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Let V and V ′ be vector spaces of dimension n and n′, respectively.
Let k ∈ {2, . . . , n − 2} and k′ ∈ {2, . . . , n′ − 2}. We describe all

isometric and l-rigid isometric embeddings of the Grassmann graph

�k(V) in the Grassmann graph �k′(V ′).
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

LetV beann-dimensional left vector spaceover adivision ringR. DenotebyGk(V) theGrassmannian

consisting of k-dimensional subspaces of V . Two elements of Gk(V) are adjacent if their intersection is

(k − 1)-dimensional. The Grassmann graph �k(V) is the graph whose vertex set is Gk(V) and whose

edges are pairs of adjacent k-dimensional subspaces. By Chow’s theorem [3], if 1 < k < n − 1

then every automorphism of �k(V) is induced by a semilinear automorphism of V or a semilinear

isomorphism of V to the dual vector space V∗ and the second possibility can be realized only in the

case when n = 2k (if k = 1, n − 1 then any two distinct vertices of �k(V) are adjacent and every

bijective transformation of Gk(V) is an automorphism of �k(V)). Some results closely related with

Chow’s theorem can be found in [2,7–9,11,12] and we refer [13] for a survey.

Let V ′ be an n′-dimensional left vector space over a division ring R′. We investigate isometric

embeddings of �k(V) in �k′(V ′) under assumption that 1 < k < n− 1 and 1 < k′ < n′ − 1 (the case

k = k′ was considered in [9]). Then n, n′ ≥ 4 and the existence of such embeddings implies that the
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diameter of �k(V) is not greater than the diameter of �k′(V ′), i.e.
min{k, n − k} ≤ min{k′, n′ − k′}.

In the case when k ≤ n − k, we show that every isometric embedding of �k(V) in �k′(V ′) is induced
by a semilinear (2k)-embedding (a semilinear injection such that the image of every independent

(2k)-element subset is independent) of V in V ′/S, where S is a (k′ − k)-dimensional subspace of V ′, or
a semilinear (2k)-embedding of V in U∗, where U is a (k′ + k)-dimensional subspace of V ′ (Theorem
4.1). If k > n − k then there are isometric embeddings of �k(V) in �k′(V ′) which cannot be induced

by semilinear mappings of V to some vector spaces.

Our second result (Theorem 6.1) is related with so-called l-rigid embeddings. An embedding f of a

graph � in a graph �′ is rigid if for every automorphism g of � there is an automorphism g′ of �′ such
that the diagram

�
f−→ �′

↓ g ↓ g′

�
f−→ �′

is commutative, roughly speaking, every automorphism of � can be extended to an automorphism of

�′. We say that an embedding of �k(V) in �k′(V ′) is l-rigid if every automorphism of �k(V) induced

by a linear automorphism of V can be extended to the automorphism of �k′(V ′) induced by a linear

automorphism of V ′.
In the case when n = 2k, every isometric embedding of �k(V) in �k′(V ′) is l-rigid. In general case

(we do not require that k ≤ n − k), every l-rigid isometric embedding of �k(V) in �k′(V ′) is induced
by a semilinear embedding (a semilinear injection transferring independent subsets to independent

subsets) of V in V ′/S, where S is a (k′ − k)-dimensional subspace of V ′, or a semilinear embedding

of V in U∗, where U is a (k′ + k)-dimensional subspace of V ′. The proof of this result is based on a

characterization of semilinear embeddings (Theorem 5.1).

Using [10], we establish the existence of isometric embeddings of �k(V) in �k′(V ′) which are not

l-rigid (Example 6.4).

2. Basic facts and definitions

2.1.

Let � be a connected graph. A subset in the vertex set of � formed by mutually adjacent vertices

is called a clique. Using Zorn lemma, we can show that every clique is contained in a maximal clique.

The distance d(v,w) between two vertices v and w of � is defined as the smallest number i such that

there exists a path of length i (a path consisting of i edges) connecting v and w. The diameter of � is

the maximum of all distances d(v,w).
An injective mapping of the vertex set of � to the vertex set of a graph �′ is called an embedding

of � in �′ if vertices of � are adjacent only in the case when their images are adjacent vertices of �′.
Every surjective embedding is an isomorphism. An embedding is said to be isometric if it preserves the

distance between any two vertices.

