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Abstract

Following a question of Anstee and Farber we investigate the possibility that all bridged
graphs are cop-win. We show that in7nite chordal graphs, even of diameter two, need not be
cop-win and point to some interesting questions, some of which we answer.
c© 2002 Elsevier Science B.V. All rights reserved.

1. Prologue

In 1986, Martin Farber asked the 7rst author whether the result that 7nite bridged
graphs are cop-win extended to in7nite bridged graphs of 7nite diameter. It took a
few years to get a counterexample, the di=culty being the 3nite diameter. From the
example, we then extracted some information about the structure of bridged graphs and
produced a general construction of a class of counterexamples. Along the way, other
interesting questions were raised, some of which have only recently been answered
in [4].
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2. Introduction and preliminaries

Notation and terminology not explicitly given can be found in [3,5]. Our graphs are
simple, 7nite or in7nite, and our subgraphs are not necessarily induced. Recall that
the neighbourhood of a vertex u in a graph G is set N (u) of vertices adjacent to u,
and the closed neighbourhood of a vertex u is N [u] =N (u)∪{u}. The following game
can be played on a given graph G. There are two players, the cop and the robber.
They move alternately, the cop beginning. On the 7rst move each player chooses a
starting vertex, on each subsequent move the players move to some vertex in the closed
neighbourhood of their current position. The object of the game is for the cop to occupy
the same vertex as the robber and for the robber to prevent this from happening. Since
on any given graph one of the players must have a winning strategy, it is interesting
to characterize those graphs on which (say) the cop can always win. Such graphs
are called cop-win by Nowakowski and Winkler who characterize them in [12]. A
characterization of 7nite cop-win graphs was also obtained by Quilliot in [14].

Theorem 1 (Nowakowski and Winkler [12] and Quilliot [14]). A 3nite graph is cop-
win if and only if there is a linear ordering v0; : : : ; vn of its vertices so that for each
i¡n there is a i¡j6n such that N [vi]∩{vi; : : : ; vn}⊆N [vj]∩{vi; : : : ; vn}.

The above theorem implies that, for example, 7nite trees are cop-win. It is more
interesting to notice that 7nite connected chordal graphs are also cop-win, as are 7nite
connected bridged graphs.

De�nition 2. Let G be a graph and let C be a cycle of length at least four in G.

(1) A bridge of C is a shortest path in G between two vertices in C whose distance
in G is strictly smaller than their distance on C. If a bridge is an edge, it is called
a chord.

(2) The graph G is chordal if each cycle of length at least four has a chord.
(3) The graph G is bridged if each cycle of length at least four has a bridge.
(4) A vertex of G is simplicial if its neighbourhood induces a complete graph.
(5) A vertex u of G is isometric if the distances between the vertices of G\{u} are

the same as those between corresponding vertices in G.

In the above de7nition, and throughout the paper, all cycles are simple, that is,
without repetition of vertices. The key to the claim that 7nite chordal graphs are cop-
win is the following (see [6,10]).

Theorem 3. Every 3nite chordal graph contains a simplicial vertex whose neighbour-
hood induces a complete graph. Further, the deletion of such a vertex leaves a chordal
graph.

It is not di=cult to see that by successively deleting simplicial vertices from a 7nite
chordal graph and by numbering them v0; v1; : : : ; vn as they are deleted we satisfy the
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conditions of Theorem 1. A similar result holds for 7nite bridged graphs [1], introduced
by Farber and Jamison in their studies of geodesic convexity, see [7–9].

Theorem 4 (Anstee and Farber [1]). Every 3nite bridged graph contains an isometric
vertex whose neighbourhood is contained in the neighbourhood of some other vertex.
Further, the deletion of an isometric vertex leaves a bridged graph.

In fact, more is true.

Theorem 5 (Anstee and Farber [1]). A 3nite connected graph is bridged if and only
if it is cop-win and contains no induced cycles of length four or 3ve.

It is often reasonable to ask if a property of 7nite elements of a class of graphs is
also true of the in7nite ones. In this case the property of being cop-win is clearly not
shared by all in7nite chordal (hence bridged) graphs: it su=ces to consider any in7nite
tree containing a ray (an in7nite path). But one could hope that in7nite bridged graphs
of 3nite diameter are cop-win. This is what Farber and Anstee [2] asked.

One would think that some sort of compactness would help. This does not seem to
work directly. Breaking the problem down to three reasonable subquestions, however,
could provide an answer.

(1) Is there is a function f :N→N such that on any 7nite bridged graph of diameter
k the cop needs at most f(k) moves to win?

(2) Does every 7nite subset of vertices of an in7nite bridged graph G of diameter k
lie in a 7nite induced bridged subgraph of G of diameter at most k?

