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Abstract. Simple proofs are given for each of the following results: (a) P = PSPACE if and only 
if, for every set A, P(A) = PQUERY(A) (Selman et al., 1983); (b) NP = PSPACE if and only if, for 
every set A, NP(A) = NPQUERY(S) (Book, 1981); (c) PH = PSPACE if and only if, for every set 
A, PH(A) = PQH(A) (Book and Wrathall, 1981); (d) PH = PSPACE if and only if, for every sparse 
set S, PH(S) = PQH(S) ffi P S P A C E ( S )  (BalcAzar et al., 1986; Long and Selman, 1986). 

1. Introduction 

Is the union of the polynomial-time hierarchy equal to PSPACE? This question 
was considered by Book and Wrathall [4] in the context of relativizations of 
complexity classes. They showed that there was a restricted relativization of 
PSPACE(), denoted PQH() ,  such that the union of the polynomial-time hierarchy 
(PH) is equal to PSPACE if and only if, for every set A, the union of the polynomial- 
time hierarchy relative to A (PH(A)) is equal to PQH(A). The proofs in [4] depended 
on language-theoretic characterizations of classes of the form PH(A) and PQH(A) 
and, so, were not accessible to many of those who are interested in complexity- 
bounded reducibilities. 

In this article we give new characterizations of classes of the form PQUERY(A), 
NPQUERY(A), and PQH(A) in terms of the P( )-, NP( )-, and PH( )-operators, 
respectively, and then give simple proofs of the results in [2], [4], and [10] having 
to do with the "P = ? PSPACE", "NP = ? PSPACE", and "PH = ? PSPACE" problems. 
Recently, it has been shown [1, 7] that PH is equal to PSPACE if and only if, for 
every sparse set S, PH(S) is equal to  PSPACE(S). We give a new and simple proof 
of this fact after showing that, for every sparse set S, PSPACE(S) -" P Q H ( S )  --- A2PQ(s). 
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It is assumed that the readeris familiar with the basic literature on relativizations 
of P, NP, PSPACE, etc., and with the polynomial-time hierarchy (see [ 11, 12]). Where 
we refer to the language SAT the reader may substitute any set that is ~< xP-complete 
for NP; similarly, where we refer to the language QBF the reader may substitute 
any set that is ~<P-complete for PSPACE. 

For a string w, Iwl denotes the length of w. For a finite set S, Ilsll denotes the 
cardinality of S. 

Let < denote any standard polynomial-time computable total order defined on 
,~*; lexicographic ordering will do. For a finite set S c Z * ,  say S={yl , . . . ,yn}  
where i<j implies Yi<Yj, let (S)=%y1% . . .  %yn% where % is a symbol not in 
Z. Let (~J)= %. We consider ( , )  to be an encoding function. Notice that if S e ,~* 
is a finite set and y e ,~*, then the predicate "y is in S" can be computed in linear 
time from the inputs y and (S). We use this same notation for pairing functions so 
that (x~ , . . . ,  x,) denotes ({x~, . . . ,  x,}) when each x~ is in ,~*, and (x, S) denotes 
({x}~S) when xeZ*  and S c  £*  with S being finite. 

2. Bounded query machines 

Here we define the restricted relativizations in terms of the corresponding reduc- 
tion classes and provide new characterizations of the reduction classes. 

Definition 2.1. For every set A, let PQUERY(A) (NPQUERY(A)) be the class of 
languages L ~ PSPACE(A) such that there is a deterministic (respectively nondeter- 
ministic) polynomial space-bounded oracle machine M with the following 
properties: 

(i) M recognizes L relative to A, and 
(ii) there is a polynomial p such that for all x, in every computation of M on x 

there are at most p(Ixl) oracle queries. 

Reduction classes of the form PQUERY(A) and NPQuERY(A) are invariant under 
the following changes in the definition: 

(a) 'in every computation' is replaced by "in some accepting computation', 
(b) 'in every computation" is replaced by 'in every accepting computation'. 
The following characterization of reduction classes of the form PQUERY(A) will 

be useful. 

Lemma 2.2. For every set A, PQUERv(A)=P(QBF~A) and NPQuERY(A)= 
NP(QBF~A) .  

Proof. The fact that PQUERY(A)_~P(QBF~A) is immediate since QBF~ PSPACE 
and P(PSPACE) = PSPACE. 