2.2.

Let k ∈ {1, . . . , n − 1}. Consider incident subspaces S,U ⊂ V such that

dim S < k < dimU

and denote by [S,U]k the set formed by all X ∈ Gk(V) satisfying S ⊂ X ⊂ U. In the casewhen S = 0 or

U = V , this set will be denoted by 〈U]k or [S〉k , respectively. The Grassmann space Gk(V) is the partial
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linear space whose point set is Gk(V) and whose lines are subsets of type

[S,U]k, S ∈ Gk−1(V), U ∈ Gk+1(V).

It is clear that G1(V) = �V and Gn−1(V) = �∗
V (we denote by �V the projective space associated

with V and write �∗
V for the corresponding dual projective space). Two distinct points of Gk(V) are

collinear (joined by a line) if and only if they are adjacent vertices of the Grassmann graph �k(V).
If 1 < k < n − 1 then there are precisely the following two types of maximal cliques of �k(V):

(1) the top 〈U]k, U ∈ Gk+1(V),
(2) the star [S〉k , S ∈ Gk−1(V).

The top 〈U]k and the star [S〉k together with the lines contained in them are projective spaces. The first

projective space is �∗
U and the second can be identified with �V/S .

The distance d(X, Y) between X, Y ∈ Gk(V) in the graph �k(V) is equal to

k − dim(X ∩ Y)

and the diameter of �k(V) is equal to min{k, n − k}.
2.3.

All linear functionals ofV formann-dimensional right vector space overR. The associated left vector

space over the opposite division ring R∗ is called the dual vector space and denoted by V∗. The division
rings R and R∗ have the same set of elements and the same additive operation; the multiplicative

operation of R∗ is defined as a ∗ b := ba and we have R = R∗ only in the case when R is a field. The

second dual space V∗∗ can be canonically identified with V .

For subspaces X ⊂ V and Y ⊂ V∗ the subspaces

X0 := { x∗ ∈ V∗ : x∗(x) = 0 ∀ x ∈ X },
Y0 := { x ∈ V : x∗(x) = 0 ∀ x∗ ∈ Y }

are called the annihilators of X and Y , respectively. The annihilator mapping (which transfers every

subspace S ⊂ V to the annihilator S0 ⊂ V∗) induces an isomorphism between �k(V) and �n−k(V
∗)

for every k ∈ {1, . . . , n − 1}.
2.4.

An additivemapping l : V → V ′ is said to be semilinear if there exists a homomorphismσ : R → R′
such that

l(ax) = σ(a)l(x)

for all x ∈ V and all a ∈ R. If l is non-zero then there is only one homomorphism satisfying this

condition. Every non-zero homomorphism of R to R′ is injective.
Every semilinear injection of V to V ′ induces a mapping of G1(V) to G1(V ′) which transfers

lines of �V to subsets in lines of �V ′ (note that this mapping is not necessarily injective). We will

use the following version of the Fundamental Theorem of Projective Geometry [4–6], see also [13,

Theorem 1.4].

Theorem 2.1 (C.A. Faure, A. Frölicher, H. Havlicek). Let f be a mapping of G1(V) to G1(V ′) transferring

lines of �V to subsets in lines of �V ′ . If the image of f is not contained in a line then f is induced by a

semilinear injection of V to V ′.

A semilinearmapping of V to V ′ is called a semilinear isomorphism if it is bijective and the associated

homomorphism of R to R′ is an isomorphism. If u is a semilinear automorphism of V then themapping

uk sending every X ∈ Gk(V) to u(X) is an automorphism of �k(V). If n = 2k and v : V → V∗ is a
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semilinear isomorphism then the bijection transferring every X ∈ Gk(V) to the annihilator of v(X) is
an automorphism of �k(V).

Theorem 2.2 (W.L. Chows [3]). Every automorphism of�k(V), 1 < k < n−1 is induced by a semilinear

automorphism of V or a semilinear isomorphism of V to V∗; the second possibility can be realized only in

the case when n = 2k.

3. General properties of embeddings

Let k ∈ {2, . . . , n − 2} and k′ ∈ {2, . . . , n′ − 2}. Every embedding of �k(V) in �k′(V ′) transfers

maximal cliques of�k(V) to subsets in maximal cliques of�k′(V ′); moreover, every maximal clique of

�k′(V ′) contains at most one image of a maximal clique of �k(V) (otherwise, the preimages of some

adjacent vertices of �k′(V ′) are non-adjacent which is impossible).