(3) Assuming the existence of f(k) for 7nite graphs, does the cop need at most f(k)
moves to win on an in7nite graph of diameter k?

Since, as we shall prove, the answer to the 7rst question is no, the third one disappears.
The second question had been open until recently (see [4]). It is now known that the
answer is yes under some (reasonable) conditions. In the last section we consider a
natural generalization of this problem which is, at this writing, open.

We devote the next section to showing that there is no bound on the length of a
game in terms of the diameter of the graph. In the section after that we show that
there are in7nite chordal graphs of diameter two which are not cop win. In Section 5
we prove that the second statement holds if the diameter k = 2. We will conclude with
open problems.

3. Finite chordal graphs for long games

In this section we give a recursive construction of a sequence {Gi}i¡! of 7nite
chordal graphs of diameter two such that on Gi the cop needs at least i moves to win.
Throughout this section we assume G to be a 3nite chordal graph; unless otherwise
indicated, all vertices, edges, and sets of vertices are in G.
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We begin by de7ning a rank function � on V (G). Let R0 be the set of simplicial
vertices of G and put �(u) = 0 for each u in R0. For i¿0 let Ri be the set of vertices
simplicial in G−{u: �(u)¡i}, the graph obtained from G by deleting all the vertices of
rank less than i. Let �(u) = i for each u∈Ri. For S ⊂V (G) let �(S) = min{�(u): u∈S}
and R(S) = max{�(u): u∈S}. When S =V (G) we will write just �(G) and R(G).
When necessary, we will write �G(u) in order to stress that the rank is computed in
the graph G.

Lemma 6. For every u with �(u)¿0 there is a v such that �(u)¿�(v) and uv is an
edge.

Proof. Clearly u is not simplicial in G. Hence there are two vertices x; y adjacent
to u but not to one another. If the rank of both x and y were at least that of u, the
latter would not be simplicial in G − {z: �(z)¡�(u)}. Thus at least one of x; y can
serve as v.

Corollary 7. For each vertex u there is a vertex v and a (possibly trivial) path
u= x0; x1; : : : ; xn = v with �(v) = 0 and �(xi)¿�(xi+1).

Call a set S of vertices closed (in G) if, whenever, u∈S and v∈N (u) with �(v)¿�(u)
then v∈S. The closure of a set S of vertices of G, denoted by [S]G, is the smallest
closed set containing S. When S = {u} we write simply [u]G for [{u}]G. Of course,
we omit the subscript G if no confusion is likely.

Lemma 8. Let u= x0; x1; : : : ; xn = v be a shortest path from u to v. Then there is
a k; 06k6n, such that �(xi)6�(xi+1) for 06i¡k and �(xi)¿�(xi+1) for k6i¡n.
Furthermore, there is at most one i such that �(xi) = �(xi+1) and in such a case i= k
or i= k + 1.

Proof. We induct on n. The statements are clearly true for n= 0 and n= 1. Assume
n¿2 and consider the path x1; : : : ; xn. Let � be such that �(x�) =R({xi: 16i6n}).
If �(x0)¡�(x1) we are done by induction. Suppose �(x0)¿�(x1). Since, for 26i6n,
x0 and xi are not adjacent, �(x1)¿�(xi) (x1 cannot be simplicial while both x0 and
xi are in the graph). Hence �= 1 and we can put k = 0. The uniqueness and
value of an i such that �(xi) = �(xi+1), if it exists, follows from the induction
hypothesis.

Corollary 9. If v =∈ [u] and �(v)¿�(u) then every path from v to u contains a vertex
other than v of rank greater than �(v).

Proof. Consider any path from u to v, say u= x0; x1; : : : ; xn = v. The rank of the xi’s
cannot be increasing with i (lest v be in [u]). Hence there is a k; 06k¡n, as in the
lemma. But then �(xk)¿�(v).

Corollary 10. If G is connected then [u]∩ [v] �= ∅ for all u; v.



G. Hahn et al. / Discrete Mathematics 258 (2002) 27–41 31

De�nition 11. Let G1 and G2 be disjoint 7nite chordal graphs and let R be a set disjoint
from both V (G1) and V (G2). A composite of G1 and G2 with base R is a graph L
such that, for i= 1; 2,

(1) V (L) =V (G1)∪V (G2)∪R;
(2) the graph induced by V (Gi) is Gi;
(3) the graph induced by R is complete;
(4) for each u∈R, the neighbourhood Ni(u) =N (u)∩V (Gi) is a set closed in Gi;
(5) for each pair of vertices ui∈V (Gi) simplicial in Gi there is a z∈R adjacent to

both u1; u2.

