
Theoretical Computer Science 40 (1985) 237-243
North-Holland

237

O N B O U N D E D Q U E R Y M A C H I N E S *

Jose L. B A L C ~ A R
Facultat d'lnformdtica, Universitat Polit~cnica de Barcelona, Barcelona, 34, Spain

Ronald V. BOOK
Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.

Uwe SCHONING
Institut fiir lnformatik, Universitiit Stuttgart, D.7000 Stuttgart I, Fed. Rep. Germany

Communicated by M.S. Paterson
Received April 1984
Revised January 1985

Abstract. Simple proofs are given for each of the following results: (a) P = PSPACE if and only
if, for every set A, P(A) = PQUERY(A) (Selman et al., 1983); (b) NP = PSPACE if and only if, for
every set A, NP(A) = NPQUERY(S) (Book, 1981); (c) PH = PSPACE if and only if, for every set
A, PH(A) = PQH(A) (Book and Wrathall, 1981); (d) PH = PSPACE if and only if, for every sparse
set S, PH(S) = PQH(S) ffi P S P A C E (S) (BalcAzar et al., 1986; Long and Selman, 1986).

1. Introduction

Is the union of the polynomial-time hierarchy equal to PSPACE? This question
was considered by Book and Wrathall [4] in the context of relativizations of
complexity classes. They showed that there was a restricted relativization of
PSPACE(), denoted PQH() , such that the union of the polynomial-time hierarchy
(PH) is equal to PSPACE if and only if, for every set A, the union of the polynomial-
time hierarchy relative to A (PH(A)) is equal to PQH(A). The proofs in [4] depended
on language-theoretic characterizations of classes of the form PH(A) and PQH(A)
and, so, were not accessible to many of those who are interested in complexity-
bounded reducibilities.

In this article we give new characterizations of classes of the form PQUERY(A),
NPQUERY(A), and PQH(A) in terms of the P()-, NP()-, and PH()-operators,
respectively, and then give simple proofs of the results in [2], [4], and [10] having
to do with the "P = ? PSPACE", "NP = ? PSPACE", and "PH = ? PSPACE" problems.
Recently, it has been shown [1, 7] that PH is equal to PSPACE if and only if, for
every sparse set S, PH(S) is equal to PSPACE(S). We give a new and simple proof
of this fact after showing that, for every sparse set S, PSPACE(S) -" P Q H (S) --- A2PQ(s).

* This research was supported in part by the U.S.A.-Spanish Joint Committee for Education and
Cultural Affairs, by the Deutsche Forschungsgemeinschaft, and by the National Science Foundation
under Grant No. DCR83-12472.

0304-3975/85/$3.30 © 1985, Elsevier" Science Publishers B.V. (North-Holland)

238 J.L. Balcdzar, R.V. Book, U. Sch6ning

It is assumed that the readeris familiar with the basic literature on relativizations
of P, NP, PSPACE, etc., and with the polynomial-time hierarchy (see [11, 12]). Where
we refer to the language SAT the reader may substitute any set that is ~< xP-complete
for NP; similarly, where we refer to the language QBF the reader may substitute
any set that is ~<P-complete for PSPACE.

For a string w, Iwl denotes the length of w. For a finite set S, Ilsll denotes the
cardinality of S.

Let < denote any standard polynomial-time computable total order defined on
,~*; lexicographic ordering will do. For a finite set S c Z * , say S={yl , . . . ,yn}
where i<j implies Yi<Yj, let (S)=%y1% . . . %yn% where % is a symbol not in
Z. Let (~J)= %. We consider (,) to be an encoding function. Notice that if S e ,~*
is a finite set and y e ,~*, then the predicate "y is in S" can be computed in linear
time from the inputs y and (S). We use this same notation for pairing functions so
that (x~ , . . . , x,) denotes ({x~, . . . , x,}) when each x~ is in ,~*, and (x, S) denotes
({x}~S) when xeZ* and S c £* with S being finite.