Proposition 3.1. For any embedding of �k(V) in �k′(V ′) the image of every maximal clique of �k(V) is

contained in precisely one maximal clique of �k′(V ′).

Proof. Let f be an embedding of �k(V) in �k′(V ′). Suppose that X is a maximal clique of �k(V) and

f (X ) is contained in two distinct maximal cliques of �k′(V ′). Since the intersection of two distinct

maximal cliques is empty or a one-element set or a line, there exist S ∈ Gk′−1(V
′) and U ∈ Gk′+1(V

′)
such that

f (X ) ⊂ [S,U]k′ . (3.1)

We take any maximal clique Y �= X of �k(V) which intersects X in a line and consider a maximal

clique Y ′ of �k′(V ′) containing f (Y). The inclusion (3.1) guarantees that the line [S,U]k′ intersects
f (Y) ⊂ Y ′ in a set containing more than one element. Then [S,U]k′ ⊂ Y ′ (a line is contained in a

maximal clique or intersects it in at most one element). So, the maximal clique Y ′ contains the images

of both X and Y which are distinct maximal cliques of �k(V), a contradiction. �

It was noted above that the intersection of two distinct maximal cliques of �k(V) is empty or a

one-element set or a line. The latter possibility can be realized only in the case when the maximal

cliques are of different types — one of them is a star and the other is a top. For any distinct maximal

cliques X ,Y of �k(V) there is a sequence of maximal cliques of �k(V)

X = X0,X1, . . . ,Xi = Y
such that Xj−1 ∩ Xj is a line for every j ∈ {1, . . . , i}. This implies the following.

Proposition 3.2. For every embedding of �k(V) in �k′(V ′) one of the following possibilities is realized:

(A) stars go to subsets of stars and tops go to subsets of tops,

(B) stars go to subsets of tops and tops go to subsets of stars.

We say that an embedding is of type (A) or (B) if the corresponding possibility is realized.

If an embedding f of �k(V) in �k′(V ′) is of type (A) then the embedding of �k(V) in �n′−k′(V ′∗)
sending every X ∈ Gk(V) to the annihilator of f (X) is of type (B).

4. Isometric embeddings

A semilinear injection of V to V ′ is said to be a semilinear m-embedding if the image of every

independent m-element subset is independent. The existence of such mappings implies that m ≤
min{n, n′}. In the case when n ≤ n′, semilinear n-embeddings of V in V ′ will be called semilinear

embeddings.
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Remark 4.1. By [10], there exist fields F and F ′ such that for any natural numbers p and q there is

a semilinear p-embedding of Fp+q in F ′p. It is clear that such semilinear p-embeddings cannot be

(p + 1)-embeddings.

Let l : V → V ′ be a semilinear m-embedding. For every p ∈ {1, . . . ,m} and every p-dimensional

subspace X ⊂ V the dimension of the subspace spanned by l(X) is equal to p. So, we have themapping

lp : Gp(V) → Gp(V ′),
X → 〈l(X)〉.

By [9, Proposition 2.2], if 2p ≤ min{n, n′} and l : V → V ′ is a (2p)-embedding then lp is an isometric

embedding of �p(V) in �p(V
′).

Remark 4.2. By [9, Proposition2.1], every semilinear (k+1)-embeddingofV inV ′ induces an injection

of Gk(V) to Gk(V ′) sending adjacent subspaces to adjacent subspaces; but this mapping is not neces-

sarily an embedding of �k(V) in �k(V
′). So, the following problem is open: construct non-isometric

embeddings of �k(V) in �k(V
′)?

Let k ∈ {2, . . . , n − 2} and k′ ∈ {2, . . . , n′ − 2}. The existence of isometric embeddings of �k(V)
in �k′(V ′) implies that

min{k, n − k} ≤ min{k′, n′ − k′}
(the diameter of �k(V) is not greater than the diameter of �k′(V ′)). In the next three examples we

suppose that k ≤ n − k, i.e.

k ≤ min{k′, n − k, n′ − k′}. (4.1)

Example 4.1. Let S ∈ Gk′−k(V
′). By (4.1),

dim(V ′/S) = n′ − k′ + k ≥ 2k.

