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A B S T R A C T

This paper introduces a GIS based methodology to generate dynamic process model for the

simulation based analysis of a sensitive rural watershed. The Direct Computer Mapping

(DCM) based solution starts from GIS layers and, via the graph interpretation and graphical

edition of the process network, the expert interface is able to integrate the field experts’

knowledge in the computer aided generation of the simulation model. The methodology

was applied and tested for the Southern catchment basin of Lake Balaton, Hungary. In

the simplified hydrological model the GIS description of nine watercourses, 121 water sec-

tions, 57 small lakes and 20 Lake Balaton compartments were mapped through the expert

interface to the dynamic databases of the DCM model. The hydrological model involved

precipitation, evaporation, transpiration, runoff, infiltration. The COoRdination of INforma-

tion on the Environment (CORINE) land cover based simplified ‘‘land patch” model consid-

ered the effect of meteorological and hydrological scenarios on freshwater resources in the

land patches, rivers and lakes. The first results show that the applied model generation

methodology helps to build complex models, which, after validation can support the anal-

ysis of various land use, with the consideration of environmental aspects.

� 2015 China Agricultural University. Production and hosting by Elsevier B.V. All rights

reserved.
to connect geographic information systems with agent-based
1. Introduction

The integrated multidisciplinary research of complex envi-

ronmental processes and their interactions in sensitive geo-

graphical (e.g. watershed) areas requires new methodologies

and solutions [1]. An early overview about previous develop-

ments of complex environmental modelling methods, involv-

ing hydrological modules, was provided by Melli and Zannetti

[2]. Another comprehensive overview introduced the attempt
dynamic modelling methodologies to simulate ecological and

even social processes [3]. From amongst problem oriented

approaches, the various land use change models have to be

mentioned. Several overviews (e.g. [4,5]) and research papers

(e.g. [6,7]) dealt with this topic. A frequently and still used,

freely available tool is Conversion of Land Use and its Effects

(CLUE), which is a spatially explicit and dynamic land use and

land cover change model [8]. Many frameworks are reviewed

in the paper of Borah and Bera in detail [9], mainly from

mathematical point of views.

Having recognized the need of multi-scale problem solv-

ing, the case-specific models were followed and replaced by

the generally applicable modelling frameworks. These

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inpa.2015.11.001&domain=pdf
http://dx.doi.org/10.1016/j.inpa.2015.11.001
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Notations

Variables

A1i the surface of a given water section, at the aver-

age operating level, ha

A1 surface of the land patch, m2

DEvap total amount of evaporation, considering the gi-

ven surface, m3

DOut amount of water that flows out from the given

land patch, m3

DH1 decrease of water content in the given land patch,

m

DT time step of the simulation, e.g. day

DV1 decrease of water volume in the land patch, m3

DV2 increase of water volume in the connected water

section, m3

EP evaporation, calculated according to Eq. (A1),

mm/day

ET evapotranspiration, calculated according to Eq.

(A3), mm/day

ETP evapotranspiration, mm/day

H initial water content of the land patch, mm

Hmin water level limit of the land patch for sink flow,

mm

Hsink water level limit of the land patch for return flow,

mm

Hsurf water level limit of the land patch for surface flow

(runoff), mm

Hunder water level limit of the land patch for lateral flow,

mm

Klat lateral flow coefficient, l/day

Kret return flow coefficient, l/day

Ksink sink flow coefficient, l/day

Ksurf surface flow coefficient, l/day

Precip daily precipitation from the meteorological data-

base, mm/day

Humid relative humidity of the air from the meteorolog-

ical database, %

P atmospheric pressure from the meteorological

database; hPa

PC plant coefficient (Posza and Stollár, [60]), dimen-

sionless

Rate calculated flow rate from the patch to the respec-

tive water section, m3/day

TAir air temperature from the meteorological data-

base, �C
TWater water temperature from the meteorological data-

base, �C

Predicates

g() a predefined global predicate that refers to the

global data (e.g. time step)

met() a predefined predicate that calls for meteorologi-

cal information from the database

Constants

dt time step of the model, e.g. day

patch_311 name of the prototype, referenced by the actual

elements
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general frameworks, such as MIKE/Système Hydrologique

Européen (MIKE SHE, e.g. [10]), Soil & Water Assessment Tool

(SWAT, e.g. [11]), GISHydro [12] or Watershed Analysis Risk

Management Framework [13] have the ability for the com-

bined consideration of various hydrological processes in

watershed scale. Most of these frameworks were applied for

the investigation of different watershed scale processes.

According to several papers ([14–16]), SWAT seems to be the

best known and most widely used tool.

Implementation and combination of System Dynamics

(SD) is a frequently used method in hydrological modelling.

SD method was originally created in the last century by For-

rester [17] to understand the behaviour of complex systems.

In the past decade, many SD based applications were devel-

oped and combined with GIS tools for hydrological and envi-

ronmental modelling. For example, the most commonly used

SD implementations are STELLA (e.g. [18–24]) and Vensim DSS

(e.g. [25–29]).

