

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Optimality conditions for the calculus of variations with higher-order delta derivatives

Rui A.C. Ferreira^a, Agnieszka B. Malinowska^b, Delfim F.M. Torres^{c,*}

^a Department of Mathematics, Faculty of Engineering and Natural Sciences, Lusophone University of Humanities and Technologies, 1749-024 Lisbon, Portugal ^b Department of Mathematics, Faculty of Computer Science, Białystok University of Technology, 15-351 Białystok, Poland ^c Department of Mathematics, Center for Research and Development in Mathematics and Applications, University of Aveiro, Campus Universitário de Santiago,

^c Department of Mathematics, Center for Research and Development in Mathematics and Applications, University of Aveiro, Campus Universitário de Santiag 3810-193 Aveiro, Portugal

ARTICLE INFO

Article history: Received 26 July 2009 Received in revised form 4 August 2010 Accepted 9 August 2010

Keywords: Calculus of variations Euler–Lagrange equation Higher-order delta derivatives Arbitrary time scales

1. Introduction

ABSTRACT

We prove the Euler–Lagrange delta-differential equations for problems of the calculus of variations on arbitrary time scales with delta-integral functionals depending on higher-order delta derivatives.

© 2010 Elsevier Ltd. All rights reserved.

In recent years numerous works have been dedicated to the calculus of variations on time scales and their generalizations – see [1–9] and the references therein. Most of them deal with delta or nabla derivatives of first-order [10–19], only a few with higher-order derivatives [20,21]. Depending on the type of the functional being considered, different time scale Euler-Lagrange type equations are obtained. For variational problems of first-order the Euler-Lagrange equations are valid for an arbitrary time scale \mathbb{T} , while for the problems with higher-order delta (or nabla) derivatives they are only valid in a certain class of time scales, more precisely, the ones for which the forward (or backward) jump operator is a polynomial of degree one [20,21]. Here we consider variational problems involving Hilger derivatives of higher order, and prove a necessary optimality condition of the Euler-Lagrange type on an arbitrary time scale, i.e., without imposing any restriction to the jump operators.

2. Preliminaries

Here we recall some basic results and notation needed in the sequel. For the theory of time scales we refer the reader to [22–25].

A time scale \mathbb{T} is an arbitrary nonempty closed subset of the real numbers \mathbb{R} . The functions $\sigma : \mathbb{T} \to \mathbb{T}$ and $\rho : \mathbb{T} \to \mathbb{T}$ are, respectively, the forward and backward jump operators: $\sigma(t) = \inf\{s \in \mathbb{T} : s > t\}$ with $\inf \emptyset = \sup \mathbb{T}$ (i.e., $\sigma(M) = M$ if \mathbb{T} has a maximum M); $\rho(t) = \sup\{s \in \mathbb{T} : s < t\}$ with $\sup \emptyset = \inf \mathbb{T}$ (i.e., $\rho(m) = m$ if \mathbb{T} has a minimum m). The symbol \emptyset denotes the empty set. The graininess function on \mathbb{T} is defined by $\mu(t) := \sigma(t) - t$. For $\mathbb{T} = \mathbb{R}$ one has $\sigma(t) = t = \rho(t)$ and $\mu(t) \equiv 0$ for any $t \in \mathbb{R}$. For $\mathbb{T} = \mathbb{Z}$ one has $\sigma(t) = t + 1$, $\rho(t) = t - 1$, and $\mu(t) \equiv 1$ for every $t \in \mathbb{Z}$. A point $t \in \mathbb{T}$ is called right-dense, right-scattered, left-dense, or left-scattered, if $\sigma(t) = t$, $\sigma(t) > t$, $\rho(t) = t$, or $\rho(t) < t$, respectively.

^{*} Corresponding author. Tel.: +351 234 370 668; fax: +351 234 370 066.

E-mail addresses: ruiacferreira@ua.pt (R.A.C. Ferreira), abmalinowska@ua.pt (A.B. Malinowska), delfim@ua.pt (D.F.M. Torres).