If l : V → V ′/S is a semilinear (2k)-embedding then lk is an isometric embedding of �k(V) in

�k(V
′/S). Let π be the natural isometric embedding of �k(V

′/S) in �k′(V ′) (which transfers every

k-dimensional subspace of V ′/S to the corresponding k′-dimensional subspace of V ′). Then π lk is an

isometric embedding of �k(V) in �k′(V ′) of type (A).

Example 4.2. Let U ∈ Gk′+k(V
′) (by (4.1), we have k′ + k ≤ n′). If v : V → U∗ is a semilinear (2k)-

embedding then vk is an isometric embedding of �k(V) in �k(U
∗). By duality, it can be considered as

an isometric embedding of�k(V) in�k′(U). SinceU is contained in V ′, we get an isometric embedding

of �k(V) in �k′(V ′) of type (B).

Example 4.3. Suppose that n = 2k and S ∈ Gk′−k(V
′), U ∈ Gk′+k(V

′) are incident. Then

dim(U/S) = 2k = n.

By Example 4.1, every semilinear embedding of V in U/S ⊂ V ′/S induces an isometric embedding of

�k(V) in �k′(V ′). If w : V → (U/S)∗ is a semilinear embedding then wk is an isometric embedding

of �k(V) in �k((U/S)∗) and, by duality, it can be considered as an isometric embedding of �k(V) in

�k(U/S). As in Example 4.1, we construct an isometric embedding of �k(V) in �k′(V ′).

Theorem 4.1. Let f be an isometric embedding of �k(V) in �k′(V ′). If k ≤ n− k then one of the following

possibilities is realized:

• there is S ∈ Gk′−k(V
′) such that f is induced by a semilinear (2k)-embedding of V in V ′/S, see

Example 4.1;
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• there is U ∈ Gk′+k(V
′) such that f is induced by a semilinear (2k)-embedding of V in U∗, see

Example 4.2.

In the case when n = 2k, there are incident S ∈ Gk′−k(V
′) and U ∈ Gk′+k(V

′) such that f is induced by a

semilinear embedding of V in U/S or a semilinear embedding of V in (U/S)∗, see Example 4.3.

Remark 4.3. Suppose that f is an isometric embedding of �k(V) in �k′(V ′) and k > n − k. Consider

the mapping which sends every X ∈ Gn−k(V
∗) to f (X0). This is an isometric embedding of �n−k(V

∗)
in �k′(V ′). Since n − k < n − (n − k), it is induced by a semilinear 2(n − k)-embedding of V∗ in one

of vector spaces described above.

Proof of Theorem 4.1. Suppose that f is an embedding of type (A). By Section 3, there exists an injec-

tive mapping

fk−1 : Gk−1(V) → Gk′−1(V
′)

such that

f ([X〉k) ⊂ [fk−1(X)〉k′ ∀ X ∈ Gk−1(V).

Then

fk−1(〈Y]k−1) ⊂ 〈f (Y)]k′−1 ∀ Y ∈ Gk(V).

Since for any two adjacent vertices there is a top containing them, the latter inclusion implies that fk−1

is adjacency preserving. Thus for any X, Y ∈ Gk−1(V) we have

d(X, Y) ≥ d(fk−1(X), fk−1(Y)).

We prove the inverse inequality.

The condition 2k ≤ n implies the existence of X′, Y ′ ∈ Gk(V) such that X ⊂ X′, Y ⊂ Y ′ and

X ∩ Y = X′ ∩ Y ′.

Then

d(X, Y) = d(X′, Y ′) − 1 (4.2)

(indeed, d(X, Y) = k − 1 − dim(X ∩ Y) = k − 1 − dim(X′ ∩ Y ′) = d(X′, Y ′) − 1). Since fk−1 is

induced by f , we have

fk−1(X) ⊂ f (X′) and fk−1(Y) ⊂ f (Y ′)

which guarantees that

dim(fk−1(X) ∩ fk−1(Y)) ≤ dim(f (X′) ∩ f (Y ′)). (4.3)

Using (4.2) and (4.3), we get the following

d(X, Y) = d(X′, Y ′) − 1 = d(f (X′), f (Y ′)) − 1 = k′ − 1 − dim(f (X′) ∩ f (Y ′))
≤ k′ − 1 − dim(fk−1(X) ∩ fk−1(Y)) = d(fk−1(X), fk−1(Y)).