Object Modeling System [30] is another modelling frame-

work for building agro-environmental models, developed by

Agricultural Research Service of United States Department

of Agriculture. Within this framework field experts are able

to create components for the model development, next can

parameterize and modify, as well as re-use the model accord-

ing to the requirements [31].
Special characteristics and particular sensitivity of shallow

lakes multiply the problems to be solved in watershedmanage-

ment. In a 1982 paper Somlyódy investigated the Lake Balaton

ecosystem and its modelling aspects [32]. He highlighted on

that time that complex modelling requires to take into account

the processes and interactions both in the watershed and in

the waterbody. A comprehensive overview from that time

was an edited volume on the modelling aspects of shallow lake

eutrophication [33]. One of the most comprehensive works

about Lake Balaton from the past decades was the edited book

of Virág that contains the accumulated knowledge both from

hydrological and ecological points of view [34].

Deep and detailed investigations on hydro-botany and

hydrozoology have been carrying out for many years by the

Balaton Limnological Institute of Hungarian Academy of

Sciences (e.g. [35–38]). Their measurements, in line with the

related experiences justified that phosphorous and phospho-

rous related biological, chemical and physical processes

determine the water quality.

Turning to the methodological background of the

suggested methodology, the functional and structural

approaches in process modelling can be distinguished. The

functional models can usually be described by sets of alge-

braic, differential and/or integral equations (IPDAE, e.g. [39]).

The ‘a priori’ (white box) models can be derived from simple
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first principle elements, and then they are transformed into

various sophisticated mathematical constructs. The ‘a posteri-

ori’ (black box) control models are based on various flexible

mathematical expressions with free parameters to be identi-

fied from the available data. Summarizing the way from the

cognitive model to the computerized solution, first a theoret-

ically well established mathematical construct is composed

that cannot usually be solved analytically. Therefore, next it

is decomposed into the discrete elements of a numerical algo-

rithm, executed by the computer. Nevertheless there is not a

viable, plausible relation between the elements of the cogni-

tive model and the computational algorithm. Considering

the structural approaches, the essential features of process

models are usually represented by network structures. Origi-

nally, networks were designed for the illustration of static

structures, as well as for the steady state or dynamically

changing fluxes along the network routes. However, starting

with the very innovative Petri Net [40], many dynamic net

structures appeared within the framework of the later

appeared General Net Theory [41]. Net models inspired other

avenues for the representation of dynamic processes. In the

past decades, extensive efforts have been made towards the

implementation of the quantitative, time- and event driven

functionalities in the structural models, e.g. in the form of

higher order Quantitative Petri Nets [42,43], Timed Petri Nets

[44], etc.

2. Objective and approach

The objective of this work is to develop a methodology for the

computer aided generation of GIS based dynamic environ-

mental process models, as well as to test it for the simulation

based analysis of a sensitive rural watershed.

In the suggested approach the model building procedure

starts from the GIS layers and through a graph transforma-

tion, generates a process model in sense of Direct Computer

Mapping (DCM). The major components (and the actually

used tools) of the methodology are the followings:
� GIS tool: The structural information about water network

and land patches can be derived from the GIS (actually

QGIS, http://qgis.osgeo.org) maps, consisting of several

polygon and polyline layers, extended by an appended

attribute that describes the network connections. It means

that all of the elements contain a reference to the subse-

quent element of the water network. This provides the

topological information to graphical model, consequently

it is not necessary to apply any other network analyst tool.

� GraphML manipulating tool: Importing of the GIS network

into GraphML format can be solved by the structured

spreadsheet import capability of yEd Graph tool [45]. In

the expert interface these large process networks can be

visualized as graph structures, so the GraphML file format

can be used for the description of the model. This XML-

based format supports the graph structure data exchange,

effectively. In this work the yEd Graph editor is used for the

graphical edition of GraphML, while the functional data

and expressions were added to the structure as the exten-

sions in this GraphML file. Actually, having edited the graph-

ical process model, the prototype elements are added,
containing the local programs of the state and transition

elements, which are parameterized, according to the lan-

guage of Direct Computer Mapping. Next the connections

between the elements are specified. Finally the structural

elements can be filled with the initial data, and parameters.

� General interpreter of DCM kernel: Having prepared the

expert’s input, our general interpreter generates the files

containing the dynamic model from the GraphML descrip-

tion. The underlying process models can be generated

from the same, predefined types of state and transition

elements, connected with standardized connections, fol-

lowing the general feedback architecture of process sys-

tems in sense of Direct Computer Mapping. The state

and transition elements are associatedwith the field speci-

fic local programs, declared in the respective prototype ele-

ments, contained in the so-called expert file. The case

specific knowledge is determined by the actual state, tran-

sition and connection elements, which are described in

the so-called user file. The dynamic partitions of expert

and user files can be executed by the general purpose,

invariant simulation kernel.

� Web based user interface with mapserver: The user can param-

eterize the model through a web-based map interface. The

layers come from GIS description to the mapserver, while

the parameters can be edited according to the model gener-

ated data templates, prepared together with the model.

3. The investigated problem and the applied
method

3.1. GIS elements of the investigated area

Lake Balaton (Fig. 1) is one of the largest shallow freshwater

lakes in Europe with a size of 596 km2 and an average depth

of 3.2 m [46]. Its whole catchment basin is 5774 km2, while

the direct watershed planning sub-area is 3183.3 km2 [47].

There are 20 permanent and 31 periodic watercourses, includ-

ing the most important water supply, River Zala (�45–50% of

the whole yield). The single outflow, Sió Canal has been oper-

ated since 1863.