^{0893-9659/\$ –} see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.08.023

Let $\mathbb{T} = [a, b] \cap \mathbb{T}_0$ with a < b and \mathbb{T}_0 a time scale. We define $\mathbb{T}^{\kappa} := \mathbb{T} \setminus (\rho(b), b]$, and $\mathbb{T}^{\kappa^0} := \mathbb{T}, \mathbb{T}^{\kappa^n} := (\mathbb{T}^{\kappa^{n-1}})^{\kappa}$ for $n \in \mathbb{N}$. The following standard notation is used for σ (and ρ): $\sigma^{0}(t) = t$, $\sigma^{n}(t) = (\sigma \circ \sigma^{n-1})(t)$, $n \in \mathbb{N}$.

We say that a function $f: \mathbb{T} \to \mathbb{R}$ is delta-differentiable at $t \in \mathbb{T}^{\kappa}$ if there is a number $f^{\Delta}(t)$ such that for all $\varepsilon > 0$ there exists a neighborhood U of t such that

$$\left|f(\sigma(t)) - f(s) - f^{\Delta}(t)(\sigma(t) - s)\right| \le \varepsilon |\sigma(t) - s|, \text{ for all } s \in U.$$

We call $f^{\Delta}(t)$ the *delta-derivative* of f at t. We note that if the number $f^{\Delta}(t)$ exists then it is unique in \mathbb{T}^{κ} (see [24,25]). In the special cases $\mathbb{T} = \mathbb{R}$ and $\mathbb{T} = \mathbb{Z}$, f^{Δ} reduces to the standard derivative f'(t) and the forward difference $\Delta f(t) = f(t+1) - f(t)$, respectively. Whenever f^{Δ} exists, the following formula holds: $f^{\sigma}(t) = f(t) + \mu(t)f^{\Delta}(t)$, where we abbreviate $f \circ \sigma$ by f^{σ} . Let $f^{\Delta^0} = f$. We define the *r*th-delta derivative of $f : \mathbb{T}^{\kappa^r} \to \mathbb{R}$, $r \in \mathbb{N}$, to be the function $(f^{\Delta^{r-1}})^{\Delta}$, provided $f^{\Delta^{r-1}}$ is delta differentiable on \mathbb{T}^{κ^r} .

A function $f: \mathbb{T} \to \mathbb{R}$ is called rd-continuous if it is continuous at the right-dense points in \mathbb{T} and its left-sided limits exist at all left-dense points in \mathbb{T} . A function $f:\mathbb{T}\to\mathbb{R}^n$ is rd-continuous if all its components are rd-continuous. The set of all rd-continuous functions is denoted by C_{rd} . Similarly, C_{rd}^r will denote the set of functions with delta derivatives up to order *r* belonging to C_{rd} . A function *f* is a piecewise rd-continuous function, denoted by $f \in C_{prd}^r$, if f^{Δ^i} is continuous for

i = 0, ..., r - 1, and f^{Δ^r} exists and is rd-continuous for all, except possibly at finitely many $t \in \mathbb{T}^{\kappa^r}$. A piecewise rd-continuous function $f : \mathbb{T} \to \mathbb{R}$ possess an antiderivative $F^{\Delta} = f$, and in this case the delta integral is defined by $\int_{c}^{d} f(t) \Delta t = F(d) - F(c)$ for all $c, d \in \mathbb{T}$. It satisfies

$$\int_{t}^{\sigma(t)} f(\tau) \Delta \tau = \mu(t) f(t).$$

If $\mathbb{T} = \mathbb{R}$, then $\int_a^b f(t) \Delta t = \int_a^b f(t) dt$, where the integral on the right-hand side is the usual Riemann integral; if $\mathbb{T} = \mathbb{Z}$ and a < b, then $\int_a^b f(t) \Delta t = \sum_{k=a}^{b-1} f(k)$.