So, fk−1 is an isometric embedding of �k−1(V) in �k′−1(V
′). This is an embedding of type (A) (it

was established above that fk−1 sends tops to subsets of tops). Step by step, we construct a sequence

of isometric embeddings

fi : Gi(V) → Gk′−k+i(V), i = k, . . . , 1
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of �i(V) in �k−k′+i(V
′) such that fk = f and we have

fi([X〉i) ⊂ [fi−1(X)〉k′−k+i ∀ X ∈ Gi−1(V)

and

fi−1(〈Y]i−1) ⊂ 〈fi(Y)]k′−k+i−1 ∀ Y ∈ Gi(V) (4.4)

if i > 1.

The image of f1 is a clique of �k′−k+1(V
′). This clique cannot be contained in any top (otherwise,

there is X′ ∈ Gk′−k+2(V
′) such that f2(X) = X′ for every X ∈ G2(V) and f2 is not injective). Therefore,

there is S ∈ Gk′−k(V
′) such that the image of f1 is contained in the star [S〉k′−k+1.

By (4.4), f1 transfers lines of �V to subsets of lines contained in [S〉k′−k+1. It was noted in Section

2.2 that the star [S〉k′−k+1 (together with all lines contained in it) can be identified with the projective

space �V ′/S . Theorem 2.1 shows that f1 is induced by a semilinear injection l : V → V ′/S.
Using (4.4), we establish that

f1(〈X]1) ⊂ 〈f (X)]k′−k+1 ∀ X ∈ Gk(V).

On the other hand,

f1(〈X]1) ⊂ 〈π(〈l(X)〉)]k′−k+1 ∀ X ∈ Gk(V),

where π is the mapping which transfers every subspace of V ′/S to the corresponding subspace of V ′.
Since the intersection of two distinct tops contains at most one element, we get

f (X) = π(〈l(X)〉) ∀ X ∈ Gk(V)

which means that f = π lk .

Every independent (2k)-element subset A ⊂ V can be presented as the disjoint union of two

independent k-element subsets A1 and A2. Then

d(f (〈A1〉), f (〈A2〉)) = d(〈A1〉, 〈A2〉) = k

whichmeans that 〈l(A1)〉 and 〈l(A2)〉 are k-dimensional subspaces of V ′/S intersecting in 0. Hence the

subspace spanned by l(A1 ∪ A2) = l(A) is (2k)-dimensional.

So, l is a semilinear (2k)-embedding of V in V ′/S and f is as in Example 4.1. In the casewhen n = 2k,

l is a semilinear embedding and the image of l is contained in U/S, where U ∈ Gk′+k(V
′).

Now suppose that f is an embedding of type (B). By duality, f can be considered as an isometric

embedding of�k(V) in�n′−k′(V ′∗) (this embedding sends every X ∈ Gk(V) to the annihilator of f (X)).
We get an embedding of type (A) and its image is contained in

[S′〉n′−k′ , S′ ∈ Gn′−k′−k(V
′∗);

in the case when n = 2k, the image is contained in

[S′,U′]n′−k′ , S′ ∈ Gn′−k′−k(V
′∗), U′ ∈ Gn′−k′+k(V

′∗).
The image of f is contained in 〈U]k′ , whereU ∈ Gk′+k(V

′) is the annihilator of S′. Thus f is an isometric

embedding of �k(V) in �k′(U). By duality, f can be considered as an isometric embedding of �k(V)
in �k(U

∗) of type (A). Hence it is induced by a semilinear (2k)-embedding of V in U∗, i.e. f is as in

Example 4.2.

If n = 2k then the image of f is contained in [S,U]k′ , where S ∈ Gk′−k(V
′) and U ∈ Gk′+k(V

′) are
the annihilators ofU′ and S′, respectively. Thismeans that f = π f ′, where f ′ is an isometric embedding

of �k(V) in �k(U/S) of type (B) and π is the mapping which transfers every subspace of V ′/S to the

corresponding subspace of V ′. Since
dim(U/S) = 2k,

f ′ can be considered as an isometric embedding of �k(V) in �k((U/S)∗) of type (A). The latter embed-

ding is induced by a semilinear embedding of V in (U/S)∗ and f is as in Example 4.3. �



3420 M. Pankov / Linear Algebra and its Applications 436 (2012) 3413–3424

Remark 4.4. Using the same idea, the author describes the images of isometric embeddings of Johnson

graphs in Grassmann graphs [14, Theorem 4].