Description of the water network in the studied area (blue

polylines in Fig. 1) was started from the corresponding shape

files of watercourses, water bodies and sub-watersheds, devel-

oped by the Environmental Protection and Water Management

Research Institute. In this work Quantum GIS (QGIS) software

(http://qgis.osgeo.org) was used for the refinement and editing

of the original shape files. The sections of water network, trans-

formed into model elements, were the followings:

� waterbody of Lake Balaton, compartmentalized into 20

sub-compartment with the detailed characterization of

flows and mixing;

� 121 water sections of the South catchment basin, seg-

mented by the intermediate small fishponds and lakes as

well as by the boarders of sub-watersheds (signed with

black lines in Fig. 1);

� 57 lakes, fishponds, reservoirs and marshes in the South

catchment basin.

http://qgis.osgeo.org
http://qgis.osgeo.org


Fig. 1 – GIS layers of the investigated area (with sub-watersheds, water network, and land patches).

4 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 ( 2 0 1 6 ) 1 –1 6
To take into consideration the land use in computational

models, the CORINE Land Cover (CLC) database [48] is generally

used. For the complete and disjoint covering of the whole

investigated area, the freely available vector data of the

national data set in 1:100.000 scale (CORINE Land Cover 2006

Hungary, coloured patches in Fig. 1) were applied. This data

set was created by the Institute of Geodesy, Cartography and

Remote Sensing, and it was refined in terms of the changes

from 2000 to 2006. It is to be noted, that the 1:50.000 scale data

set [49] is also available for Hungary, however, the granularity of

our model does not require this detailedness. Polygons were

identified with the general three-level CLC nomenclature.

In the composition of the flow structure, built from the

above described water flow segments and lake compartments

of the watershed, the Digital Elevation Model (DEM) was

applied for description of the water network. Regarding the

Lake Balaton compartments, flows with superimposed mix-

ing were modelled between the 20 lake compartments. In

both cases a directed network structure, was described, indi-

cating the outlet water section for each element in the attri-

bute tables of the various layers.

Considering the medium complexity of the model, for the

land patches the following simplification principles were

applied:
- all of the various land patches were represented by a single

land patch in the sub-watersheds, summarizing the spa-

tially fragmented areas of the identical patches in each

subwatershed;

- the hydrological effect of these summarized patches are

distributed and assigned to all elements of the water net-

work in the given sub-watershed (because the description

of the exact spatial distribution of patch originated water

sources is almost impossible, an approximate proportional

distribution was applied, according to the ratio of the lake

perimeter or the double length of the water sections,

related to their sum in the given subwatershed).
3.2. Direct Computer Mapping (DCM) based interpretation
and simulation of process models

Nowadays complex, multidisciplinary and multiscale models

claim for clear and sophisticated coupling of structures and

functions. Multiscale, hybrid processes in biosystems and in

human-built process networks contain more complex ele-

ments and structures, than the theoretically established

mathematical constructs. Moreover, the execution of the

hybrid, discrete/continuous and optionally multiscale models
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is a difficult question, because the usual integrators do not

tolerate the discrete events, while the usual representation

of the continuous processes cannot be embedded into the dis-

crete models conveniently [50]. Another challenge is the

effective combination of quantitative models with rule-

based qualitative knowledge.

Having recognized these difficulties, in our approach,

called Direct Computer Mapping (DCM) of process models

([51,52]) the elements and their connections are mapped onto

an executable process model without using any single specific

mathematical construct. In the recent development of DCM

the experiences coming from the sophisticated analysis of a

broad range of processes are synthesized from cellular

biosystems [53] through technological process units [54], to

sector spanning agri-food process networks [55]. The contin-

uous development of the method is motivated by the studied

actual problems. For example, the recent implementation of

agrifood processes has also been motivated by the ongoing

applications for Recirculating Aquaculture Systems. Based

on these different examples a general set of building and con-

necting elements was recognized, which have the capability

to implement all of the investigated process models. Accord-

ingly, the complex structures and functionalities of the vari-

ous continuous and discrete, as well as quantitative and

qualitative process models can be mapped onto the quite uni-

form state, transition and connection elements (see various

nodes and edges in Fig. 2), while the elements are associated

with locally executable programs.

Explanation of Fig. 2 is the following:

� State elements (ellipses, S), characterize the actual state of

the process;

� Transition elements (rectangles, T), describe the trans-

portations, transformations and rules of the time-driven

or event-driven changes of the process;

� Increasing (solid) and decreasing (dashed) connections,

transport additive measures from the transitions to the

state elements;

� Signalling connections (dotted), carry signs from state to

transition elements and vice versa.
Fig. 2 – Part of a process
The state and transition elements contain slots (small

circles and rectangles) for the lists of parameters (Sp or

Tp), inputs (Si or Ti) and outputs (So or To), as well as ref-

erences for the respective programs (bold names). The local

functionalities of the state and transition elements are

described by the local program codes, defined in the proto-

type elements. Many elements may use identical programs,

declared by the prototype for the given subset of elements.

The connections carry data from an output slot to an input

slot. The slots, the connection elements and the executing

kernel are prepared for lists of optional data triplets d(Data-

Name, DataList, Dimension) where DataList contains the

numerical or symbolic data called DataName with

the respective Dimension. The declarative description of

the general structure and execution of DCM model is

written in Prolog.