Let L~ PQUERY(A) be witnessed by a machine M~ that uses at most q(n) oracle 
queries in any computation and uses p(n) work space, where p(n) and q(n) are 
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polynomials. Since M1 is deterministic and uses at most p(n) work space, we can 
assume that every computation of M1 halts and is either accepting or rejecting. 
Thus, for any configuration I there is a unique query either accepting or rejecting 
configuration J reachable from I without querying the oracle. Further, there is a 
deterministic transducer T1 that on input I will output J and T~ needs use only 
polynomial work space. 

Let B={( I , x )J I  is a configuration of M and x is a prefix of the unique query 
or accepting or rejecting configuration reachable from I without querying the oracle}. 
Clearly, B ~ PSPACE and so B <~ P QBF. A deterministic polynomial time-bounded 
oracle transducer T2 that uses binary search can simulate T~ by computing relative 
to QBF. 

Now, the number of oracle queries that M~ makes in any computation on an 
input x is at most q(Jx[). Thus, a deterministic polynomial time-bounded oracle 
machine M2 can simulate M~ if relative to QBF@A; it generates query (either 
accepting or rejecting) configurations by simulating T2 relative to QBF and then 
queries the oracle about membership in A for the appropriate string encoded in the 
query configuration. Such a machine M2 witnesses L's membership in P(QBF@ A). 

The argument in the nondeterministic case is similar but simpler. If M1 witnesses 
L ~ NPQuERv(A), then consider a nondeterministic polynomial time-bounded oracle 
transducer that, given nonquery configuration I, will nondeterministically guess a 
query either accepting or rejecting configuration J and then deterministically check 
relative to QBF whether a computation of M~ reaches J from I without querying 
the oracle. A nondeterministic polynomial time-bounded machine M: can simulate 
M~ by computing relative to QBF@ A and using T~. [] 

A characterization of the reduction classes NPQuERY(A) using the notions of 
formal language theory was given in [2]. 

The following results show the usefulness of the notions of 'PQUERY( )' and 
'NPQUERY( )'. 

Theorem 2.3. (a) P = PSPACE if and only if, for every set A, P(A) = PQUERY(A) [10]. 
(b) NP = PSPACE if and only if, for every set A, NP(A) = NPQuERY(A) [2]. 

Proof. Since P(0)=P,  PQUERY(0)=PSPACE, NP(0)=NP,  and NPQUERY(0)= 
PSPACE, the proofs from right to left are trivial. To prove (a), note that Lemma 
2.2(a) shows that, for every set A, PQUERY(A) = P(QBF~ A). Under the hypothesis 
P=  PSPACE, QBF¢ P so that PQOERY(A) = P(QBF~A) _c P(A). The result follows 
since P(A) c_ PQOERV(A). The proof of (b) is similar. [] 

The characterization of PQUERv(A) as P(QBF~A)  suggests similar operators. 
Book, Long and Selman [3] and Long [6] have used the operator P(SAT~A).  In 
studying the random oracle hypothesis, Kurtz [5] has shown that PQUERV(A) and 
P(SAT~ A) have similar properties, a fact that is not surprising when one sees that 
PQUERY(A) = P(QBF@ A). 
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The polynomial-time hierarchy relative to a set A can be obtained by beginning 
with NP(A) and iterating the NP( ) operator. That is, ,YP(A)= NP(A) and, for 
i > 0, 2;P+~(A) -- N P ( ~ ( A ) )  -- [..J {NP(B) [ B ~ 2~P(A)}. Book and Wrathall [4] intro- 
duced the 'polynomial-query hierarchy relative to A' by using the NPQUERY( ) 
operator. 

Definition 2.4. Let A be a set. Define 2 ;~(A)  = NPQuERY(A), and for each integer 
i > 0  define , ~ ( A ) = N P Q u E R Y ( , ~ ( A ) ) .  For each i > 0 ,  define H ~ ( A ) =  
co-,Y~(A) and A~P~+~(A) = PQUERY(,~ ~PQ(A)), and define Axe(A)= PQUERY(A). The 
structure {(A~PQ(A), 2;~PQ(A), H ~ ( A ) } i ~  is the polynomial-query hierarchy relative 
to A. Define PQH(A) = [..)i~ Z ~ ( A ) .  

For every A, PSPACE(A) = [..]k;~ 1 DSPACE( rig, A) = [-~k~,l NSPACE(n k, A) = 
co-PsPACE(A) [9], SO that PQUERY(0)=NPQuERY(O)=PQH(O)=PspAcE(0)= 
PSPACE. 