The composite L is strict if for each z∈R there are simplicial vertices ui∈V (Gi);
i= 1; 2 such that z is adjacent precisely to [ui]Gi in Gi.

It follows easily that if L is the composite of (disjoint 7nite chordal graphs) G1 and
G2 with base R, z∈R and ui; vi∈V (Gi) for i= 1; 2 such that zvi∈E(L) and ui∈[vi] in
Gi, then zui∈E(L).

Lemma 12. If both G1 and G2 have diameter two then so does each of their
composites.

Proof. Let L be a composite of the Gi’s with a base R and let ui∈V (Gi); i= 1; 2.
By Lemma 8, there are vertices vi in Gi of rank zero and shortest paths from ui to vi
whose vertices have strictly decreasing ranks. Further, there is a vertex z∈R adjacent
to both v1; v2. Hence, by the de7nition of a closed set and part 4 of the de7nition of
a composite, z is adjacent to both u1 and u2.

If ui∈V (Gi) and v∈R, note that since ui is in the closure of some simplicial vertex
of Gi (by 8), there is a vertex z∈R adjacent to ui. Since the graph induced by R is
complete, the distance between v and ui is at most two.

Lemma 13. If both G1 and G2 are chordal then so is any of their composites.

Proof. Let L be a composite of the Gi’s with a base R. Any cycle containing only
vertices of one of G1, G2 or R has a chord, by hypothesis and construction. Each cycle
C containing vertices from both G1 and G2 must contain at least two vertices in R
that are not consecutive on C, and hence have a chord since the graph induced by R
is complete. It remains to check the cycles with vertices from exactly R and, without
loss of generality, G1. Let C be such a cycle. If three or more vertices of C are in
R, C has a chord. Suppose, therefore, that C has at most two vertices in R and let
P = a1; : : : ; an−1 be the path induced in G1 by V (C)∩V (G1). Let a0; an be the vertices
of C in R (it is possible that a0 = an) and suppose the edge a0a1 is on C. Let ai be
the vertex of minimum rank on P. If ai is not an endpoint of P (i.e., if i �= 1; n − 1)
then, by de7nition of rank, ai−1 is adjacent to ai+1. If ai is an endpoint of P, then the
vertex in {a0; an} adjacent to it is also adjacent to its neighbour on P, this time by
de7nition of closed set.
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Lemma 14. Let L be a composite of two 3nite chordal graphs G1 and G2. Then
�L(u) = �Gi(u) for each u∈V (Gi); i= 1; 2.

Proof. We 7rst prove that a simplicial vertex of G1 remains simplicial in L. Let u be a
simplicial vertex of G1. Since the base of L induces a complete graph, we only need to
check that two neighbours x∈V (G) and y∈R are adjacent. But this follows from the
construction of a composite: x∈[u]G and so is adjacent to y. If we now write G\R0

for the graph obtained form G1 by deleting all the simplicial vertices and, similarly,
L\R0 for the graph obtained from L by deleting the simplicial vertices of G1, we note
that, with the same base R, the composite of G\R0 and G2 is just L\R0. This implies
an easy inductive proof of the claim.

Lemma 15. Let L be a composite of G1 and G2 and let R(Gi) = k; i= 1; 2. Then
R(L) = k + 1.

Proof. Let ui∈V (Gi); i= 1; 2 be vertices of rank k in the respective Gi. By Corol-
lary 7, there are simplicial (in both the respective Gi and in L) vertices vi such that
ui∈[vi]Gi . Let z be a vertex in the base of L adjacent to both v1; v2. Then z is also ad-
jacent to the ui, which, however, are not adjacent to one another. Hence, by Lemma 13,
�L(ui) = k and �L(z)¿k + 1. It is trivial that �L(z)6k + 1.

Lemma 16. Let L be the strict composite of 3nite chordal graphs G1 and G2 such that
R(G1) =R(G2) = k and such that R([u]) = k for each simplicial vertex u∈Gi; i= 1; 2.
Then every vertex z in the base of L has rank k + 1.

Proof. Analogous to that of Lemma 14.

Lemma 17. Let x= x0x1 : : : xn =y be a path such that �(x)¿�(y). Then there is
an i; 06i¡n such that xi is adjacent to y and �(xi)¿�(y).

Proof. We induct on n. For n=1 the claim is trivial. Suppose n¿1. If �(xn−1)¿�(y)
there is nothing more to prove. Assume, therefore, that �(xn−1)6�(y). Applying
the induction hypothesis to the shorter path x0 : : : xn−1 we obtain a j¡n − 1 with xj
adjacent to xn−1 and �(xj)¿�(xn−1). Since �(xn−1)6�(xj); �(xn), xj and xn =y are
adjacent. Another application of the hypothesis, this time to the path x0 : : : xj xn yields
the desired i.