2. Bounded query machines

Here we define the restricted relativizations in terms of the corresponding reduc-
tion classes and provide new characterizations of the reduction classes.

Definition 2.1. For every set A, let PQUERY(A) (NPQUERY(A)) be the class of
languages L ~ PSPACE(A) such that there is a deterministic (respectively nondeter-
ministic) polynomial space-bounded oracle machine M with the following
properties:

(i) M recognizes L relative to A, and
(ii) there is a polynomial p such that for all x, in every computation of M on x

there are at most p(Ixl) oracle queries.

Reduction classes of the form PQUERY(A) and NPQuERY(A) are invariant under
the following changes in the definition:

(a) 'in every computation' is replaced by "in some accepting computation',
(b) 'in every computation" is replaced by 'in every accepting computation'.
The following characterization of reduction classes of the form PQUERY(A) will

be useful.

Lemma 2.2. For every set A, PQUERv(A)=P(QBF~A) and NPQuERY(A)=
NP(QBF~A) .

Proof. The fact that PQUERY(A)_~P(QBF~A) is immediate since QBF~ PSPACE
and P(PSPACE) = PSPACE.

Let L~ PQUERY(A) be witnessed by a machine M~ that uses at most q(n) oracle
queries in any computation and uses p(n) work space, where p(n) and q(n) are

On bounded query machines 239

polynomials. Since M1 is deterministic and uses at most p(n) work space, we can
assume that every computation of M1 halts and is either accepting or rejecting.
Thus, for any configuration I there is a unique query either accepting or rejecting
configuration J reachable from I without querying the oracle. Further, there is a
deterministic transducer T1 that on input I will output J and T~ needs use only
polynomial work space.

Let B={(I , x)J I is a configuration of M and x is a prefix of the unique query
or accepting or rejecting configuration reachable from I without querying the oracle}.
Clearly, B ~ PSPACE and so B <~ P QBF. A deterministic polynomial time-bounded
oracle transducer T2 that uses binary search can simulate T~ by computing relative
to QBF.

Now, the number of oracle queries that M~ makes in any computation on an
input x is at most q(Jx[). Thus, a deterministic polynomial time-bounded oracle
machine M2 can simulate M~ if relative to QBF@A; it generates query (either
accepting or rejecting) configurations by simulating T2 relative to QBF and then
queries the oracle about membership in A for the appropriate string encoded in the
query configuration. Such a machine M2 witnesses L's membership in P(QBF@ A).

The argument in the nondeterministic case is similar but simpler. If M1 witnesses
L ~ NPQuERv(A), then consider a nondeterministic polynomial time-bounded oracle
transducer that, given nonquery configuration I, will nondeterministically guess a
query either accepting or rejecting configuration J and then deterministically check
relative to QBF whether a computation of M~ reaches J from I without querying
the oracle. A nondeterministic polynomial time-bounded machine M: can simulate
M~ by computing relative to QBF@ A and using T~. []

A characterization of the reduction classes NPQuERY(A) using the notions of
formal language theory was given in [2].

The following results show the usefulness of the notions of 'PQUERY()' and
'NPQUERY()'.

Theorem 2.3. (a) P = PSPACE if and only if, for every set A, P(A) = PQUERY(A) [10].
(b) NP = PSPACE if and only if, for every set A, NP(A) = NPQuERY(A) [2].

Proof. Since P(0)=P, PQUERY(0)=PSPACE, NP(0)=NP, and NPQUERY(0)=
PSPACE, the proofs from right to left are trivial. To prove (a), note that Lemma
2.2(a) shows that, for every set A, PQUERY(A) = P(QBF~ A). Under the hypothesis
P= PSPACE, QBF¢ P so that PQOERY(A) = P(QBF~A) _c P(A). The result follows
since P(A) c_ PQOERV(A). The proof of (b) is similar. []

The characterization of PQUERv(A) as P(QBF~A) suggests similar operators.
Book, Long and Selman [3] and Long [6] have used the operator P(SAT~A). In
studying the random oracle hypothesis, Kurtz [5] has shown that PQUERV(A) and
P(SAT~ A) have similar properties, a fact that is not surprising when one sees that
PQUERY(A) = P(QBF@ A).