5. Characterization of semilinear embeddings

Theorem 5.1. Let l : V → V ′ be a semilinear injection. Then l is a semilinear embedding if and only if for

every linear automorphism u ∈ GL(V) there is a linear automorphism u′ ∈ GL(V ′) such that the diagram

V
l−→ V ′

↓ u ↓ u′

V
l−→ V ′

(5.1)

is commutative.

To prove Theorem 5.1 we use the following result.

Theorem 5.2 (M. Pankov [14]). For a finite subset X ⊂ G1(V) the following conditions are equivalent:

• every permutation on X is induced by a semilinear automorphism of V,

• X is a simplex or an independent subset of �V .

Recall that Q1, . . . ,Qm ∈ G1(V) form an independent subset of �V if non-zero vectors x1 ∈
Q1, . . . , xm ∈ Qm form an independent subset of V . An (m + 1)-element subset X ⊂ G1(V) is called
anm-simplex of�V if it is not independent and everym-element subset ofX is independent [1, Section

III.3].

Remark 5.1. If x1, . . . , xm ∈ V and 〈x1〉, . . . , 〈xm〉 form an (m − 1)-simplex then x1, . . . , xm−1 are

linearly independent and xm = ∑m−1
i=1 aixi, where every scalar ai is non-zero.

Proof of Theorem 5.1. Suppose that l : V → V ′ is a semilinear embedding. Let {xi}ni=1 be a base of V .

For every vector x = ∑n
i=1 aixi and every linear automorphism u ∈ GL(V) we have

l(x) =
n∑

i=1

σ(ai)l(xi) and l(u(x)) =
n∑

i=1

σ(ai)l(u(xi)),

where σ : R → R′ is the homomorphism associated with l. Since {l(xi)}ni=1 and {l(u(xi))}ni=1 both are

independent subsets of V ′, the diagram (5.1) is commutative for any linear automorphism u′ ∈ GL(V ′)
transferring every l(xi) to l(u(xi)).

Conversely, suppose that for every linear automorphism u ∈ GL(V) there is a linear automorphism

u′ ∈ GL(V ′) such that the diagram (5.1) is commutative. Let B = {xi}ni=1 be a base of V . Every

permutation on the associated base of �V is induced by a linear automorphism of V . Then, by our

assumption, every permutation on the set

X (B) := {〈l(xi)〉}ni=1

is induced by a linear automorphism of V ′. Theorem 5.2 implies that X (B) is an (n − 1)-simplex or

an independent subset of �V ′ . In the second case, l(x1), . . . , l(xn) are linearly independent and l is a

semilinear embedding.

IfX (B) is an (n−1)-simplex thenX (B′) is an (n−1)-simplex for every base B′ ⊂ V (indeed, if there

is a base B′ ⊂ V such that X (B′) is an independent subset of�V ′ then l is a semilinear embedding and

X (B′) is an independent subset for every base B′ ⊂ V). We need to show that this possibility cannot

be realized.
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So, suppose that X (B) is an (n − 1)-simplex. By Remark 5.1, {l(xi)}n−1
i=1 is an independent subset of

V ′ and

l(xn) =
n−1∑

i=1

ail(xi), (5.2)

where every scalar ai is non-zero. Let u be an automorphism of V . Then u(B) is a base of V andX (u(B))

is an (n − 1)-simplex. The latter implies that {l(u(xi))}n−1
i=1 is an independent subset of V ′ and

l(u(xn)) =
n−1∑

i=1

bil(u(xi)), (5.3)

where every scalar bi is non-zero. If u′ is a linear automorphism of V ′ such that the diagram (5.1) is

commutative then it transfers every l(xi) to l(u(xi)) and (5.2), (5.3) show that ai = bi for every i, i.e.

l(u(xn)) =
n−1∑

i=1

ail(u(xi)).