We will say that a chordal graph G is uniformly deep if R([u]) =R(G) for each
vertex u. We say that G is splitting if for every simplicial vertex u and every v∈[u]
with 0¡�(v) there exists a simplicial vertex z such that v∈[z] and �([u]∩ [z]) = �(v).
The graph G has the escape property if for each pair of adjacent vertices u; v with
0¡�(u)¡�(v) there is an (escape) vertex z adjacent to u but not to v and such
that �(z) = �(u) − 1. We call G rank connected if for all u; v with v∈[u] there
is a path u= x0x1 : : : xn = v such that �(xi) = �(u) + i; such a path is said to be
ranked.
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Lemma 18. Every 3nite connected chordal graph is uniformly deep.

Proof. Let G be a 7nite connected chordal graph with R(G) = k and let u be a vertex
of G. Let v∈V (G) have �(v) = k. Let u= x0 : : : xn = v be a shortest path from u to v.
By Lemma 8, the vertices of this path are monotonically increasing in rank. Hence
v∈[u].

Lemma 19. A strict composite L of 3nite chordal connected graphs G1 and G2 with
R(Gi) = k; i= 1; 2, which are rank connected, splitting and have the escape property
is itself rank connected, splitting, and has the escape property.

Proof. (1) Rank connected. Let u; v be vertices of L such that v∈[u]L and such that
�(v)−�(u)¿0. Without loss of generality suppose that v is in the base of L and
u∈V (G1). Let w be a simplicial vertex of G1 adjacent to v and let z∈[w]G1 ∩ [u]G1 ;
this can be done by Corollary 10. Since G1 is uniformly deep, there is an x∈[z]G1

with �(x) = k. As x∈[w]G1 , v is adjacent to x. By putting together the ranked paths
from u to z, from z to x and from x to v we obtain a ranked path from u
to v.

(2) Splitting. Let u be a simplicial vertex of L and let v∈[u]L. If v is in Gi for
i= 1 or 2, there is nothing more to prove. So assume, without loss of generality, that
u∈V (G1) and v is in the base of L. Let z∈V (G2) be a simplicial vertex adjacent to v.
Observing that [u]L ∩ [z]L is contained in the base completes the proof.

(3) Escape property. Let u; v be adjacent vertices of L with 0¡�(u)¡�(v). The only
non-trivial case to consider is that of v in the base and, without loss of generality,
u∈V (G1). Let w be a simplicial vertex of G1 - and, hence, of L - adjacent to v.
By the de7nition of L (part 4), u∈[w]G1 . Since G1 is splitting, there is a simplicial
vertex z∈V (G1) with u∈[z]G1 and �([w]G1 ∩ [z]G1) = �(u). Let z = x0 : : : xl = u be a
ranked path with l= �(u). Now xl−1 =∈ [w]G1 and so xl−1 is not adjacent to v. Also,
�(xl−1) = l− 1 as desired.

Lemma 20. Let G be a 3nite chordal graph which is rank connected, splitting and
has the escape property. If, on the robber’s move, the robber occupies a vertex u of
rank l and the cop a vertex v of rank greater than l, then the robber can make at
least l + 1 more moves.

Proof. By induction on l. If l= 0, the robber may simply remain at u, thanks to
Lemma 8. Suppose l¿0. By Lemma 17, the robber may remain at u on each of his
moves until the cop arrives at a vertex w adjacent to u and with �(w)¿l. The escape
property now ensures the robber of a move to a vertex z not adjacent to w, with
�(z) = l−1. The robber is thus assured of at least l moves by the induction hypothesis
plus the (at least) one just made to get to z.

Lemma 21. If a connected chordal graph G is rank connected, splitting, has the
escape property and R(G) = k¿2 then the robber has a strategy that guarantees his
making at least k moves.



34 G. Hahn et al. / Discrete Mathematics 258 (2002) 27–41

Proof. If k = 0 or 1, the robber can make at least the 7rst move in any case. Assume,
therefore, k¿2. We shall consider two cases.

(1) The cop’s 7rst move is to a vertex u of rank k. By Lemma 6 and because G is
rank connected, there is a vertex z of rank k − 1 adjacent to u. By the escape
property, the robber’s 7rst move can be made to a vertex w not adjacent to u
and with �(w) = k − 2. As in the proof of Lemma 20, the robber can now wait
until the cop moves to an adjacent vertex of rank at least k − 1 guaranteed by
Lemma 17. Then we apply Lemma 20.