3. Main results

Consider the following higher-order problem of the calculus of variations up to order $r, r \ge 1$:

$$\mathcal{L}(\mathbf{y}(\cdot)) = \int_{a}^{\rho^{r-1}(b)} L(t, \mathbf{y}(t), \mathbf{y}^{\Delta}(t), \dots, \mathbf{y}^{\Delta^{r}}(t)) \Delta t \longrightarrow \min,$$
(1)

subject to boundary conditions

$$y(a) = y_a^0, \qquad y\left(\rho^{r-1}(b)\right) = y_b^0, \dots, y^{\Delta^{r-1}}(a) = y_a^{r-1}, \qquad y^{\Delta^{r-1}}\left(\rho^{r-1}(b)\right) = y_b^{r-1}, \tag{2}$$

where \mathbb{T} is a bounded time scale with $a := \min \mathbb{T}$ and $b := \max \mathbb{T}$, $L : [a, \rho^r(b)]_{\mathbb{T}} \times \mathbb{R}^{r+1} \to \mathbb{R}$ is a given function, where we use the notation $[c, d]_T := [c, d] \cap T$, and $y_a^i, y_b^i \in \mathbb{R}$, i = 0, ..., r - 1. The results of the paper are trivially generalized for functions $y : [a, b]_T \to \mathbb{R}^n$, but for simplicity of presentation we restrict ourselves to the scalar case n = 1. A function $y(\cdot) \in C_{prd}^r$ is said to be admissible if it is satisfies condition (2). An admissible $y(\cdot)$ is a *weak local minimizer*

for (1)–(2) if there exists $\delta > 0$ such that $\mathcal{L}(y(\cdot)) \leq \mathcal{L}(\bar{y}(\cdot))$ for any admissible $\bar{y} \in C_{prd}^r$ with $\|y - \bar{y}\|_{r,\infty} < \delta$, where

$$\|\mathbf{y}\|_{r,\infty} := \sum_{i=0}^r \left\| \mathbf{y}^{\Delta^i} \right\|_{\infty},$$

 $y^{\Delta^0} = y$ and $\|y\|_{\infty} := \sup_{t \in [a, \rho^r(b)]_T} |y(t)|$. For simplicity of notation we introduce the operator $[\cdot]$ defined by $[y](t) = y^{\Delta^0}$ $(t, y(t), y^{\Delta}(t), \dots, y^{\Delta^r}(t))$. Then, functional (1) can be written as

$$\mathcal{L}(\mathbf{y}(\cdot)) = \int_{a}^{\rho^{r-1}(b)} L[\mathbf{y}](t) \Delta t.$$

We assume that $(u_1, \ldots, u_{r+1}) \rightarrow L(t, u_1, \ldots, u_{r+1})$ has continuous partial derivatives $\frac{\partial L}{\partial u_i}$ for all $t \in [a, \rho^r(b)]_{\mathbb{T}}$, i = 1, ..., r + 1, and $t \to L[y](t)$ and $t \to \frac{\partial L}{\partial u_i}[y](t)$, i = 1, ..., r + 1, are piecewise rd-continuous for all admissible functions $y(\cdot)$.

3.1. The higher-order Euler-Lagrange equation

We now prove the Euler-Lagrange equation for problem (1)-(2).

Remark 1. In order for the problem to be nontrivial we require the time scale \mathbb{T} to have at least 2r + 1 points. Indeed, if the time scale has only 2r points, then it can be written as $\mathbb{T} = \{a, \sigma(a), \dots, \sigma^{2r-1}(a)\}$ and

$$\int_{a}^{\rho^{r-1}(b)} L(t, y(t), y^{\Delta}(t), \dots, y^{\Delta^{r}}(t)) \Delta t$$

$$= \int_{a}^{\sigma^{r}(a)} L(t, y(t), y^{\Delta}(t), \dots, y^{\Delta^{r}}(t)) \Delta t = \sum_{i=0}^{r-1} \int_{\sigma^{i}(a)}^{\sigma^{i+1}(a)} L(t, y(t), y^{\Delta}(t), \dots, y^{\Delta^{r}}(t)) \Delta t$$

$$= \sum_{i=0}^{r-1} (\sigma^{i+1}(a) - \sigma^{i}(a)) L(\sigma^{i}(a), y(\sigma^{i}(a)), y^{\Delta}(\sigma^{i}(a)), \dots, y^{\Delta^{r}}(\sigma^{i}(a))).$$
(3)

Having in mind the boundary conditions and the formula $f^{\Delta}(t) = \frac{f(\sigma(t)) - f(t)}{\mu(t)}$, we can conclude that the sum in (3) is constant for every admissible function $y(\cdot)$.