240 ZL. Balcdzar, R.V. Book, U. Sch6ning

The polynomial-time hierarchy relative to a set A can be obtained by beginning
with NP(A) and iterating the NP() operator. That is, ,YP(A)= NP(A) and, for
i > 0, 2;P+~(A) -- N P (~ (A)) -- [..J {NP(B) [B ~ 2~P(A)}. Book and Wrathall [4] intro-
duced the 'polynomial-query hierarchy relative to A' by using the NPQUERY()
operator.

Definition 2.4. Let A be a set. Define 2 ;~(A) = NPQuERY(A), and for each integer
i > 0 define , ~ (A) = N P Q u E R Y (, ~ (A)) . For each i > 0 , define H ~ (A) =
co-,Y~(A) and A~P~+~(A) = PQUERY(,~ ~PQ(A)), and define Axe(A)= PQUERY(A). The
structure {(A~PQ(A), 2;~PQ(A), H ~ (A) } i ~ is the polynomial-query hierarchy relative
to A. Define PQH(A) = [..)i~ Z ~ (A) .

For every A, PSPACE(A) = [..]k;~ 1 DSPACE(rig, A) = [-~k~,l NSPACE(n k, A) =
co-PsPACE(A) [9], SO that PQUERY(0)=NPQuERY(O)=PQH(O)=PspAcE(0)=
PSPACE.

The following result will be useful.

Lemma 2.5. For every i >>- 1 and every set A, ,T, iPQ(A) = 2~P(QBF~ A). Thus, for every
set A, PQH(A) = P H (Q B F ~ A).

The proof of Lemma 2.5 is by induction on i. The initial step is Lemma 2.2. The
details are left to the reader.

Lemma 2.5 allows us to prove the next result which was first established in [4].
The proof is just l ike that of Theorem 2.3.

Theorem 2.6. PH = PSPACE i f and only if, for every set A, PH(A) = PQH(A).

Theorems 2.3 and 2.6 represent the first examples of 'positive relativizations' of
questions about the comparison of complexity classes. If there exists a set A such
that P(A) # PQUERY(A) (NP(A) # NPQuERv(A), PH(A) # PQH(A)), then P
PSPACE (respectively, NP # PSPACE, PH # PSPACE). If for every set A (in particular,
A=t~), a (A)= PQUERY(A) (NP(A)= NPQuERY(A), a n (A) = PQH(A)), then P =

PSPACE (respectively, NP = PSPACE, PH = PSPACE).

3. PH versus PSPACE

Recall that a set S is sparse if there is a polynomial p such "that, for all n,
II{x Sllxl< n}ll p(n). Long and Selman [7] and, independently, the present
authors [1] have shown that PH = PSPACE if and only if, for every sparse set S,
PH(S) = PSpACE(S). Now, the empty set is sparse so that from Theorem 2.6 we see
that PH = PSPACE if and only if, for every sparse set S, P H (S) = PQH(S). The
relationship between these results becomes clear once we have shown that, for every
sparse set S, PSPACE(S)= PQH(S)= A2PQ(s).

On bounded query machines 241

For any set A, let enumA(0") = ({x ~ A[[x{ <. n}) and let prefix(A) = {(x, 0")lthere
exists y such that [xy[= n and xy ~ A}.

For any set A, prefix(A) ~ NP(A). Furthermore, it is clear that if S is sparse, then
there is a deterministic polynomial time-bounded oracle transducer that computes
the function 0"~->enums(0 ~) when the set prefix(S) is used as the oracle set (see
[6] or [8]).