(2) The cop’s 7rst move is to a vertex u of rank �(u)¡k. Since G is uniformly deep,
there is a vertex z∈[u] with �(z) = k. Let v be a simplicial vertex such that u∈[v].
Since G is splitting, there is a simplicial vertex w such that �([v]∩ [w]) = k. From
a ranked path from w to z we obtain a vertex x such that �(x) = k−1 and x =∈ [v].
The robber’s 7rst move is to x. Again by Lemmas 17 and 8, the robber may wait
at x until the cop moves to an adjacent vertex y with �(y) = k. Then Lemma 20
applies.

Theorem 22. For every k¿1 there is a 3nite diameter two chordal graph Gk on which
the robber can survive for at least k moves.

Proof. Let G1 be a 7nite diameter two chordal graph of rank one which is rank
connected, splitting and has the escape property. In particular, take G1 to be Kn − e
(the complete graph on n vertices less an edge) for n= 3 or 4. Having de7ned Gk ,
let Gk+1 be a strict composite of two disjoint copies of Gk . Then Gk+1 has all the
properties listed and R(Gk+1) = k + 1. The result now follows by Lemma 21.

4. In�nite chordal graphs that are not cop-win

The characterization of [12] of cop-win graphs that applies also to in7nite graphs
goes as follows. Given a graph G, de7ne relations 6! on its vertex set inductively for
all ordinals ! as follows.

• u60u for all u∈G.
• u6!v for !¿0 if for every z∈N [u] there is a w∈N [v] and "¡! such that z6"w.

Observe that 6! ⊆6" for !¡". As there are no more than |V (G)| diPerent such
relations for in7nite graphs and only a 7nite number for 7nite ones, there is a least !
such that 6! ≡6!+1. Let6be this 6!.

Theorem 23 (Nowakowski and Winkler [12]). A graph G is cop-win if and only if
the relation 6 is trivial, that is, if and only if u6v for all u; v∈G.

The preceeding theorem allows for optimal strategies for the players. Depending on
whether the graph in question is or is not cop-win, the robber can prolong the game
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as much as possible and the cop can 7nd a fastest way to catch the robber. See the
proof of the theorem in [12].

Applying Theorem 23 to decide whether an in7nite graph is cop-win does not seem
to be easy, even in the case of chordal graphs. Therefore, we need to prove our results
directly.

4.1. Existence

We begin by proving the existence of chordal graphs of diameter two that are not
cop-win by compactness, using the graphs of Section 3.

Theorem 24. Suppose that for every k there is a 3nite chordal graph of diameter two
on which the cop needs at least k moves to win. Then there is an in3nite chordal
graph of diameter two on which the cop cannot win.

Proof. For each n¡! 7x Gn, a 7nite chordal graph of diameter two on which the cop
needs at least n+1 moves to win. We show, using logical compactness, that there exists
an in7nite, diameter two, chordal graph which is not cop-win. Let L be the language
for graphs. Add to it in7nitely many binary predicate symbols Ck(x; y); (k¡!). The
axioms for the theory will be those asserting that the graph is diameter two and chordal
along with the following:

(1) Ck(x; y)→y =∈N [x],
(2) Ck(x; y)→ (∀x1∈N [x]∃y1∈N [y])(Ck+1(x1; y1)); (k¡!),
(3) ∀x∃yC0(x; y).

We assert that the resulting theory is consistent. To see this suppose that we only
take the axioms involving Ck for k6N . Expand GN+1 to the new language by setting
Ck(x; y) = ∅ for k¿N , and for k6N let Ck(x; y) = {(x; y): y =∈N [x] and if the cop
is at x and the robber at y then the robber can survive N − k more moves}. Then
for each x there is a y so that with the cop at x and the robber at y the robber can
survive at least N moves. That Ck(x; y) and x1∈N [x] implies there is a y1∈N [y]
such that Ck+1(x1; y1) for k¡N follows because the robber can survive for N − k
steps.

Thus the theory is consistent. Let H be any model. For any move to x of the cop
there is a move to y for the robber with C0(x; y). The axioms 2. provide the means
of continuing for the robber, and he never loses (in 7nitely many steps) because for
each k; Ck(x; y) implies y =∈N [x].