The model-driven execution of the process simulation

consists of six cyclically repeated, consecutive steps, as fol-

lows: calculation of the state programs; upgrading of

state? transition connections; upgrading of transitions’

input; calculation of transition programs; upgrading of transi-

tion? state connections; upgrading of state’s input. During

the model-driven simulation, the prescribed spatial and tem-

poral scales are taken into consideration, automatically.
3.3. State and transition prototypes

Model building starts with the determination of the field

specific prototypes for the state and transition elements,

which contain also the local programs of the given (e.g.

hydrological) model. In present study the state prototypes

are the followings:

- Flow sections: describe segments of the various

watercourses;

- Lake compartments: determine the compartmentalized

parts of Lake Balaton;

- Marsh compartments: define the given parts of a

marshland;
net structure in DCM.
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- Fishponds: declare lakes on the catchment that is used

mainly for fishery or fishing;

- 17 kinds of land patches: according to CORINE land cover.

The transition prototypes are responsible for the descrip-

tion of the water transport between the various water sec-

tions and from the various land patches to the connected

water sections, as follows:

- inflow: describes water flow to a lake (compartment);

- outflow: describes the outlet from a lake (compartment);

- flow: passes thewater from one element to the subsequent

one;

- pump: describes the operation of loading or draining into

or from a lake (compartment);

- mixing: describes the flow with a superposed mixing

between two compartments of a lake;

- patch to water: describes the water supply from a given type

of area to the connected elements of the water network.

Functionally, there are 17 kinds of patch_water prototypes,

according to the CORINE nomenclature, that are divided into

7 groups, according to their permeability and evaporation

capacity, determined by soil type and plant covering.

All of the introduced state and transition elements are

associated with their own executable programs, described in

the respective prototypes. The actual elements contain the

necessary initial conditions of the inputs and parameters to

calculate the water balance for the investigated area. The

coherence of the model is given from the discretized dynamic

network of water flows and storages, as well as from the
Fig. 3 – Simplified model of a land patch and its connection with

Theoretical Documentation [56].
complete and disjunct covering of thewhole area by modelled

patches besides the water network. It is to be noted, that

these two parts of the model (coming from the respective

GIS layers) are describedwith structurally identical model ele-

ments in sense of DCM.

The formulation of water balance for land patches con-

nected with the water network is based on the SWAT land

phase description. Accordingly, the initial water content of

the land patches at H1 elevation level (signed with H in

Fig. 3), can be compared with the limit levels (Hmin, Hsink,

Hunder, Hsurf in Fig. 3) and with the elevation level of the

connected flow section level (H2 in Fig. 3). The various water

movements are associated with specific flow coefficients

(Ksink, Kret, Klat, Ksurf in Fig. 3) for the calculation of

changes during a simulation time step.

In the simplified model instead of the sophisticated

expressions of SWAT (considering many unknown parame-

ters as soil structure, slope, etc.) a simple kinetic relationships

were used, containing the additive parts, as follows:

if H > Hsurf then Surface flow = Ksurf*(Hsurf-H);

if H 6 Hsurf and H > Hunder then Lateral flow = Klat*(H-

Hunder);

if H 6 Hunder and H > Hsink then Return flow = Kret*(H-

Hret);

if H 6 H > Hmin then Sink_flow = Ksink*(Hsink-Hmin).

For the detailed parameterization of water sections, lakes

and lake compartments, the necessary data (average depth,

length, average width, area, perimeter, elevation) come from

the GIS layers.
a water section. Derived on the basis of Fig. 0.3 of SWAT2009
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4. Results and discussion

4.1. GIS based generation of the dynamic net model

The state and transition prototype elements give a basis to

generate the water network of lake compartments, water-

courses, lakes, fishponds, reservoirs and marshes, as well as

the various kinds of land patches with their impact on the

water network. Actually, after the graphical edition of proto-

type elements through the yEd graph editor, the prepared

water network and land patch elements can be exported from

the GIS application. Next all of the imported elements can be

initialised and edited, according to their appropriate proto-

types, and filled with the actual data.

For the graphical representation of the model elements, as

well as for editing of the model structure according to the

DCM principles, the freely available desktop application of

yEd graph editor [45] was used. First, the various water sec-

tions and land patches of the GIS layers are transformed into

a simple yEd network (see themiddle example graph in Fig. 4).

In this step the feature of yEd graph editor tool is used, which

allows importing files from spreadsheets. Accordingly, based

on the ‘‘From-To” description in the attribute tables of water

network and land patch layers a simple graph is generated.

In the next step, this simple graph is transformed further to

a DCM process net. It is made by replacing of simple nodes
Fig. 4 – Transformation of GIS elem
for state elements (i.e. flow sections, lake compartments,

marsh compartments, fishponds and 17 kinds of land

patches, represented by ellipses in sense of Fig. 2), as well

as by adding transition elements (i.e. inflows, outflow, flows,

mixing, pumps and the ‘‘from patch to water” elements, rep-

resented by rectangles in sense of Fig. 2) to the structure. The

net structure was completed by drawing connections

between these state and transition elements. Fig. 4 illustrates

the transformation of a small part of a water section, from the

map to the DCM model format.

4.2. Implementation of the elementary models in the local
programs of DCM prototypes

Construction and utilization of a state prototype and a state

element are illustrated by the example of the forest land

patch, where ‘‘patch_311” refers to the forest patch, in the

sense of the CORINE nomenclature. Prototype element of

patch_311 (upper left) and an actually parameterized forest

patch, generated from the prototype (lower right) can be seen

in Fig. 5.