Theorem 1. If $y(\cdot)$ is a weak local minimizer for the problem (1)–(2), then $y(\cdot)$ satisfies the Euler-Lagrange equation

$$\frac{\partial L}{\partial y^{\Delta^{r}}}[y](t) - \int_{a}^{\sigma(t)} \frac{\partial L}{\partial y^{\Delta^{r-1}}}[y](\tau_{r})\Delta\tau_{r}
+ \sum_{i=0}^{r-3} (-1)^{i} \int_{a}^{\sigma(t)} \int_{a}^{\sigma(\tau_{r})} \cdots \int_{a}^{\sigma(\tau_{r-i})} \frac{\partial L}{\partial y^{\Delta^{r-2-i}}}[y](\tau_{r-1-i})\Delta\tau_{r-1-i}\cdots\Delta\tau_{r-1}\Delta\tau_{r}
+ (-1)^{r} \int_{a}^{\sigma(t)} \left\{ \int_{a}^{\sigma(\tau_{r})} \left[\cdots \int_{a}^{\sigma(\tau_{2})} \frac{\partial L}{\partial y}[y](\tau_{1})\Delta\tau_{1} + c_{1}\cdots \right] \Delta\tau_{r-1} - (-1)^{r-1}c_{r-1} \right\} \Delta\tau_{r} - c_{r} = 0$$
(4)

for some constants c_1, \ldots, c_r and all $t \in [a, \rho^r(b)]_{\mathbb{T}}$.

r = 1 (b)

Proof. We first introduce some notation: $y_0(t) = y(t), y_1(t) = y^{\Delta}(t), ..., y_{r-1}(t) = y^{\Delta^{r-1}}(t), u(t) = y^{\Delta^r}(t)$. Then problem (1)-(2) takes the following form:

$$\begin{aligned} \mathcal{L}[y(\cdot)] &= \int_{a}^{\rho^{r-1}(b)} L(t, y_0(t), y_1(t), \dots, y_{r-1}(t), u(t)) \Delta t \longrightarrow \min, \\ \begin{cases} y_i^{\Delta}(t) &= y^{i+1}(t), \quad i = 0, \dots, r-2, \\ y_{r-1}^{\Delta}(t) &= u(t), \end{cases} \\ y^{j}(a) &= y_a^{j}, \qquad y^{j} \left(\rho^{r-1}(b) \right) = y_b^{j}, \quad j = 0, \dots, r-1. \end{aligned}$$

With the notation $x = (y_0, y_1, \dots, y_{r-1})$, our problem (1)–(2) can be written as the optimal control problem

$$\mathcal{L}[x(\cdot)] = \int_{a}^{\rho^{r-1}(b)} L(t, x(t), u(t)) \Delta t \longrightarrow \min,$$

$$x^{\Delta}(t) = Ax(t) + Bu(t),$$

$$\varphi(x(a), x(\rho^{r-1}(b))) = \begin{bmatrix} x(a) - x_{a} \\ x(\rho^{r-1}(b)) - x_{b} \end{bmatrix} = 0,$$
(5)

where

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}.$$

Note that assumption A1 of [26, Theorem 9.4] holds: matrix $I + \mu(t)A$ is invertible, and the matrix $\nabla \varphi(x(a), x(\rho^{r-1}(b)))$ has full rank. Therefore, if $(x(\cdot), u(\cdot))$ is a weak local minimum for (5), then there exists a constant λ and a function $p : [a, \rho^{r-1}(b)]_{\mathbb{T}} \to \mathbb{R}^r$, $p \in C^1_{prd}$, such that $(\lambda, p(\cdot)) \neq 0$ and the following conditions hold:

$$-p^{\Delta}(t) = A^{T} p^{\sigma}(t) + \lambda \left[\frac{\partial L}{\partial x}(t, x(t), u(t)) \right]^{T},$$

$$B^{T} p^{\sigma}(t) + \lambda \frac{\partial L}{\partial u}(t, x(t), u(t)) = 0$$
(6)

for all $t \in [a, \rho^r(b)]_{\mathbb{T}}$. Consequently, if $y(\cdot)$ is a weak local minimizer for (1)–(2), then

$$p_{r-1}^{\sigma}(t) = -\lambda \frac{\partial L}{\partial u}[y](t)$$
⁽⁷⁾

holds for all $t \in [a, \rho^r(b)]_T$, where $p_{r-1}^{\sigma}(t)$ is defined recursively by

$$p_0^{\sigma}(t) = -\int_a^{\sigma(t)} \lambda \frac{\partial L}{\partial y_0}[y](\tau_1) \Delta \tau_1 - c_1,$$
(8)

$$p_{i}^{\sigma}(t) = -\int_{a}^{\sigma(t)} \left[\lambda \frac{\partial L}{\partial y_{i}}[y](\tau_{i+1}) + p_{i-1}^{\sigma}(\tau_{i+1}) \right] \Delta \tau_{i+1} - c_{i-1}, \quad i = 1, \dots, r-1,$$
(9)

with c_i , i = 0, ..., r - 1, constants. From (7)–(9) we obtain that equation

$$\lambda \frac{\partial L}{\partial u}[y](t) - \int_{a}^{\sigma(t)} \lambda \frac{\partial L}{\partial y_{r-1}}[y](\tau_{r}) \Delta \tau_{r}$$

$$+ \sum_{i=0}^{r-3} (-1)^{i} \int_{a}^{\sigma(t)} \int_{a}^{\sigma(\tau_{r})} \cdots \int_{a}^{\sigma(\tau_{r-i})} \lambda \frac{\partial L}{\partial y_{r-2-i}}[y](\tau_{r-1-i}) \Delta \tau_{r-1-i} \cdots \Delta \tau_{r-1} \Delta \tau_{r}$$

$$+ (-1)^{r} \int_{a}^{\sigma(t)} \left\{ \int_{a}^{\sigma(\tau_{r})} \left[\cdots \int_{a}^{\sigma(\tau_{2})} \lambda \frac{\partial L}{\partial y_{0}}[y](\tau_{1}) \Delta \tau_{1} + c_{1} \cdots \right] \Delta \tau_{r-1} - (-1)^{r-1} c_{r-1} \right\} \Delta \tau_{r} - c_{r} = 0$$
(10)

holds for all $t \in [a, \rho^r(b)]_T$. We show next that $\lambda \neq 0$. First observe that if $f \in C_{prd}^1$ and $f^{\sigma}(t) = 0$ for all $t \in [a, b]_T^{\kappa}$, then f(t) = 0 for all $t \in [\sigma(a), b]_T$. Suppose, contrary to our claim, that $\lambda = 0$ in Eqs. (6) and (7). Then, we can write the system of equations

$$\begin{cases} p_0^{\Delta}(t) = 0, \\ p_i^{\Delta}(t) = -p_{i-1}^{\sigma}(t), \quad i = 1, \dots, r-1, \\ p_{r-1}^{\sigma}(t) = 0, \end{cases}$$
(11)

