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Abstract 

In this paper, a nonlinear dynamic decoupling controller is proposed for the permanent magnet linear synchronous 
motor (PMLSM) servo system to improve dynamic operating performance. Firstly, the reversibility of the PMLSM 
mathematical model is analyzed, and it is proved that the system is reversible. Then an inverse system method is 
applied to the PMLSM servo system, and it is decoupled into a linear velocity subsystem and a linear current 
subsystem based on the α-th order inverse system method. Considering the both ideal linear subsystems are sensitive 
to parameter disturbances and various disturbances, a variable rate reaching law approach based subsystem sliding 
mode controller for higher system stability and robustness is proposed. Finally, simulation results are provided to 
demonstrate the effectiveness of the proposed control method. 
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1. Introduction

Due to its high force density, low losses and high direct-drive dynamic performance with fast speed
and better accuracy, the permanent magnet linear synchronous motor (PMLSM) is increasing applied to 
the direct-drive mechanical system as actuator in recent years[1-3]. Reported applications include 
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semiconductor manufacturing equipment, X-Y driving devices, industrial robots, etc. 
As is well-known, the PMLSM is a complicated multi-variable nonlinear strong-coupling system. 

There are nonlinear couplings among the electromagnetic thrust force, flux linkage and current. Besides, 
the precision of PMLSM mathematical model is easier to be affected by load disturbance, parameter 
variations and thrust force ripple, since the direct-drive type mechanical configuration. In order to achieve 
high servo control precision, it is necessary to realize nonlinear decoupling and robust control of 
PMLSM.  

The field-oriented control (FOC) and the direct thrust control (DTC) are two basic decoupling control 
approaches of PMLSM[4-8]. However, the FOC approach just can realize a kind of approximate 
decoupling performance in practice. And only when the flux linkage reaches steady state and remains a 
constant, the decoupling relationship between the velocity and the flux linkage should be met. Moreover, 
the FOC approach is very sensitive to variation of the model parameters, which may badly influence the 
PMLSM decoupling and control performance. The conventional DTC approach realizes a kind of part 
decoupling performance, it uses look-up table method and Bang-Bang control scheme to achieve the 
decoupling relationship between the electromagnetic thrust force and the flux linkage. Consequently, it 
leads to some main drawbacks including high current and thrust force ripple as well as high noise level at 
low velocity[9-10].  

The α-th order inverse system method is a study means of control system design. There involves three 
major utilizing steps[11]: (1) constructing an α-th order inverse system, which can be realized by 
feedback linearization technique using the inverse model of system plant; (2) establishing a decoupling 
linear system via the α-th order inverse system, which it is composed of several linear subsystems; and 
(3) designing control law for the decoupling linear system to synthesize the system. The α-th order 
inverse system method takes into account of time varying characteristic of the model parameters, 
therefore it is good for PMLSM to realize dynamic decoupling control. 

In this paper, a nonlinear dynamic decoupling controller is proposed for PMLSM servo system to yield 
high dynamic operating performance. Using the α-th order inverse system method, PMLSM system is 
decoupled into a linear velocity subsystem and a linear current subsystem, which can be controlled 
independently. Consider the both ideal linear subsystems are sensitive to parameter uncertainties and 
various disturbances, a sliding mode control method based on variable rate reaching law approach[12] is 
adopted to design the decoupled linear subsystem controllers. Numerical simulations are carried out to 
demonstrate the effectiveness of the proposed dynamic decoupling control scheme. 

2. Analysis of the System Model 

2.1. Model of PMLSM 

When neglecting the longitudinal end effect, the mathematical model of a PMLSM can be described, 
in the synchronously rotating d-q frame, by the following differential equations 
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where Rs is the mover resistance; ud, uq, id, iq, Ld and Lq are the d-axis and q-axis mover voltages, currents 
and inductances respectively; ψf is the permanent magnet flux linkage; vm is the mover velocity; FΣ 
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stands for the load torque; M is the total mass of the mover and mechanical load; B is the friction 
coefficient; τn is the pole pitch; np is the number of pole pairs. 
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State variables are chosen as 
T T
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Input variables are chosen as 
T T
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Consider that PMLSM is a surface-mounted PMLSM. As a result, Ld = Lq= L. Then, Eq.(1) can be 
simplified as 
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where k1=-Rs /L, k2=π/τn, k3=1/L, k4=-πψf/(τnL), k5=3πnpψf/(2τnM), k6=-B/M, k7=-1/M. 