Lemma 3.1. I f S is a sparse set, then PSPACE(S)= PQoERY(prefix(S))= PQH(S)=

aT(s).

Proof. Let M~ be a deterministic oracle machine that witnesses L ~ PSPACE(S) and
uses workspace at most p(n) for some polynomial p. Let M2 be a deterministic
oracle machine that on input x, first computes enums(0 p<l~l)) and then simulates
Ml's computation on x relative to S by querying the list enums(0 p(Ixl)) instead of
the oracle. Clearly, M2 witnesses L~PQuERY(prefix(S)). Thus, PSPACE(S)_
PQUERv(prefix(S)).

Since prefix(S) ~ NP(S) and S ~ NP(S), PQtmRY(prefix(S)) ~ PQUERY(NP(S))
PQUERY(NPQuERY(S)) = A2r~(S). Since A ~ (S) c_ PQH(S)_c PSPACE(S), we have
PSPACE(S) = PQVERv(prefix(S)) = PQH(S) = A2I'Q(S). []

The technique used in the proof of Lemma 3.1 has been used by a variety of
authors. Of particular interest are the papers by Mahaney [8] and Long [6].

Combining Lemma 3.1 and Proposition 2.6, we have [1, Theorem 3.3] and [7,
Proposition 3.13].

Theorem 3.2. The following equalities are equivalent:
(a) PH = PSPACE;
(b) for every sparse set S, PH(S)= PSPACE(S);
(c) for every sparse set S, PH(S) = PQH(S);
(d) for every sparse set S, PH(S) = A2PQ(s).

It is known [2] that there is a sparse set S such that ,Y~(S)# A ~ (S) and so,
,Y~(S) # PQH(S). Thus, Theorem 3.2 cannot be improved by substituting ~ (S)
for A T (S) in part (d).

Assume that QBF is self-reducible and <~-complete for PSl'ACE. It is clear that,
for every set A, A2PQ(A) = A~(QBF~A). Thus, part (d) of Theorem 3.2 is equivalent
to the following statement: for every sparse set S, QBF~ PH(S). It is shown in [1]
that PH = PSPACE if and only if there exists a sparse set S such that QBF~ PH(S).
Thus, either for every sparse S, QBF~ PH(S), or for every sparse S, QBF~ PH(S).
Hence, PH # PSPACE if and only if, for every sparse set S, PH(S) # PSPACE(S).

242 J.L. Balcdzar, R.V. Book, U. Schfning

4. Restricting NPQuERY()

Book, Long and Selman [3] have considered restrictions on the NP()-operator
in order to obtain positive relativizations of the "P =.9 NP" problem. Here we
consider similar restrictions of the NPQUERY()-operator.

For oracle machine M, oracle set A, and input x, let Q(M, A, x)= {y I in some
computation of M on x relative to A, the oracle is queried about y}.

For any set A, let NPB(A)={Llthere is a nondeterministic polynomial time-
bounded oracle machine M witnessing L~ NP(A) and a polynomial q such that,
for all x, [[Q(M, A,x)ll<~q(Ixl)}.

It is shown in [3] that P = NP if and only if, for all sets A, P(A) = NPB(A). Long
[6] has extensively investigated the NPB()-operator.

For any set .4, let NPQUERYB(A)={Llthere is a nondeterministic polynomial
query-bounded oracle machine M witnessing L ~ NPQUERY(A) and a polynomial
q such that, for all x, [[Q(M, A, x)ll< q(Ixl)}.

It is noted in [3] that, for every set A, NPQUERYB(A)= PQUERY(A). Also, one
can prove this using Savitch's Theorem [8]. Since NPQUERY(A) = N P (Q B F ~ A) by
Lamina 2.2, we are led to ask whether NPQuERYB(A)= NPB(QBF~ A).