Prototype elements (and also the actual elements, gener-

ated from the prototype) contain an optional number of input

(Si), output (So) and parameter (Sp) slots. Program slots (Spr)

appear only in prototype elements. The program code(s)

declared in the program slots must be formulated with the
ents into DCM model elements.



Fig. 5 – A state prototype and an actual element derived from it.

8 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 ( 2 0 1 6 ) 1 –1 6
variables of input and parameter slots, and they are responsi-

ble to calculate the variables of output slots, with the consid-

eration of some added-on predicates, coming e.g. from the

meteorology database.

The explanation of variables, predicates and constants of

input (Si), output (So), parameter (Sp) and program (Spr) slots,

as well as the (simplified) brief program of the ‘‘patch_311”

prototype, defined by the input, parameter, program and out-

put slots of the given element, written in a declarative Prolog

syntax, can be studied in the Appendix, in detail.

Accordingly, the change in water level of the forest patch

(DH1, content of So1 output slot in Fig. 5), caused by the pre-

cipitation is calculated in every time step of the simulation,

considering the actual meteorological data (TAir, TWater,

Wind, Precip, Humid, P, EP, ET, see Notations). The calculated

change via a connection from the diff slot will increase the

level in the iw slot of the same element in the next time step.

The ow slot replies the area of the patch (transformed from ha

to m2). The content of ow slot is transferred also to the

respective output stream.

To illustrate a transition prototype, the patch_water proto-

type (upper left) and the parameterization for one of its actual

elements (lower right) are shown in Fig. 6.

Similarly to state elements, input, parameter, program,

and output slots are applied in transition elements, signed

with Ti, Tp, Tpr1 . . . Tpr5 and To in Fig. 6. Calculation is

described by the programs, contained in the optional number

of program slots. The program code declared in the program

slots must be formulated with the variables of input and

parameter slots, and they are responsible to calculate the
output variables with the consideration of some added-on

predicates, coming from e.g. the meteorology database. As it

was shown in Fig. 3, considering the initial water content of

the land patch (H), and compared it with the respective limit

values determined by the various zones (Hmin, Hsink,

Hunderr, Hsurf), there are five different cases. In the

Appendix, the brief local program, corresponding to the

signed case IV in Fig. 3 is described.

Accordingly, the change in water level of the forest patch

(DH1), caused by the evapotranspiration, by the water trans-

port from the patch to the connected water section and by

the outflow from the shallow aquifer is calculated in every

time step of the simulation, considering the actual meteoro-

logical data (TAir, TWater, Wind, Precip, Humid, P, EP, ET, see

Notations). Also the volume DV2 of the water source from

the patch to the connected water section is calculated by

the program. The calculated changes are given for the con-

nections in the ‘‘from” and ‘‘to” slots, respectively, while the

report slot transfers the Rate to the output stream (see Fig. 6

output slot).

Direct Computer Mapping (DCM) of process models sup-

ports the GIS based generation of dynamic simulation models

for hydrological and land patch related processes. In the

developed methodology, structural information about water

network and land patches can be derived from the GIS (actu-

ally QGIS) maps. Having edited the graphical process model,

the prototype elements can be added, containing the local

programs of the state and transition elements. It can be fol-

lowed by the parameterization of the actual state and transi-

tion elements according to the semantics and syntax of Direct



Fig. 6 – A transition prototype and an actual element derived from it.
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Computer Mapping. Next, the connections between the ele-

ments can be specified. Finally the structural elements can

be filled with the initial data, and parameters. This methodol-

ogy represents an intermediate solution between the two

mainstreams of the existing approaches, which are the

sophisticated field specific packages on the one hand, and

the interfacing between the independently developed mod-

ules. In our case, the general core of process modelling can

be utilised through the general, but configurable expert and

user interfaces.

4.3. Calibration and validation of the model

For the parameter identification of the model the factual data

of the following time series were applied:

� daily measurements of meteorological data (2004–2014);

� monthly average measured flow rates for River Zala and

for the major Northern inflows (West-transdanubian Envi-

ronment and Water Utilities Departments, 1994–2013);

� monthly averages for Canal Sió outlet flow rates (Middle-

transdanubian Environment and Water Utilities Depart-

ments, 2004–2014).

Considering the large number of the parameters to be

identified, a top-down heuristic strategy with stepwise refine-

ment was used. First, all of the land patches were assumed
being alike (with identical hydrologic parameters) and the

method tried to satisfy the gross water balance of the Lake

with the knowledge of the available, partially measurement

based water balancing data. In the vicinity of the feasible

solution the various land patches were distinguished to

decrease the difference between the measured and calculated

flow rates. These steps were repeated cyclically. During iden-

tification H, Hsurf, Hunder, Hsink, Hmin parameters (in line

with Fig 3) were changed in +-30% ranges around the initially

estimated values. Ksurf, Klat, Kret, Ksink parameters were

changed within 3 orders of magnitude around the initially

estimated values.

With the knowledge of calibrated parameters, the levels of

Lake Balaton, as well as the measured flow rates of Southern

inflows were used for the validation, as follows:

� monthly averages of flow rates for the Southern inflows

(West-transdanubian Environment and Water Utilities

Departments, 1994–2013);

� daily measurements for Lake Balaton level (National

Hydrological Service, www.hydroinfo.hu, 2004–2014).