Consider a linear automorphism v ∈ GL(V) such that u(xi) = v(xi) if i ≤ n − 1 and u(xn) �= v(xn).
By the arguments given above,

l(v(xn)) =
n−1∑

i=1

ail(v(xi)) =
n−1∑

i=1

ail(u(xi)) = l(u(xn))

which contradicts the injectivity of l. �

6. l-Rigid isometric embeddings

As above, we suppose that k ∈ {2, . . . , n − 2} and k′ ∈ {2, . . . , n′ − 2}. Let f be an embedding of

�k(V) in �k′(V ′). We say that f is l-rigid if for every linear automorphism u ∈ GL(V) there is a linear

automorphism u′ ∈ GL(V ′) such that the diagram

�k(V)
f−→ �k′(V ′)

↓ uk ↓ u′
k′

�k(V)
f−→ �k′(V ′)

is commutative, i.e. every automorphism of �k(V) induced by a linear automorphism of V can be

extended to the automorphism of �k′(V ′) induced by a linear automorphism of V ′.

Example6.1. Suppose thatn = 2kandV is a subspaceofV ′.Wealso require that theassociateddivision

ring is isomorphic to the opposite division ring. This implies the existence of semilinear isomorphisms

of V to V∗. Then the natural embedding of �k(V) in �k(V
′) is not rigid, since every automorphism of

�k(V) induced by a semilinear isomorphism of V to V∗ cannot be extended to an automorphism of

�k(V
′). It is clear that this embedding is l-rigid.

Let u be a linear automorphism of V and let u∗ be the adjoint linear automorphism of V∗. The
linear automorphism ǔ := (u∗)−1 is called the contragradient of u. It transfers the annihilator of every

subspace S ⊂ V to the annihilator of u(S) [13, Section 1.3.3].

Lemma 6.1. If f is an l-rigid embedding of �k(V) in �k′(V ′) then the same holds for the following two

embeddings:

• the embedding of �k(V) in �n′−k′(V ′∗) transferring every X ∈ Gk(V) to the annihilator of f (X),
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• the embedding of �n−k(V
∗) in �k′(V ′) transferring every X ∈ Gn−k(V

∗) to f (X0).

Proof. Let u be a linear automorphism of V . Then uk is an automorphism of �k(V). Suppose that it

is extendable to the automorphism of �k′(V ′) induced by a linear automorphism v ∈ GL(V ′). Then v̌

defines the extension of uk to an automorphism of �n′−k′(V ′∗).
Consider the second embedding. The contragradient ǔ is a linear automorphism of V∗ and ǔn−k

is an automorphism of �n−k(V
∗). It is clear that ǔn−k is extendable to the automorphism of �k′(V ′)

induced by v. This completes our proof, since every linear automorphism of V∗ is the contragradient

of a linear automorphism of V . �

We give two examples of l-rigid isometric embeddings of �k(V) in �k′(V ′). In contrast with the

previous section, we do not require that k ≤ n − k.

Example 6.2. Suppose that

k ≤ k′ and n − k ≤ n′ − k′.
If S ∈ Gk′−k(V

′) then
dim V ′/S = n′ − k′ + k ≥ n.

For every semilinear embedding l : V → V ′/S the mapping lk is an l-rigid isometric embedding of

�k(V) in �k(V
′/S). As in the previous section, we denote by π the mapping which transfers every

subspace of V ′/S to the corresponding subspace of V ′. Then π lk is an l-rigid isometric embedding of

�k(V) in �k′(V ′) of type (A).

Example 6.3. Suppose that

n ≤ k + k′ ≤ n′

and U ∈ Gk+k′(V ′). Let v : V → U∗ be a semilinear embedding. Then vk is an l-rigid isometric

embedding of �k(V) in �k(U
∗). By duality, it can be considered as an isometric embedding of �k(V)

in�k′(U). Lemma 6.1 guarantees that the latter embedding is l-rigid. Since U is contained in V ′, we get

an l-rigid isometric embedding of �k(V) in �k′(V ′) of type (B).

It follows from Theorem 4.1 and the examples given above that every isometric embedding of �k(V)
in �k′(V ′) is l-rigid if n = 2k. Now, we describe all l-rigid isometric embeddings of �k(V) in �k′(V ′) in
the case when k �= n − k.