We can, of course, give a direct construction of such a graph. In fact, below
we describe a very general construction of in7nite chordal graphs of diameter two
which are not cop-win; the graphs so constructed can have any in7nite cardinal-
ity and allow a simple construction of such graphs of any diameter (at least two).
The 7rst construction is an example and an outline of the general
method.
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4.2. A countable example

We 7rst explicitly construct a countable, diameter two, chordal, robber-win (i.e. not
cop-win) graph. We will then use it to construct in7nite chordal graphs of diameter
two of any cardinality. Let B= {1; 2} and let Bn ={b0b1 : : : bn−1: bi∈B; i¡n}. Let
B∗ =

⋃
n¡! Bn, the set of words on B. The empty word over B, the only element of

B0, is denoted by &. De7ne the length of the word b0b1 : : : bn−1 = b to be n. For u; v∈B∗

write uv for the concatenation of u and v. If v is of length one, that is, v= k, we write
simply uk. We will need a partial order on B∗: de7ne u≺ v just in case u is an initial
segment of v. For u; v∈B∗ denote by u∧ v the longest common initial segment of the
two words. The diagram of (B∗;≺) naturally forms a rooted oriented tree with root &.
It is this facet which will permit the robber to win. Call the natural order induced
on B∗—that is, shorter words precede longer ones and words of the same length are
ordered lexicographically—length-lexicographic.

The tree itself is, of course, chordal, but far from diameter two. In order to reduce
the diameter we need to add edges (and many vertices) to the tree and to remove the
directions of the edges, all the while avoiding chordless cycles and still allowing the
robber to win. We do this as follows. For each u∈B∗ let Bu = {u}× (B∗ ×B∗), that
is, replace each vertex of B∗ by an in7nite set (a copy of B∗ ×B∗). For x= (u; v;w)
set '1(x) = v; '2(x) =w.

De�nition 25. The directed graph G0 is the graph de7ned by

(1) V (G0) =B∗ × (B∗)2 =
⋃
u∈B∗ Bu.

(2) E(G0) =E1 ∪E2 ∪E3 with

• E1 =
⋃
u∈B∗(B2

u\{(x; x): x∈Bu})
• E2 = {xy: x∈Bu; y∈Bv; v= uk for some k∈B}
• E3 = {xy: x∈Bu; y∈Bv; v= ukz for some k∈B and some z∈B∗\{&}, and
z≺ 'k(x)}.

The graph G is obtained from G0 by forgetting the orientation of the edges and
identifying double edges.

The edges in E1 give each Bu the structure of a complete graph. The edges in E2

make a complete bipartite graph of each pair (Bu; Buk); k∈B. This preserves enough
of the structure of the tree given by B∗ to permit the robber to escape. Finally, the
edges in E3 reduce the diameter to two—but because we carefully exploit the natural
family of pairs of orthogonal partitions arising from the projections, and the notion of
extension of ≺ together with the structure of B∗, the resulting graph is still chordal
and robber-win. More formally, we have the following (we will treat B∗ × (B∗)2 as
(B∗)3).

Lemma 26. Let G be the graph de3ned in De3nition 25. For each x∈B∗ the function
(x :V →V de3ned by (x((u; v;w)) = (xu; v;w) is an isomorphism of G with the graph
Gx induced by

⋃
x≺u Bu.
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Proof. Trivial.

Theorem 27. The graph G de3ned in De3nition 25

(1) has diameter two,
(2) is chordal,
(3) is robber-win.

Proof. (1) Let x∈Bu and y∈Bv be two non-adjacent vertices of G. Let w= u∧ v.
If w= u or w= v, we may suppose—without loss of generality—that w= u and that
v= ukz for some k∈B; z∈B∗. Since x and y are not adjacent, z �= &. Now both x
and y are adjacent to (u; z; z). We may thus suppose, without loss of generality, that
u=w1z and v=w2t, with z; t∈B∗. Thanks to the edges in E2, the only non-trivial
case arises when both z and t are not &. But then both x and y are adjacent to (w; z; t).

(2) De7ne a relation ∼ on V (G) by putting (u; v;w)∼ (u′; v′;w′) if either u≺ u′
or u′≺ u. It follows from the de7nition of E(G) that if xy is an edge of G then
x∼y. Let now C = x0 : : : xn−1, xi = (ui; vi;wi), be a cycle in G and assume, without
loss of generality, that u0 is the minimum of the xi; i= 0; : : : ; n − 1, in the length-
lexicographic order. Since xi ∼ xi+1 (addition modulo n), we can say that an edge of
C is up if ui≺ ui+1 and is down if ui+1≺ ui (an edge could be both up and down in
case ui = ui+1).

Observe 7rst that if C contains two non-adjacent vertices of some Bu, it has a chord.
Thus if n¿4, C has a vertex xi with ui¿u0 lexicographically. We conclude that C
must contain an up edge xixi+1 followed by a down edge xi+1xi+2. We claim that
xixi+2 is an edge. To see this, notice that since xixi+1 and xi+1xi+2 are edges, there are
k; k ′∈B and s; s′∈B∗ such that uiks= ui+1 = ui+2k′s′ and so xi ∼ xi+2. Without loss of
generality assume that ui ≺ ui+2. If ui+2 = ui or ui+1k then xixi+2∈E1 ∪E2. Otherwise
ui+2 = uikt, t∈B∗\{&} and s′ = tt′. This means that xixi+1∈E3 and so tt′ ≺ 'k(xi). But
then t≺ 'k(xi) and xixi+2∈E3 as well.

