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The ARF (Alternative Reading Frame) protein is encoded in the Ink4a locus of human chromosome 9
that is frequently mutated in cancer cells. It was recently demonstrated that ARF is induced in
response to DNA damage and inhibits, by direct interaction, the E3 ubiquitin ligase Mule that regu-
lates p53 protein levels. Mule inhibition leads to p53 accumulation and activates cellular DNA dam-
age responses. Mule has also recently been identified as a major E3 ubiquitin ligase involved in the
regulation of DNA base excision repair. In this review, we will summarise the major properties of

Just Mule and ARF and their roles in the coordination of DNA repair and DNA replication.
© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.
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1. Mule structure

In mammalian cells, cellular protein levels are regulated
through the ubiquitin-proteasome pathway. Proteins targeted for
degradation are marked with a chain of ubiquitin molecules,
achieved through a cascade of ubiquitin activating enzymes, which
are attached to a specific lysine residue(s) in the protein. Firstly,
ubiquitin (Ub) is activated through an ATP-dependent reaction by
a ubiquitin activating enzyme (E1) to form the E1-Ub thioester.
Secondly, the activated ubiquitin is delivered to an ubiquitin con-
jugating enzyme (E2) and finally, a complex is formed between
the E2-Ub thioester, the target protein and a ubiquitin ligase (E3)
that conjugates ubiquitin to the protein. Polyubiquitylated pro-
teins are recognised by the 26S proteasome that unfolds the pro-
tein, removes the polyubiquitin chains and degrades the protein.
It is thought that several hundred human E3s exist that target spe-
cific proteins for ubiquitylation, although there are three major
classes of E3s: RING-finger, HECT domain and U-box E3s that serve
to bring together the conjugated E2 and the substrate protein (for
review see [1]). The subject of this review, the E3 ubiquitin ligase
Mule (also known as ARF-BP1, E3Histone, UREB1, HUWET1, HectH9,
and LASU1) which is a 482-kDa protein consisting of 4374 amino
acids, belongs to the family of HECT (homologous to E6-AP carb-
oxyl terminus) domain E3 ubiquitin ligases [2]. The members of
this family are defined by the presence of the conserved C-terminal
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HECT domain which consists of approximately 350 amino acids
and is responsible for the E3s catalytic activity (Fig. 1). This domain
has been shown to contain an essential conserved cysteine residue
that forms the thioester complex with the E2-activated ubiquitin
molecule, prior to the ubiquitin transfer to the lysine residue on
a substrate [3,4]. Later studies have established that the HECT do-
main might be responsible for both the topology of the ubiquitin
chain formation as well as the mechanism of its assembly [5],
whereas the substrate specificity of HECT E3 ligases is provided
by their N-terminal sequences outside the HECT domain [6,7]. A
recent structural study [8] has shown that the HECT domain of
Mule (amino acid residues 3993-4374) is composed of two sub-
domains. Both sub-domains are connected by a flexible linker that
provides conformational flexibility essential for ubiquitin chain
transfer. One of them contains the catalytic cysteine residue
(Cys4341) and the other sub-domain includes the E2 binding re-
gion (Fig. 1). Additionally, a single a-helix (residues 3993-4012)
was identified within the E2 binding region of Mule, deletion of
which resulted in drastic reduction of the HECT domain stability,
and surprisingly in a significant increase in self-ubiquitylation. This
effect has been explained by increased conformational flexibility of
the mutant lacking the a-helix which may enhance the efficiency
of certain catalytic steps, such as the E2 enzyme - HECT interaction
of product release by shifting the conformational state of the pro-
tein into a more favorable orientation [8].

Mule has several protein-protein interaction domains indicat-
ing its involvement in multiple cellular transactions. Mule has a
ubiquitin-associated domain (named UBA, residues 1317-1355),
a short sequence motif containing a hydrophobic surface patch
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Fig. 1. Structure of the Mule protein. Schematic representation of the Mule protein indicating several domains and its 3D-structure (PDB code 3H1D) showing a few
important structural elements required for protein activity and its stability (as described in [8]).