The following result will be useful. 

Lemma 2.5. For every i >>- 1 and every set A, ,T, iPQ(A) = 2~P(QBF~ A). Thus, for every 
set A, PQH(A) = P H ( Q B F ~  A). 

The proof of Lemma 2.5 is by induction on i. The initial step is Lemma 2.2. The 
details are left to the reader. 

Lemma 2.5 allows us to prove the next result which was first established in [4]. 
The proof is just l ike that of Theorem 2.3. 

Theorem 2.6. PH = PSPACE i f  and only if, for every set A, PH(A) = PQH(A). 

Theorems 2.3 and 2.6 represent the first examples of 'positive relativizations' of 
questions about the comparison of complexity classes. If there exists a set A such 
that P(A) # PQUERY(A) (NP(A) # NPQuERv(A), PH(A) # PQH(A)), then P 
PSPACE (respectively, NP # PSPACE, PH # PSPACE). If for every set A (in particular, 
A=t~), a (A)=  PQUERY(A) (NP(A)= NPQuERY(A), a n ( A ) =  PQH(A)), then P =  

PSPACE (respectively, NP = PSPACE, PH = PSPACE). 

3. PH versus PSPACE 

Recall that a set S is sparse if  there is a polynomial p such "that, for all n, 
II{x Sllxl< n}ll p(n). Long and Selman [7] and, independently, the present 
authors [1] have shown that PH =  PSPACE if and only if, for every sparse set S, 
PH(S) = PSpACE(S). Now, the empty set is sparse so that from Theorem 2.6 we see 
that PH = PSPACE if and only if, for every sparse set S, P H ( S ) =  PQH(S). The 
relationship between these results becomes clear once we have shown that, for every 
sparse set S, PSPACE(S)= PQH(S)=  A2PQ(s). 
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For any set A, let enumA(0") = ({x ~ A[[x{ <. n}) and let prefix(A) = {(x, 0")lthere 
exists y such that [xy[ = n and xy ~ A}. 

For any set A, prefix(A) ~ NP(A). Furthermore, it is clear that if S is sparse, then 
there is a deterministic polynomial time-bounded oracle transducer that computes 
the function 0"~->enums(0 ~) when the set prefix(S) is used as the oracle set (see 
[6] or [8]). 

Lemma 3.1. I f  S is a sparse set, then PSPACE(S)= PQoERY(prefix(S))= PQH(S)= 

aT(s). 

Proof. Let M~ be a deterministic oracle machine that witnesses L ~ PSPACE(S) and 
uses workspace at most p(n)  for some polynomial p. Let M2 be a deterministic 
oracle machine that on input x, first computes enums(0 p<l~l)) and then simulates 
Ml's computation on x relative to S by querying the list enums(0 p(Ixl)) instead of 
the oracle. Clearly, M2 witnesses L~PQuERY(prefix(S)). Thus, PSPACE(S)_ 
PQUERv(prefix(S)). 

Since prefix(S) ~ NP(S) and S ~ NP(S), PQtmRY(prefix(S)) ~ PQUERY(NP(S)) 
PQUERY(NPQuERY(S)) = A2r~(S). Since A ~ ( S )  c_ PQH(S)_c PSPACE(S), we have 
PSPACE(S) = PQVERv(prefix(S)) = PQH(S) = A2I'Q(S). [] 

The technique used in the proof of Lemma 3.1 has been used by a variety of 
authors. Of particular interest are the papers by Mahaney [8] and Long [6]. 

Combining Lemma 3.1 and Proposition 2.6, we have [1, Theorem 3.3] and [7, 
Proposition 3.13]. 

Theorem 3.2. The following equalities are equivalent: 
(a) PH = PSPACE; 
(b) for every sparse set S, PH(S)= PSPACE(S); 
(c) for every sparse set S, PH(S) = PQH(S); 
(d) for every sparse set S, PH(S) = A2PQ(s). 

It is known [2] that there is a sparse set S such that ,Y~(S)#  A ~ ( S )  and so, 
,Y~(S) # PQH(S). Thus, Theorem 3.2 cannot be improved by substituting ~ ( S )  
for A T ( S )  in part (d). 