(3) In view of Lemma 26 we can assume that the cop begins at some vertex in B&.
Suppose that just before the cop’s move the robber is at y∈Bu at distance two from
the cop’s vertex x. We shall show that the robber can maintain this distance after each
of his moves. We claim that if z∈Bv is adjacent to y then there is a w adjacent to y
at distance two from z. To see this, suppose that z∈Bv is adjacent to y. Then u≺ v or
v≺ u and u �= v, or u= v. We treat the 7rst two possibilities leaving the third to the
reader. Assume u �= v.

Suppose 7rst that u≺ v and let v= uks; k∈B; s∈B∗. Now any vertex in Bu(3−k) is
adjacent to y but not to z. Next assume v≺ u and u= vks; k∈B; s∈B∗. Observe that
with either t = 1 or t = 2 we have st �≺ 'k(z) and that any vertex of But is therefore
adjacent to y but not to z.

4.3. Examples of all cardinalities

We can use the graph G to construct chordal graphs of diameter two which are not
cop-win and that have any cardinality *¿!. This is very easy. Let K* be a complete
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graph on *. Let G* =G[K*] be the lexicographic product of G around K* (i.e., replace
each vertex of G by a copy of K* and add all edges between two copies of K* if and
only if the corresponding vertices in G were adjacent. It is easy to see that G* has the
required properties. In fact, we have the following.

Lemma 28. Let G be a graph, H a complete graph. Then G has each of the following
properties if and only if G[H ] does.

(1) it is bridged;
(2) it is chordal;
(3) it has diameter two;
(4) it is cop-win.

The method used in the explicit construction of the countable example generalizes
to give directly examples of all cardinalities, but as it is tedious to describe and of not
su=ciently broad interest, we omit its description.

5. Finite induced subgraphs

We now return to the question of whether every 7nite subset of vertices of an in7nite
bridged graph of diameter k lies in a 7nite induced bridged subgraph of diameter at
most k. Observe that if bridged is replaced by chordal and the diameter requirement
is dropped, the answer is a trivial yes. In general, however, all we can prove is the
following.

Theorem 29. Let G be a bridged graph of diameter two. Then any 3nite set of vertices
of G lies in a 3nite induced subgraph of G which is bridged and has diameter two.

In order to prove the theorem we need few lemmas. We shall assume throughout
this section that G is a bridged graph of diameter two. If H = (V (H); E(H)) is a
graph we will write u∈H for u∈V (H) and similarly for G\H;N (u)∩H;H ∪{u}, etc.

Lemma 30. In any cycle of length four or 3ve in G there is a vertex adjacent to all
the other vertices of the cycle.

Proof. For a four-cycle the result is an immediate consequence of the fact that G is
bridged. If v0v1v2v3v4 is a 7ve-cycle, it has a chord v0v2 (without loss of generality).
In the four-cycle v0v2v3v4 either v0v3 or v2v4 is an edge. In the 7rst case v0 and in the
second v2 is the vertex wanted.

Lemma 31. If H is a diameter two induced subgraph of G then H is bridged.

Proof. Let C be a shortest cycle of H without a bridge and let k be its length. Thanks
to Lemma 30 we can assume that k¿5. Let u; v be vertices of C of distance at least
three in C. In H , either u is adjacent to v or there is a z adjacent to both u and v.
In either case we have a bridge, contradicting the choice of C.
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Lemma 32. Let H be a 3nite induced subgraph of G of diameter at most two and
let u∈G\H be such that N (u)∩H �= ∅. Then there is a 3nite induced subgraph Ĥ of
G of diameter at most two containing both H and u.

Proof. We induct on the number n of vertices of distance at least three from u in the
graph induced by V (H)∪{u}. As induction hypothesis we strengthen the conclusion
by requiring that for z∈Ĥ\(H ∪{u}) we have N (z)∩H ⊇N (u)∩H .