Regarding the initial conditions of water levels, starting

from rough estimations, after a longer simulation more and

more realistic values were recognised. Accordingly, the case

studies can be started after a previous simulated period. Nev-

ertheless, these kinds of large models with possible new dis-

http://www.hydroinfo.hu


Fig. 7 – Comparison of measured and calculated data for Creek Tetves 2nd section.
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turbances from climatic and other scenarios need a ‘‘never

ending” continuous care of refining identification and valida-

tion. As an example, Fig. 7 illustrates the comparison of mea-

sured and calculated flow rates for a Creek section (2nd

section of Creek Tetves) in the Southern watershed for years

2012–2013.

In Fig. 8 the calculated levels of the twenty Lake Balaton

compartments with an average value of the measurement

station (red line) for 2012–2014 are compared. Orange and

green lines illustrate the largest inlet (River Zala) and the sin-

gle outlet flow (Canal Sió) rates. Combined illustration of

levels and flow rates indicates clearly the response of levels

to the relatively large peaks of inflow and outflow. Both figures

show that according to the recently experienced extreme
Fig. 8 – Comparison of measured and
weather events, an unusually dry year (2012) was followed

by an extraordinarily wet period (2013).

For the determination of the error measure we applied the

formula of mean absolute percentage deviation (MAPD):

MAPD ¼ 1
n

X
i

abs xi � xm
i

� �
xi

� 100 ð1Þ

where

n is the number of data in the time series,

xi is the measured data,

xi
m is the calculated data.

At the present state of development the MAPD value for

the average lake compartment level is 2.7%.
calculated level of Lake Balaton.



Fig. 9 – Dynamic changes of water content of land patches in an example sub-watershed.
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It is to be noted that the sub-models of evaporation and

evapotranspiration were calibrated and validated in the

respective, cited works. However, due to the lack of the

detailed experiments, the initial and characteristic levels

and kinetic parameters (H, Hsurf, Hunder, Hsink, Hmin,

Ksurf, Klat, Kret, Ksink in line with Fig. 3, see Notation) of land

patches could not be finally refined. Accordingly, the final cal-

ibration and validation needs complementary future work

with the already available simulation model. Considering

the future tendency of collecting more and more data from
Fig. 10 – Simulated changes of lake and fish
environmental sensor networks, the utilization of continu-

ously learning models seems to be straightforward.

4.4. Example case studies

The hydrological model was implemented for the Southern

watershed of the Lake Balaton, with the boundary considera-

tion of the other inlets and the single outlet. The hydrological

model took into consideration the meteorology determined

precipitation, evaporation, transpiration, runoff, infiltration,
pond levels in the southern watershed.



Fig. 11 – Comparison of Lake Balaton levels for the situations of following a dry year by a wet one (upper curves) and by a

second dry one (lower curves).
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etc. The CORINE land cover based simplified ‘‘land patch”

model was used for the consideration of the basic natural

and anthropogenic properties (e.g. land use, plant coverage),

relations and empirical observations.

Using the present state of the identified model, the

dynamic changes of various characteristics can be studied.

Initial water content of the various land patches, as well as
Fig. 12 – Comparison of flow rates for the situations of following

(lower curve) (forest patches in the 15th sub-watershed).
the meteorological situations determine the amount of water,

forwarded to the connected water sections. With the prelim-

inarily calibrated model, the change of water content in the

various land patches can be studied. Fig. 9 shows an example,

how the water content of the various land patches in the

example sub-watershed #15 varies during the period of

2012–2014. Fig. 10 reports about the calculated levels of the
a dry year by awet one (upper curve) and by a second dry one
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small lakes, fishponds and reservoirs in the Southern catch-

ment basin during the same period. These water levels were

simulated by the model, considering the water content of

patches and the meteorological conditions.

In another example the model was tested for the prediction

of Lake Balaton compartments’ levels in case of various meteo-

rological situations. For example, the simulation for years 2012

and 2013, the factual data of 2013, were replaced for the data of

the relatively dry year of 2012. As a result, the levels of Lake

Balaton compartments show considerable decrease during this

hypothetically dry simulation period (see Fig. 11). Upper branch

of lines in Fig. 11 shows the levels of the Lake compartments in

case of simulation with the real meteorological data (with an

average 3.5 m level during the two years), while the lower parts

corresponds to the simulation results with two hypothetical dry

years (with an average level of 2.5 m). Furthermore, decreasing

difference can be seen between the various Lake compart-

ments, too. The reason is that due to the lack of precipitation

in year 2012 Canal Sio was not used for the disposal of surplus

water from the Lake. Accordingly, in contrast to the case, when

River Zala and other inflows feed mainly the Western compart-

mentswhile Canal Sio decreases directly the level of the Eastern

compartments, in this situation the levels are more or less bal-

anced than in the original situation were.

In the case study of ‘‘hypothetical dry years”, the flow rates

from the land patches to the connected water sections were

also monitored, individually. Fig. 12 illustrates the compar-

ison of the effects on the water source flow from an example

land patch to the water sections of the given sub-watershed.

It can be seen in the example diagram that the relatively high

peak, caused by the rainy period of the original meteorology

in 2013 is missing and has been replaced by a hypothetical

dry meteorological situation. The study on the individual

water sections and lakes showed the overall consequence

that water sections and small lakes are getting to dry. It is

completely in line with the available observations.
5. Conclusions and outlook

The Direct Computer Mapping (DCM) based methodology pro-

vided a suitable solution for the generation of dynamic simula-

tion models of an environmental system from GIS layers,

integrating the field experts’ knowledge (data, relations, empir-

ical expressions, etc.) for the prediction of the effects of various

meteorological scenarios, flexibly. The method was tested for

the example of the Southern watershed of Lake Balaton.