Assume that QBF is self-reducible and <~-complete for PSl'ACE. It is clear that, 
for every set A, A2PQ(A) = A~(QBF~A). Thus, part (d) of Theorem 3.2 is equivalent 
to the following statement: for every sparse set S, QBF~ PH(S). It is shown in [1] 
that PH = PSPACE if and only if there exists a sparse set S such that QBF~ PH(S). 
Thus, either for every sparse S, QBF~ PH(S), or for every sparse S, QBF~ PH(S). 
Hence, PH # PSPACE if and only if, for every sparse set S, PH(S) # PSPACE(S). 
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4. Restricting NPQuERY( ) 

Book, Long and Selman [3] have considered restrictions on the NP( )-operator 
in order to obtain positive relativizations of the "P =.9 NP" problem. Here we 
consider similar restrictions of the NPQUERY( )-operator. 

For oracle machine M, oracle set A, and input x, let Q(M, A, x)= {y I in some 
computation of M on x relative to A, the oracle is queried about y}. 

For any set A, let NPB(A)={Llthere is a nondeterministic polynomial time- 
bounded oracle machine M witnessing L~ NP(A) and a polynomial q such that, 
for all x, [[Q(M, A,x)ll<~q(Ixl)}. 

It is shown in [3] that P = NP if and only if, for all sets A, P(A) = NPB(A). Long 
[6] has extensively investigated the NPB( )-operator. 

For any set .4, let NPQUERYB(A)={Llthere is a nondeterministic polynomial 
query-bounded oracle machine M witnessing L ~ NPQUERY(A) and a polynomial 
q such that, for all x, [[Q(M, A, x)ll< q(Ixl)}. 

It is noted in [3] that, for every set A, NPQUERYB(A)= PQUERY(A). Also, one 
can prove this using Savitch's Theorem [8]. Since NPQUERY(A) = N P ( Q B F ~  A) by 
Lamina 2.2, we are led to ask whether NPQuERYB(A)= NPB(QBF~ A). 

It is shown in [3] that, for every set A, P(A)~  NPB(A)c_ P(SAT~ A). Thus, for 
every set A, PQUERY(A) = P ( Q B F ~ A ) _  NPB(QBF~A) c P ( S A T ~ Q B F ~ A ) .  
Since SATe N P _  PSPACE and QBF is <~TP-complete for PSPACE, P ( S A T ~ Q B F ~  
A) = P( Q B F ~  A ) = PQUERY(A ). 

Theorem 4.1. For every set ,4, NPQUERYB(A ) = NPB(QBF@ A) = PQUERY(A). 

5. Remarks 

The operators PQUERY() ,  NPQUERY() ,  and PQH( ) were introduced in [2] and 
[4] in the context of language-theoretic representations of complexity classes. Each 
of these operators is a restriction of the PSPACE( )-operator that limits the number 
of queries that a polynomial space-bounded oracle machine can make in a computa- 
tion and, hence, limits the amount of information that the machine can obtain from 
the oracle set. The interest in these operators is based on their use in 'positive 
relativizations' of the questions "p  - -  .9 P S P A C E " ,  "NP = 9. PSPACE", and 
"PH = ? PSPACE", that is, in Theorems 2.3 and 2.4. In the present paper, the methods 
used to prove the technical lemmas leading to Theorems 2.3 and 2.4 represent a 
substantialeconomy of effort over the methods used in the original papers. The 
same thing can be said about Lemma 3.1 which, when combined with Theorem 2.4, 
yields a very simple proof of Theorem 3.2. 

In Theorem 3.2 the statement "for every sparse set S, PH(S)= PSPACE(S)" does 
not involve restricting the access that an oracle machine has to the oracle set; instead 
the oracle set is forced to be 'small', that is, to have low density. Theorem 3.2 
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appears to be the first place where a positive relativization is obtained by either 
restricting the size of the oracle set (the equivalence of  parts (a) and (b) of  Theorem 
3.2) or restricting access to the oracle (the equivalence of parts (a) and (c) or of 
parts (a) and (d)). Lemma 3.1 shows that in the case of the PSpACE( )-operator, 
restricting size implies restricting access. 

Theorems 2.3, 2.6, and 3.2 represent major steps in the study of  restricted 
reducibilities and positive relativizations of questions about complexity classes. For 
the reader whose primary interest is in this general theme, this paper offers easy 
access to some of the main results. After studying the proofs in the present paper, 
such a reader may wish to return to [2], [4], and [10] since there is a great deal 
more information about the operators PQUERY(), NPQUERY(), and PQH( ) in 
those papers. 
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