Theorem6.1. If f is an l-rigid isometric embeddingof�k(V) in�k′(V ′) thenoneof the followingpossibilities

is realized:

• k ≤ k′, n − k ≤ n′ − k′ and there is S ∈ Gk′−k(V
′) such that f is induced by a semilinear

embedding of V in V ′/S, see Example 6.2;

• n ≤ k + k′ ≤ n′ and there is U ∈ Gk′+k(V
′) such that f is induced by a semilinear embedding

of V in U∗, see Example 6.3.

The following example shows that there are isometric embeddings of �k(V) in �k′(V ′) which are

not l-rigid.

Example 6.4. Suppose that R = F and R′ = F ′, where F and F ′ are the fields from Remark 4.1, and

n > n′. Let l : V → V ′ be a semilinear n′-embedding. If n′ ≥ 2k then lk is an isometric embedding of

�k(V) in �k(V
′). By Theorem 6.1, this embedding is not l-rigid.

Proof of Theorem 6.1. Let f be an l-rigid isometric embedding of �k(V) in �k′(V ′).
Case k < n − k.
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If f is anembeddingof type (A) then, byTheorem4.1, thereexist S ∈ Gk′−k(V
′)andasemilinear (2k)-

embedding l : V → V ′/S such that f transfers every X ∈ Gk(V) to the subspace of V ′ corresponding
to 〈l(X)〉. Since f is l-rigid, lk is l-rigid and Theorem 5.1 implies that l is a semilinear embedding.

In the case when f is an embedding of type (B), Theorem 4.1 implies the existence of U ∈ Gk′+k(V
′)

and a semilinear (2k)-embedding v : V → U∗ such that f transfers every X ∈ Gk(V) to the annihilator

of 〈v(X)〉 in U. Since f is an l-rigid embedding of �k(V) in �k′(U), Lemma 6.1 implies that vk is l-rigid.

By Theorem 5.1, v is a semilinear embedding.

Case k > n − k.

Let f be an embedding of type (A). Consider the embedding of �n−k(V
∗) in �k′(V ′) transferring

every X ∈ Gn−k(V
∗) to f (X0). By Lemma 6.1, this embedding is l-rigid; moreover, it is an embedding

of type (B). Therefore, there exist U ∈ Gk′+n−k(V
′) and a semilinear embedding v : V∗ → U∗ such

that f transfers every X ∈ Gk(V) to the annihilator of 〈v(X0)〉 in U. Since v is a semilinear embedding,

the image of v spans an n-dimensional subspace of U∗. Denote by S the annihilator of this subspace in

U. Then S ∈ Gk′−k(V
′) and the image of f is contained in [S〉k .

Consider the mapping g which sends every subspace X ⊂ V to the annihilator of 〈v(X0)〉 in U. This

is an injection of the set of all subspaces of V to the set of all subspaces of U containing S. The image of

every Gi(V) is contained in [S〉k′−k+i and the restriction of g to Gk(V) coincides with f . The mapping g

is inclusions preserving: for any subspaces X, Y ⊂ V

X ⊂ Y �⇒ g(X) ⊂ g(Y).

This implies that the restriction of g to G1(V) transfers every line of �V to a subset in a line of the

projective space [S〉k′−k+1. By Theorem 2.1, this restriction is induced by a semilinear injection l :
V → V ′/S. We need to show that for every X ∈ Gk(V)

g(X) = π(〈l(X)〉),
where π transfers every subspace of V ′/S to the corresponding subspace of V ′.

Since v is a semilinear embedding, g sends every base of �V to an independent subset of the

projective space [S〉k′−k+1. This implies that l is a semilinear embedding. Let X ∈ Gk(V). We take

P1, . . . , Pk ∈ G1(V) such that

X = P1 + · · · + Pk.

Then

π(〈l(X)〉) = g(P1) + · · · + g(Pk) ⊂ g(X)

and we get the required equality (since our subspaces both are k′-dimensional).

Now, let f be an embedding of type (B). We consider f as an embedding of �k(V) in �n′−k′(V ′∗).
This is an embedding of type (A) and, as in the proof of Theorem 4.1, we establish that the image of f

is contained in

〈U]k′ , U ∈ Gk′+k(V
′).

So, f is an l-rigid isometric embedding of �k(V) in �k′(U). By duality, it can be considered as an

isometric embedding of �k(V) in �k(U
∗) of type (A). Lemma 6.1 implies that the latter embedding is

l-rigid. Thus it is induced by a semilinear embedding of V in U∗. �
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