It is shown in [3] that, for every set A, P(A)~ NPB(A)c_ P(SAT~ A). Thus, for
every set A, PQUERY(A) = P (Q B F ~ A) _ NPB(QBF~A) c P (S A T ~ Q B F ~ A) .
Since SATe N P _ PSPACE and QBF is <~TP-complete for PSPACE, P (S A T ~ Q B F ~
A) = P(Q B F ~ A) = PQUERY(A).

Theorem 4.1. For every set ,4, NPQUERYB(A) = NPB(QBF@ A) = PQUERY(A).

5. Remarks

The operators PQUERY() , NPQUERY() , and PQH() were introduced in [2] and
[4] in the context of language-theoretic representations of complexity classes. Each
of these operators is a restriction of the PSPACE()-operator that limits the number
of queries that a polynomial space-bounded oracle machine can make in a computa-
tion and, hence, limits the amount of information that the machine can obtain from
the oracle set. The interest in these operators is based on their use in 'positive
relativizations' of the questions "p - - .9 P S P A C E " , "NP = 9. PSPACE", and
"PH = ? PSPACE", that is, in Theorems 2.3 and 2.4. In the present paper, the methods
used to prove the technical lemmas leading to Theorems 2.3 and 2.4 represent a
substantialeconomy of effort over the methods used in the original papers. The
same thing can be said about Lemma 3.1 which, when combined with Theorem 2.4,
yields a very simple proof of Theorem 3.2.

In Theorem 3.2 the statement "for every sparse set S, PH(S)= PSPACE(S)" does
not involve restricting the access that an oracle machine has to the oracle set; instead
the oracle set is forced to be 'small', that is, to have low density. Theorem 3.2

On bounded query machines 243

appears to be the first place where a positive relativization is obtained by either
restricting the size of the oracle set (the equivalence of parts (a) and (b) of Theorem
3.2) or restricting access to the oracle (the equivalence of parts (a) and (c) or of
parts (a) and (d)). Lemma 3.1 shows that in the case of the PSpACE()-operator,
restricting size implies restricting access.

Theorems 2.3, 2.6, and 3.2 represent major steps in the study of restricted
reducibilities and positive relativizations of questions about complexity classes. For
the reader whose primary interest is in this general theme, this paper offers easy
access to some of the main results. After studying the proofs in the present paper,
such a reader may wish to return to [2], [4], and [10] since there is a great deal
more information about the operators PQUERY(), NPQUERY(), and PQH() in
those papers.

References

[I] J. BalcAzar, 11. Book and U. Schfning, The polynomial-time hierarchy and sparse oracles, 1 Assoc
Comput. MacK, to appear.

[2] R. Book, Bounded query machines: On NP and PSPACE, Theoret. Comput. Sc/. I$ (1981) 27-39.
[3]]I. Book, T. Long and A. Selman, Quantitative relativizations of complexity classes, S I A M I Comput.

13 (1984) 461-487.
[4] R. Book and C. Wrathall, Bounded query machines: On NP() and NPQUERY(), Theoret. Comput.

Sci. 15 (1981) 41-50.
[5] S. Kurtz, On the random oracle hypothesis, Inform. and Control 57 (1983) 40-47.
[6] T. Long, On restricting the size of oracles compared with restricting access to oracles, SIAM 1

Comput. 14 (1985).
[7] T. Long and A. Selman, Relativizing complexity classes with sparse oracles, i Assoc. Comput.

MacK, to appear.
[8]. S. Mahaney, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis, 1

Comput. System Sci. 25 (1982) 130-143.
[9] W. Savitch, Relationships between deterministic and nondeterministic space complexities, J. Comput.

System Sci. 4 (1970) 177-192.
[10] A. Selman, Xu Mei-rui and R. Book, Positive relativizations of comple~ty classes, SIAM1 Comput.

12 (1983) 565-579.
[11] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. S~ 3 (1976) 1-22.
[12] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret. Comput. ScL 3 (1976) 23-33.