for all $t \in [a, \rho^r(b)]_{\mathbb{T}}$. From the last equation we have $p_{r-1}(t) = 0$, $\forall t \in [\sigma(a), \rho^{r-1}(b)]_{\mathbb{T}}$. This implies that $p_{r-1}^{\Delta}(t) = 0$, $\forall t \in [\sigma(a), \rho^r(b)]_{\mathbb{T}}$, and consequently $p_{r-2}^{\sigma}(t) = 0$, $\forall t \in [\sigma(a), \rho^r(b)]_{\mathbb{T}}$. Therefore, $p_{r-2}(t) = 0$, $\forall t \in [\sigma^2(a), \rho^{r-1}(b)]_{\mathbb{T}}$. Repeating this procedure we have $p_1(t) = 0$ for all $t \in [\sigma^{r-1}(a), \rho^{r-1}(b)]_{\mathbb{T}}$. Hence, $0 = p_1^{\Delta}(t) = -p_0^{\sigma}(t) = -p_0^{\Delta}(t)\mu(t) - p_0(t) = -p_0(t)$ for all $t \in [\sigma^{r-1}(a), \rho^r(b)]_{\mathbb{T}}$. Note that the first equation of (11) implies $p_0(t) = c$ for some constant c and all $t \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$. Since the time scale has at least 2r + 1 points (see Remark 1), the set $t \in [\sigma^{r-1}(a), \rho^{r-1}(b)]_{\mathbb{T}}$ is nonempty and we conclude that $p_0(t) = 0$ for all $t \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$. Substituting this into the second equation we get $p_1^{\Delta}(t) = d$ for some constant d and all $t \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$. Having in mind that $p_1(t_0) = 0$ for some $t_0 \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$ we obtain $p_1(t) = 0$ for all $t \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$. Repeating this procedure we conclude that $p_i(t) = 0$, $i = 1, \ldots, r - 1$, for all $t \in [a, \rho^{r-1}(b)]_{\mathbb{T}}$. This contradicts the fact that $(\lambda, p(\cdot)) \neq 0$. Hence, Eq. (10) can be divided by λ and (4) is proved.

3.2. Corollaries

For illustrating purposes we consider now the two simplest situations, i.e., r = 1 and r = 2.

Corollary 1 (Cf. [14,17]). If $y(\cdot)$ is a weak local minimizer for the problem

$$\mathcal{L}(\mathbf{y}(\cdot)) = \int_{a}^{b} L(t, \mathbf{y}(t), \mathbf{y}^{\Delta}(t)) \Delta t \longrightarrow \min$$

subject to boundary conditions $y(a) = y_a$ and $y(b) = y_b$, then $y(\cdot)$ satisfies the Euler-Lagrange equation

$$\frac{\partial L}{\partial y^{\Delta}}\left(t, y(t), y^{\Delta}(t)\right) = \int_{a}^{\sigma(t)} \frac{\partial L}{\partial y}\left(\tau, y(\tau), y^{\Delta}(\tau)\right) \Delta \tau + c_{1}$$

for some constant c_1 and all $t \in [a, b]_{\mathbb{T}}^{\kappa}$.

Corollary 2 (Cf. [20,21]). If $y(\cdot)$ is a weak local minimizer for the problem

$$\mathcal{L}(\mathbf{y}(\cdot)) = \int_{a}^{\rho(b)} L(t, \mathbf{y}(t), \mathbf{y}^{\Delta}(t), \mathbf{y}^{\Delta\Delta}(t)) \Delta t \longrightarrow \min$$

subject to boundary conditions $y(a) = y_a^0$, $y(\rho(b)) = y_b$, $y^{\Delta}(a) = y_a^1$, and $y^{\Delta}(\rho(b)) = y_b^1$, then $y(\cdot)$ satisfies the Euler-Lagrange equation

$$\begin{aligned} \frac{\partial L}{\partial y^{\Delta \Delta}} \left(t, y(t), y^{\Delta}(t), y^{\Delta \Delta}(t) \right) &- \int_{a}^{\sigma(t)} \frac{\partial L}{\partial y^{\Delta}} \left(\tau_{2}, y(\tau_{2}), y^{\Delta}(\tau_{2}), y^{\Delta \Delta}(\tau_{2}) \right) \Delta \tau_{2} \\ &+ \int_{a}^{\sigma(t)} \left[\int_{a}^{\sigma(\tau_{2})} \frac{\partial L}{\partial y} \left(\tau_{1}, y(\tau_{1}), y^{\Delta}(\tau_{1}), y^{\Delta \Delta}(\tau_{1}) \right) \Delta \tau_{1} + c_{1} \right] \Delta \tau_{2} - c_{2} = 0 \end{aligned}$$

for some constants c_1 and c_2 and all $t \in [a, \rho(b)]_{\mathbb{T}}^{\kappa}$.