which has been proposed to interact with that of the ubiquitin
molecule [9]. The Mule protein also contains a WWE domain
(residues 1617-1678) which was predicted to be involved in pro-
tein-protein interactions [10]. There is also a highly conserved
BH3 domain (residues 1976-1990) that provides networking inter-
actions for the pro- and anti-apoptotic members of the Bcl-2 family
of proteins and two domains of unknown function named ARLD1
(104-374) and ARLD2 (424-815) for Armadillo repeat-like do-
mains [11]. Although the domain organization of Mule is well
determined, the biological functions these domains are involved
in are still unknown and more work is required in this direction.
Consistent with complex domain organisation and the protein
size, the Mule E3 ligase has been shown to regulate the stability
of multiple substrates, thus playing a role in various physiologi-
cally important processes, such as cell proliferation, DNA replica-
tion and DNA repair. A truncated version of the Mule protein
(named UREB1) was originally shown to bind the p53 tumor sup-
pressor protein and to inhibit its transactivation [12,13]. Only rel-
atively recently has the full length Mule protein been first
identified by two independent research groups. Mule was shown
to be involved in the functioning of the ARF tumor suppressor
and consequently named ARF binding protein 1 (ARF-BP1) [2],
and was also found to play a role in the regulation of the Mcl-1
anti-apoptotic protein through ubiquitylation and was conse-
quently named Mule after Mcl-1 ubiquitin ligase E3 [11]. Other
substrates of Mule have since been discovered and include his-
tones [14], the c-Myc [15] and N-Myc [16] oncoproteins, the
Cdc6 component of pre-replication complexes[17], TopBP1 topoi-
somerase II binding protein[18], DNA polymerase B [19], Miz1
transcription factor [20] and the Rev-erba heme receptor [21].

2. Mule functions in regulation of cell cycle progression

p53 plays a central role in the regulation of the cellular DNA
damage response [22-24]. In unstressed cells the level of p53 is
very low since it is down-regulated, mainly through Mdm2 ubiqui-
tylation and consequent proteasomal degradation [22,25-28]. DNA
damage induces accumulation of the Mdm2 inhibitor ARF (also
known as p14 in human cells and p19 in mouse cells) that conse-
quently leads to p53 accumulation and activation of the DNA

damage response [29]. However, it was also noted that ARF plays
a p53-independent tumor suppressor function since it can also in-
duce proliferation delay in cells that lack a functional p53 or p21
[30-32]. In an attempt to investigate the p53-independent role of
ARF, Wei Gu’s laboratory first over-expressed and then pulled
down tagged ARF from mammalian cells and mass spectrometry
analysis of the proteins identified Mule as a major ARF binding
partner [2]. Since it is known that ARF regulates p53 levels, they
suggested that Mule is a mediator of the ARF effect on p53. They
further demonstrated that Mule directly ubiquitylates the p53 pro-
tein and thus promotes its proteasomal degradation and that ARF
is a strong inhibitor of Mule ubiquitylation activity [2]. This is a
very important finding that mechanistically links Mule to the
DNA damage response.

3. The role of Mule in DNA repair and maintenance of genome
stability

Intriguingly, besides the role in the regulation of p53 levels,
Mule was also identified as a major player involved in regulation
of base excision repair (BER) proteins. BER enzymes are involved
in the processing of a wide spectrum of endogenous and exogenous
DNA lesions, including sites of base loss, non-bulky base lesions
and DNA single strand breaks (SSBs) of different complexity [33]
and alterations in BER lead to genomic instability and cancer (re-
viewed in [34]). BER is initiated by damage specific DNA glycosy-
lases that recognize and release the corrupted base by hydrolysis
of the N-glycosylic bond linking the DNA base to the sugar phos-
phate backbone. The arising abasic site (AP-site) is further pro-
cessed by AP-endonuclease 1 that cleaves the phosphodiester
bond 5'- to the AP-site, generating a SSB with a 5’-sugar phosphate.
This SSB is then repaired by a DNA repair complex that includes
DNA polymerase B (Pol B), XRCC1 and DNA ligase Illa (Lig 3). Pol
B possesses AP lyase activity that removes the 5’-sugar phosphate
and also, functioning as a DNA polymerase, adds one nucleotide to
the 3’-end of the arising single-nucleotide gap. Finally, Lig 3 seals
the DNA ends, therefore accomplishing DNA repair (reviewed in
[33]). This pathway is commonly referred to as the short patch
BER pathway, through which human cells are accomplishing the
majority of BER [35,36].
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Fig. 2. Regulation of BER by Mule and ARF. If not required for DNA repair, Pol B is ubiquitylated by Mule that is then a target for CHIP mediated polyubiquitylation and
subsequent degradation by the proteasome (left side of scheme). However after detection of DNA damage, ARF is accumulated and it inhibits the activity of Mule, thus
reducing Pol B degradation and up regulating DNA repair (right side of scheme). The repair of DNA damage will also result in a decreased release of ARF, with a concomitant
increased activity of Mule that will down regulate Pol B levels. A new adjustment cycle will therefore begin on the detection of increased levels of DNA damage.

We have recently demonstrated that Mule is playing an impor-
tant role in the regulation of the cellular levels of Pol B, the central
component of the BER pathway [19]. Whilst searching for an E3
ubiquitin ligase responsible for regulation of Pol B levels, we puri-
fied both the Mule and CHIP E3 ubiquitin ligases as the major E3
activities ubiquitylating Pol B in human cells. We found that Mule
protein is responsible for monoubiquitylation of Pol B that is
further targeted for proteasomal degradation via polyubiquityla-
tion by CHIP [19]. Consistent with an earlier finding on the regula-
tion of p53 by Mule [2], we showed that an siRNA knockdown of
Mule led to an elevation of Pol B protein levels. Moreover, Mule-
knockdown cells repair H,0,-induced DNA damage significantly
faster than control cells, and the effect of ARF knockdown was
entirely the opposite, confirming that ARF is mediating Mule
activity in response to DNA damage [19].