According to our experiences the coherence of the large

scale model can be given by the dynamic network of water

flows and reservoirs. The completeness can be ensured by

the complete and disjoint covering of the whole area by mod-

elled land patches, corresponding to the typical parts of nat-

ural and human built environment. The complexity of the

large scale and long term processes can be managed by eval-

uating detailed models only for one representative patch from

each class, while the calculation and assessment of the sim-

ilar patches can be solved by simple multiplication rules.

According to our first trials with the developed framework,

the implemented medium complexity hydrological model is

able to predict the effects of various climatic scenarios.
The most important challenge of the future development is

the improvement of calibration and validation by systematic

application of multiscale models with various granularities of

the spatiotemporal decomposition. Also the automatic learning

feedback between the continuous data acquisition based statis-

tical evaluation and the continuously learning ‘a priori’ model

ought to be applied in the further works.
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Appendix A. Examples for the local programs of
patch_311 and patch_water prototypes

The calculations are based on the available empirical

relationships.

A generally accepted expression for the evaporation (EP) of

Lake Balatonwas developed by Antal and Tóth [57]. In ourmodel,

the modified version of the original formula was applied, cor-

rected with a ‘‘seasonal” coefficient by VITUKI [58] as follows:

EP ¼ a � ðP0vapðTwÞ � PvapÞ � ð0:59þ 0:013 �WindÞ ðA1Þ
where

P0vapðTwÞ is the equilibrium vapour pressure in the func-

tion of water temperature, mbar

Pvap is the actual vapour pressure calculated from the rel-

ative air humidity, mbar

‘a’ is a seasonal coefficient, in March: 0.7, in April: 0.8, in

October: 1.3, in November: 1.4, otherwise: 1.

For the calculation of evapotranspiration (ETP), instead of

the more data demanding Penman–Monteith expression,

the heuristic Antal formula [59] was applied, accordingly

ETP ¼ 0:74 � ðP0vapðTwÞ � PvapÞ0:7 1þ Tw
273

� �4:8

ðA2Þ

In the model, refined form (ET) was used, corrected with

the k plant constant andwith the ratio of disponible andmax-

imal water content of the land patch ([60,61]), as follows:

ET ¼ PC �W � ETP ðA3Þ
While

W ¼ total available water� non disponible water
maximal disponible water

¼ H�Hunder
Hsurf �Hunder

ðA4Þ

and PC is the plant constant that depends on territorial and

seasonal factors.

The calculation of water balance depends on the actual

case, marked with I–V in Fig. 3. For example in case IV (high-

lighted with pink in Fig. 3), when

Hunder < H < Hsurf ðA5Þ
the water supply from the given patch to the connected water

is calculated by equation
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DV2 ¼ ðKlat � ðH�HunderÞ þ Kret �Hunder�Hsink
1000

�A1 �DT ðA6Þ
where

A1 is the surface of the given land patch, m2

DT is the time step, day

DV2 is the volume of water source, transported from the

patch to the water section during the time DT, m3

The evapotranspiration is determined by expression

DEvap ¼ H�Hunder
Hsurf �Hunder

� PC � ET
1000

�A1 �DT ðA7Þ

where DEvap is the volume of the evaporated water from the

patch, m3.

The respective Prolog program for the patch_311 prototype

is the following:
m(y,patch_311,

[c(param,dl,[d(location,[Loc],nd),d(surface,[A1i],ha)])],

[i(iw,dl,[d(level,[H],m)])],

[o(ow,dl,[d(surface,[A1],m2),d(level,[H],m)]),

o(diff,dl,[d(level,[DH1],m)])]):-

A1 is A1i*10000,

met(Loc,_,_,_,Precip,_,_,_,_,_),

g(dt,DT),

DH1 is Precip/1000*DT,!.
The Prolog program, describing the patch_water prototype

for the case of (5) is as follows:

v(y,patch_water,

[c(param,dl,

[d(surface_resource,[Hsurf],mm),

d(free_resource,[Hunder],mm),

d(total_resource,[Hsink],mm),

d(minimal_resource,[Hmin],mm),

d(surface_flow_coeff,[Ksurf],1/day),

d(lateral_flow_coeff,[Klat],1/day),

d(return_flow_coeff,[Kret],1/day),

d(sink_flow_coeff,[Ksink],1/day),

d(plant_coeff,[PC],nd)])],

[i(from,dl,[d(surface,[A1],m2),d(level,[H],m)])],

[o(from,dl,[d(level,[DH1],m)]),

o(report,dl,[d(rate,[Rate],nd)]),

o(to,dl,[d(level,[DV2],m)])]):-

H=<Hsurf, H > Hunder,

g(dt,DT),

met(_,TAir,TWater,Wind,Precip,Humid,P,EP,ET,_),

DEvap is (H-Hunder)/(Hsurf-Hunder)*PC*ET/1000*A1*DT,

DV2 is Klat*(H-Hunder)/1000*A1*DT + Kret*(Hunder-Hsin

k)/1000*A1*DT,

DOut is Ksink*(Hsink-Hmin)/1000*A1*DT,

DV1 is (-1)*DV2-DOut-DEvap,

DH1 is DV1/A1,

Rate is DV2/DT,!.
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[34] Virág Á, editor Past and Present of Balaton. Eger: Egri Nyomda
Kft, 1998. (in Hungarian).