If n= 0 there is nothing to prove as H ∪{u} induces a graph of diameter two. Let
n¿0 and let v1; : : : ; vn enumerate the vertices of distance at least three from u in the
graph induced by H ∪{u}. For each such vi there is a zi∈G\H adjacent to both u and
vi. Fix an i; 16i6n and let x∈N (u)∩H . Since xvi is not an edge, we can 7x a w in
H\N (u) adjacent to both x and vi. Now uxwvizi is a 7ve-cycle and Lemma 30 applies;
in fact zi is adjacent to all of u; x; w; vi. Since x was arbitrary, N (zi)∩H ⊇N (u)∩H . It
follows that the number of vertices at distance at least three from zi in the graph induced
by H ∪{zi} is strictly less than n. Applying the induction hypothesis to H and zi,
let Hi be an induced subgraph of diameter two of G containing H and zi and such
that for any y∈Hi\(H ∪{zi}), N (y)∩H ⊇N (zi)∩H . Since N (zi)∩H ⊇N (u)∩H , we
have that for any y∈Hi\H , N (y)∩H ⊇N (u)∩H . Now let Ĥ = {u}∪ ⋃n

i=1 Hi. Clearly
Ĥ is 7nite and if y∈Ĥ\H we have N (y)∩H ⊇N (u)∩H . It remains to check that
the diameter is two. The choice of zi in the construction of Hi ensures that u is,
in Ĥ , at distance at most two from each vertex of H . For each y∈Ĥ\H distance
at most two from u is guaranteed by the fact that N (y)∩H ⊇N (u)∩H �= ∅. Each
Hi has diameter at most two and so the only remaining case to consider is that of
ui∈Hi\H; uj∈Hj\H; i �= j. But here N (ui)∩N (uj)⊇N (u)∩H �= ∅ and so ui and uj
have distance at most two in Ĥ .

We can now prove the theorem.

Proof of Theorem 29. Since the case of G 7nite is trivial, assume that it is in7nite. Let
S be a 7nite set of vertices of G. By adding 7nitely many vertices if necessary, we may
assume that the subgraph induced by S in G is connected. Fix an enumeration v1; : : : ; vk
of S so that for each i; 1¡i6k there is an edge vivj for some j¡i. Now H1, the
graph induced by v1 trivially has diameter at most two. Having constructed Hi, apply
Lemma 32 to Hi and vi+1 to obtain Hi+1. The desired 7nite induced subgraph of G of
diameter two containing S is Hk .

6. Comments and open problems

A careful reader may have looked at the paper [12] by Nowakowski and Winkler
and concluded that too much work is being done here in view of the remark of those
authors that regular incomplete graphs are robber-win. This is a minor error: while
incomplete regular 3nite graphs are never cop-win if they are not complete, in7nite
ones can be. For an example, consider the complete graph on ! to which we add a
new vertex adjacent to all even members of !. This is clearly a regular graph and is
cop-win in one move.
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The same reader may ask why we did not exploit the results in [15,11] on repre-
sentations of chordal graphs as intersection graphs of subtrees of a tree. The reason
is that we are interested in cases where compactness fails and so wished to explore
this direction, which also gave us more insight into the structure of the graphs under
consideration.

Several questions are left open. The 7rst and most obvious is that of characterizing
those in7nite graphs for which the Nowakowski–Winkler relation is trivial, by some
other, simpler, means. In other words, can we tell which in7nite graphs are cop-win?

The second group of question concerns the relationship between the length of the
game and various parameters of graphs. Given a cop-win graph, what is the maximum
number of moves the cop needs to win? Is there a good (i.e. achievable) bound in terms
of some known parameter? We know from Section 3 that the diameter does not qualify.
It is easy to see that neither do the length of the longest path (consider the complete
graph), or the length of the longest chordless path (consider a graph obtained from a
path by adding a new vertex and all edges from it to the vertices of the path). One
might hope to get a bound in terms of the least l such that vl; : : : ; vn induce a complete
graph in a 7nite cop-win graph G with an enumeration of its vertices as guaranteed by
Theorem 1. The last-mentioned counterexample works here as well. So, in spite of the
optimum strategy suggested by Theorem 23 and described in [12], we still do not know
what the optimal number of moves is. The question is more interesting—and as open—
for in7nite graphs. Let S be the graph obtained from (!; {0i: 0¡i¡!}) by replacing
each edge 0i by a path 0v1

i v
2
i : : : v

i
i of length i. Clearly the robber determines the length

of the game by his choice of his starting vertex. Let SP be the graph obtained from
the ray v0v1v2 : : : by the addition of a new vertex v adjacent to all the vertices of the
ray (call SDP the graph obtained from the double ray by the same method). The two
graphs SP and SDP seem to provide counterexamples to hypotheses as to the bounds
on the number of moves in terms of other parameters.

The third set of questions concerns generalizations of Theorem 29. In general, one
considers a class of graphs G such that if G is an in7nite element of G then any 7nite
set S of vertices of G can be extended to a 7nite induced subgraph H of G which is
in G. Chastand, Laviolette and Polat call such a class dually compact closed and they
have recently shown in [4] that the class of bridged graphs is dually compact closed
(see also [13]).
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