σ
+);

(b) ker ρi = M2Hd
p(Σ);

(c) either rk(Σ)� 2 or rk(Σ) = 1 and Tr ρji(Σ
+) is divisible by d, j = 1, 2, where

ρ1i(x) = ρi(x)+ Eiρi(x)

2
and ρ2i(x) = −ρi(x)+ Eiρi(x)

2
, x ∈ Hd

p;
(d) for all j /= i in I, ρi(Σ

+)ρj(Σ+) = 0.

In case that (a)–(c)hold, eachQψi
has aDW(m1i, m2i,Σ) distributionwithmjid rk(Σ

+)=Tr ρji(Σ
+),

j = 1, 2.

Proof. Let {Qψi
(Y)} be an independent family ofDW(m1i, m2i,Σ) randommatrices. Then by Theorem

4.3 and Lemma 4.8 of Masaro and Wong [9], (a)–(d) hold.

Conversely, suppose that (a)–(d)hold. ByTheorem4.3,Qψi
(Y) ∼ DW(m1i, m2i,Σ). AlsobyTheorem

4.4, ρ1i, ρ2i : MHd
p(Σ) → (A, ∗) are Jordan algebra homomorphisms with ker ρji = M2Hd

p(Σ). Now,

by (d) and the definition of ρ1i and ρ2i, we have for i /= j and k, l = 1, 2, ρki(Σ
+)ρlj(Σ+) = 0. Then

by Lemma 3.4.2, ρki(x)ρlj(y) = 0 for all x, y in M1Hd
p(Σ) and therefore for all x, y in MHd

p(Σ). Since

ρi = ρ1i − ρ2i, it follows that ρi(x)ρj(y) = 0. So by Lemma 4.8 ofMasaro andWong [9], the quadratic

forms Qψi
(Y) are independent. �

Remark 4.4. In theusualway (usingTheorem4.8), Corollary4.5maybeextended toaCochran theorem

(see [3]).
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