[35] Istvánovics V, Herodek S. Estimation of net uptake and
leakage rates of orthophosphate from 32P-uptake kinetics by
a linear force-flow model. Limnol Oceanogr 1995;40(1):17–32.

[36] Istvánovics V, Honti M. Daily monitoring and dynamic
modeling of phytoplankton in Keszthely basin of Balaton (A
fitoplankton napi gyakoriságú monitorozása a Balaton
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Padisák J. Updating water quality targets for shallow Lake
Balaton (Hungary), recovering from eutrophication.
Hydrobiologia 2007;581:305–18.

http://www.sciencedirect.com/science/article/pii/S2212094713000236
http://www.sciencedirect.com/science/article/pii/S2212094713000236
http://www.sciencedirect.com/science/article/pii/S2212094713000236
http://www.sciencedirect.com/science/article/pii/S1364815298000929
http://www.sciencedirect.com/science/article/pii/S1364815298000929
http://naldc.nal.usda.gov/catalog/18875
http://naldc.nal.usda.gov/catalog/18982
http://www.sciencedirect.com/science/article/pii/S0022169408005349
http://www.sciencedirect.com/science/article/pii/S0022169408005349
http://www.sciencedirect.com/science/article/pii/S0022169408005349
http://www.sciencedirect.com/science/article/pii/S1474706510000343
http://www.sciencedirect.com/science/article/pii/S1474706510000343
http://www.sciencedirect.com/science/article/pii/S0301479713005434
http://www.sciencedirect.com/science/article/pii/S0301479713005434
http://www.sciencedirect.com/science/article/pii/S0301479713005434
http://www.sciencedirect.com/science/article/pii/S0022169413003892
http://www.sciencedirect.com/science/article/pii/S0022169413003892
http://www.sciencedirect.com/science/article/pii/S1364815205000848
http://www.sciencedirect.com/science/article/pii/S1364815205000848
http://www.sciencedirect.com/science/article/pii/S1364815207001235
http://www.sciencedirect.com/science/article/pii/S1364815207001235
http://www.sciencedirect.com/science/article/pii/S1364815207001235
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0135
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0135
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0135
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0135
http://www.sciencedirect.com/science/article/pii/S1470160X11000410
http://www.sciencedirect.com/science/article/pii/S1470160X11000410
http://www.sciencedirect.com/science/article/pii/S1470160X11000410
http://www.ncbi.nlm.nih.gov/pubmed/24184530
http://www.ncbi.nlm.nih.gov/pubmed/24184530
http://www.javaforge.com/project/oms
http://www.sciencedirect.com/science/article/pii/S1364815212000886
http://www.sciencedirect.com/science/article/pii/S1364815212000886
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0160
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0160
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0165
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0165
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0165
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0175
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0175
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0175
http://link.springer.com/chapter/10.1007%2F978-1-4020-8379-2_10#page-1
http://link.springer.com/chapter/10.1007%2F978-1-4020-8379-2_10#page-1
http://journals.cambridge.org/action/displayAbstract?fromPage=online%26aid=8564502%26fileId=S0003408812000106
http://journals.cambridge.org/action/displayAbstract?fromPage=online%26aid=8564502%26fileId=S0003408812000106
http://journals.cambridge.org/action/displayAbstract?fromPage=online%26aid=8564502%26fileId=S0003408812000106
http://www.sciencedirect.com/science/article/pii/0098135495001956
http://www.sciencedirect.com/science/article/pii/0098135495001956
http://www.sciencedirect.com/science/article/pii/0098135495001956
http://link.springer.com/book/10.1007%2F3-540-100016
http://link.springer.com/book/10.1007%2F3-540-100016
http://www.ncbi.nlm.nih.gov/pubmed/21685563
http://www.ncbi.nlm.nih.gov/pubmed/21685563
http://jamia.oxfordjournals.org/content/12/2/181
http://jamia.oxfordjournals.org/content/12/2/181
http://www.sciencedirect.com/science/article/pii/002627149190007T
http://www.sciencedirect.com/science/article/pii/002627149190007T
http://www.sciencedirect.com/science/article/pii/002627149190007T
http://www.yworks.com
http://www.yworks.com
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0230
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0230
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0230
http://refhub.elsevier.com/S2214-3173(15)00059-1/h0230


16 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 3 ( 2 0 1 6 ) 1 –1 6
[47] KDTVIZIG, 2007. Water management plan. 4-1 Lake Balaton
planning area. Middle-transdanubian Environment and
Water Utilities Departments. (in Hungarian). http://www2.
kdtvizig.hu/WEB/KDTVIZIG/KDTWEB.NSF/
0d73d9be605787c4c12572ea002f113d/
0efe13c87394e59dc1257434004a8947/$FILE/szakBalaton%20k
%C3%B6zvetlen.pdf.

[48] Bossard M, Feranec J, Otahel J. CORINE land cover technical
guide – Addendum 2000. Technical report No40. European
Environment Agency, 2000. Retrieved in February 26, 2014
from http://www.dmu.dk/fileadmin/Resources/DMU/
Udgivelser/CLC2000/technical_guide_addenum.pdf.
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