3.3. An example

Let $\mathbb{T} = [a, b] \cap h\mathbb{Z}$, where $h\mathbb{Z} := \{hz | z \in \mathbb{Z}\}, h > 0$. Then for any $f \in C^r_{prd}$ we have

$$\underbrace{\left[\int_{a}^{\sigma(t)} \left(\int_{a}^{\sigma} \cdots \int_{a}^{\sigma} f\right) \Delta \tau\right]^{\Delta j}}_{j-i \text{ integrals}} = f^{\Delta^{i} \sigma^{j-i}}(t), \quad i \in \{0, \dots, j-1\},$$
(12)

where $f^{\Delta^i \sigma^{j-i}}(t)$ stands for $f^{\Delta^i}(\sigma^{j-i}(t))$. We will show this by induction. For j = 1

$$\int_{a}^{\sigma(t)} f(\xi) \Delta \xi = \int_{a}^{t} f(\xi) \Delta \xi + \int_{t}^{t+h} f(\xi) \Delta \xi = \int_{a}^{t} f(\xi) \Delta \xi + h f(t),$$

and then $\left[\int_{a}^{\sigma(t)} f(\xi) \Delta \xi\right]^{\Delta} = f(t) + hf^{\Delta}(t) = f^{\sigma}(t)$. Now assume that (12) is true for all j = 1, ..., k. Then for j = k + 1

$$\underbrace{\left[\int_{a}^{\sigma(t)}\left(\int_{a}^{\sigma}\cdots\int_{a}^{\sigma}f\right)\Delta\tau\right]^{\Delta^{k+1}}}_{k+1-i\,\text{integrals}} = \left(\underbrace{\int_{a}^{t}\int_{a}^{\sigma}\cdots\int_{a}^{\sigma}f\Delta\tau}_{k+1-i}f\Delta\tau + h\underbrace{\int_{a}^{\sigma(t)}\cdots\int_{a}^{\sigma}f\Delta\tau}_{k-i}f\Delta\tau\right)^{\Delta^{k+1}}_{k-i} = \left(\underbrace{\int_{a}^{\sigma(t)}\cdots\int_{a}^{\sigma}f\Delta\tau}_{k-i}f\Delta\tau\right)^{\Delta^{k}}_{k-i} + \left[h\left(\underbrace{\int_{a}^{\sigma(t)}\cdots\int_{a}^{\sigma}f\Delta\tau}_{k-i}f\Delta\tau\right)^{\Delta^{k}}_{k-i}\right]^{\Delta}_{k-i} = f^{\Delta^{i}\sigma^{k-i}}(t) + \left(hf^{\Delta^{i}\sigma^{k-i}}(t)\right)^{\Delta} = f^{\Delta^{i}\sigma^{k+1-i}}(t).$$

Delta differentiating r times both sides of Eq. (4) and in view of (12), we obtain the h-Euler-Lagrange equation in delta differentiated form:

$$L_{y^{\Delta^{r}}}^{\Delta^{r}}(t, y, y^{\Delta}, \dots, y^{\Delta^{r}}) + \sum_{i=0}^{r-1} (-1)^{r-i} L_{y^{\Delta^{i}}}^{\Delta^{i}\sigma^{r-i}}(t, y, y^{\Delta}, \dots, y^{\Delta^{r}}) = 0.$$

Acknowledgements

This work was partially supported by the *Portuguese Foundation for Science and Technology* (FCT) through the *Center for Research and Development in Mathematics and Applications* (CIDMA) of University of Aveiro. The first author was also supported by FCT through the PhD fellowship SFRH/BD/39816/2007; the second author is currently a researcher at the University of Aveiro with the support of Białystok University of Technology, via a project of the Polish Ministry of Science and Higher Education "Wsparcie miedzynarodowej mobilnosci naukowcow"; the third author was partially supported by the Portugal-Austin (USA) project UTAustin/MAT/0057/2008.