We have proposed that since endogenous DNA damage is
always occurring, the steady state levels of Pol B required for effi-
cient DNA repair are regulated by Mule ubiquitylation, which is
controlled by DNA damage through the release of ARF (Fig. 2). In
unstressed cells at low levels of endogenous DNA damage, there
is no requirement for high levels of Pol B, which is why the vast
majority of newly synthesized Pol B is degraded by Mule and CHIP
(Fig. 2, Active Mule). As long as DNA damage is detected, ARF,
whose protein levels in unstressed cells are very low [37], is
accumulated [38] that inhibits Mule activity. This in turn will lead
to a reduced rate of Pol B monoubiquitylation by Mule and conse-
quently a reduced CHIP promoted degradation of Pol B (Fig. 2,
Inactive Mule). The concomitant accumulation of Pol B will lead
to increased DNA damage repair, as it has been previously demon-
strated that resistance to DNA damaging agents correlates with the
cellular level of Pol B [39]. Activation of DNA repair will result in a
reduced level of DNA lesions, reduced release of ARF, activation of

Mule and ubiquitylation of Pol B. This cycle is repeated constantly
to adjust the repair capability of cells with the amount of DNA
damage. Following acute DNA damage, a sharp accumulation of
ARF will lead to the inhibition of Mule activity and thus elevated
levels of Pol B in the cytoplasm where Mule is mainly localized
[40]. The consequent accumulation of Pol B in the nucleus enables
to efficiently repair the amount of excessive DNA lesions.

4. Concluding remarks

Although data on the role of ARF and Mule in controlling DNA
replication timing and mediating BER are fragmented, a very inter-
esting picture on the role of these two proteins in coordinating BER
and DNA replication is emerging (Fig. 3). We propose that the
amount of ARF released in response to DNA damage is proportional
to the extent of the DNA damage. This would lead to a quantifiable
increase of DNA repair by inhibiting Mule activity and at the same
time would cause the proportional delay in initiation of replication
by inhibiting the major p53 suppressors, Mule and Mdm2. This
would allow enough time to accomplish DNA repair before replica-
tion starts. This regulatory loop is self-adjusted since a drop in DNA
damage through DNA repair would result in a reduction in the
amount of ARF, activation of Mule and Mdm2 and resumption of
replication.

Considering the significant impact that Mule has on the stability
of DNA repair proteins as well as transcription factors, many
researchers have proposed that Mule protein levels may be differ-
ent in cancer cells compared to normal tissues. Indeed, it was
found that Mule expression levels are elevated in a high percentage
of tumor cell lines. Tests of various primary colon cancer cells de-
rived from different patients have shown that levels of Mule mRNA
correlate with the colon cancer development stage, i.e., almost no
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Fig. 3. Mule and ARF coordinate base excision repair and replication. BER and DNA
replication delay are regulated by the same proteins. Detection of DNA damage
results in accumulation of ARF [1], which activates two cellular processes. By
inhibiting Mule it stabilises BER proteins [3] and activates DNA repair [4]. At the
same time, inhibition of Mule [2] and Mdm?2 [6] lead to an accumulation of p53 [7]
and results in cell cycle delay [8]. After DNA repair is accomplished [5], the
reduction of DNA damage initiates a reverse cycle by reducing DNA repair and
releasing the cell for replication.

Mule mRNA was detected in normal cells whereas in adenomas
and adenocarcinomas the gene expression was elevated by
approximately 30% and 50%, respectively. In addition, it was also
shown that Mule mRNA levels are comparatively high in many
lung and breast [15], as well as in cervix, stomach and biliary duct
cancer cell lines [41]. The importance of the mule gene in colon
cancer development was also confirmed by Yoon et al. as expres-
sion of this gene was found to be at a moderate or high level in
approximately 40% of colon carcinoma tissues (samples from 70
patients were tested) compared to non-tumor colon. Importantly,
Mule and p53 levels were found to inversely correlate in the vast
majority of colon cancer tissues tested [41]. Furthermore, Chen and
co-authors [42] were able to show that Mule protein depletion
represses proliferation of breast cancer cell lines characterized by
mutations in the p53 gene.

We speculate that overexpression of Mule in some cancer cells
might be the primary reason for carcinogenesis progression be-
cause it does deregulate p53 levels and consequently abolishes
p53-dependent responses to genotoxic stress. This model predicts
that inhibition of Mule in such cells should have a therapeutic
effect.
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