References

- M. Bohner, R.A.C. Ferreira, D.F.M. Torres, Integral inequalities and their applications to the calculus of variations on time scales, Math. Inequal. Appl. 13 (3) (2010) 511–522.
- [2] E. Girejko, A.B. Malinowska, D.F.M. Torres, The contingent epiderivative and the calculus of variations on time scales, Optimization (2010), in press (doi:10.1080/02331934.2010.506615).
- [3] E. Girejko, A.B. Malinowska, D.F.M. Torres, Delta-nabla optimal control problems, J. Vib. Control (2010) (in press).

- [4] A.B. Malinowska, N. Martins, D.F.M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett. (2010), in press (doi:10.1007/s11590-010-0189-7).
- [5] A.B. Malinowska, D.F.M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci. (2010) (in press) doi:10.1002/mma.1289.
- [6] A.B. Malinowska, D.F.M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales, Appl. Math. Comput. (2010), in press (doi:10.1016/j.amc.2010.01.015).
- [7] A.B. Malinowska, D.F.M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl. 147 3 (2010), in press (doi:10.1007/s10957-010-9730-1).
- [8] A.B. Malinowska, D.F.M. Torres, Ageneral backwards calculus of variations via duality, Optim. Lett. (2010), in press (doi:10.1007/s11590-010-0222-x).
 [9] N. Martins, D.F.M. Torres, Noether's symmetry theorem for nabla problems of the calculus of variations, Appl. Math. Lett. (2010), in press (doi:10.1016/j.aml.2010.07.013).
- [10] R. Almeida, D.F.M. Torres, Isoperimetric problems on time scales with nabla derivatives, J. Vib. Control 15 (6) (2009) 951–958.
- [11] F.M. Atici, D.C. Biles, A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling 43 (7–8) (2006) 718–726.
- [12] F.M. Atici, C.S. McMahan, A comparison in the theory of calculus of variations on time scales with an application to the Ramsey model, Nonlinear Dyn. Syst. Theory 9 (1) (2009) 1–10.
- [13] Z. Bartosiewicz, D.F.M. Torres, Noether's theorem on time scales, J. Math. Anal. Appl. 342 (2) (2008) 1220-1226.
- [14] M. Bohner, Calculus of variations on time scales, Dynam. Systems Appl. 13 (3-4) (2004) 339-349.
- [15] R.A.C. Ferreira, D.F.M. Torres, Remarks on the calculus of variations on time scales, Int. J. Ecol. Econ. Stat. 9 (F07) (2007) 65–73.
- [16] R.A.C. Ferreira, D.F.M. Torres, Isoperimetric problems of the calculus of variations on time scales, in: Nonlinear Analysis and Optimization II, in: Contemporary Mathematics, vol. 514, Amer. Math. Soc., Providence, RI, 2010, pp. 123–131.
- [17] R. Hilscher, V. Zeidan, Calculus of variations on time scales: weak local piecewise C¹_{rd} solutions with variable endpoints, J. Math. Anal. Appl. 289 (1) (2004) 143–166.
- [18] A.B. Malinowska, D.F.M. Torres, Necessary and sufficient conditions for local Pareto optimality on time scales, J. Math. Sci. (N.Y.) 161 (6) (2009) 803–810.
- [19] A.B. Malinowska, D.F.M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition, Proc. Est. Acad. Sci. 58 (4) (2009) 205–212.
- [20] R.A.C. Ferreira, D.F.M. Torres, Higher-order calculus of variations on time scales, in: Mathematical Control Theory and Finance, Springer, Berlin, 2008, pp. 149–159.
- [21] N. Martins, D.F.M. Torres, Calculus of variations on time scales with nabla derivatives, Nonlinear Anal. 71 (12) (2009) e763-e773.
- [22] R. Agarwal, M. Bohner, D. O'Regan, A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (1–2) (2002) 1–26.
- [23] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, MA, 2001.
- [24] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results Math. 18 (1-2) (1990) 18-56.
- [25] S. Hilger, Differential and difference calculus—unified!, Nonlinear Anal. 30 (5) (1997) 2683-2694.
- [26] R. Hilscher, V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales, Nonlinear Anal. 70 (9) (2009) 3209–3226.