2.2. Analysis of the System Reversibility 

Applying to the Interactor algorithm, we take the derivatives of�y=[y1,y2]T. Then, the following 
equations can be obtained 

(1) 2
1 1 1 1 4 2 3 3 1 1 3 2 2

(1)
2 2 5 2 6 3 7

(2) 2
2 2 2 5 1 3 1 5 2 4 5 3 6 3 3 5

( ) 2 2 2 2

( )

( )

f

f

f

y L h x k x k x x k x u k x u

y L h x k x k x k F

y L h x k k x x k k x k k x k x k k u
Σ

⎧ = = + + +
⎪⎪ = = + +⎨
⎪

= = − + + + + +⎪⎩ & 2

                                          (4) 

 The Jacobi�� � � � �� �� ��� � � �� � � � � � �� � � � � � �� � � �� � �� �  with respect to the input variables u=[u1,u2]T as 
follows 
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From Eq.(5), it is easy to obtain that the det[A(x,u)]=2k3
2k5x1. Since x1≠0, the rank[A(x,u)]=2, which is 

equal to the number of the system output variables. So the matrix A(x,u) is nonsingular. The relative 
orders of the system are α=[α1,α2]T=[1,2]T. As α1+α2=3, the system is invertible. So the state feedback 
linearization method can be adopted to realize system decoupling. �

2.3. Linearization Decoupling Model 

According to the implicit function existence theorem, we suppose 
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Then, from Eq.(4), we can obtain the analytic expressions of state feedback formulas are as follows 
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All the state variables in the analytic expressions Eq.(7) are measurable, and we can describe the α-th 
order inverse system equation as  
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After adopting the α-th order inverse system Eq.(8), the system will be turned into a linear decoupling 
system which the input and output variables are turned into {v1,v2} and {y1,y2} respectively. Fig.(1) shows 
the schematic diagram of the linear system. 

 
Fig.(1).�Linearization�decoupling�schematic�diagram�based�on� α-th�inverse�system�

method 
As Fig.(1) shown, the linear system is composed of a first-order current subsystem and a second-order 

velocity subsystem, and the two subsystems are linear and decoupling. 

3. Sliding mode controller design 

The two subsystems can be synthesized using the sliding mode control theory. The first step in 
designing SMC is defining the sliding surface. Let the two subsystem sliding surfaces be 
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where s1(t) and s2(t) are the sliding surfaces of the current subsystem and the velocity subsystem 
respectively; c is the optional sliding surface coefficient, which meets c>0; e1(t) and e2(t) are the current 
tracking error and the velocity tracking error, which are expressed as e1=r1-y1, e2=r2-y2, where r1 and r2 
are the current reference and the velocity reference. 

Substituting e1(t) and e2(t) into Eq.(9) leads to 
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The second step in designing SMC is to determine a sliding mode control law such that the sliding 
surface approaches zero and is sustained thereafter.  

To ensure the occurrence of the sliding motion, and to avoid chattering, two variable rate reaching 
laws for the two subsystems are proposed as 
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where k1, k2, ε1 and ε2 are the positive constant gains; 1 1
z and 2 1

z  are the current subsystem and the 
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Thus, taking the derivative of Eq.(10) with respect to time, then substituting Eq.(11) and employing 
Eq(6), we can obtain the sliding mode control laws of the current subsystem and the velocity subsystem 
as 
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Furthermore, from Eq.(10) and Eq.(11), there can easily find that 
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Obviously, the negative definiteness of  and  infer that the asymptotical convergence of s1 and 
s2. Therefore, the control law v1 and v2 in Eq.(12) actually achieve a stable sliding mode control system. 

1 1s s& 2 2s s&

4. Simulation Results 

The PMLSM parameters are Rs=2.4Ω, Ld=Lq=27.8mH, M=6.8kg, B=2Ns/m, ψf =0.45Wb, τn=30mm, 
np=1. The controller parameters are c=100, ε1=10, ε2=20, k1=200, k2=1000. 

Fig.(2) shows the tracking response curves of the real current im and the real velocity vm with the 
PMLSM initial conditions of FΣ=60N, im0=2A2, vm0=1m/s. 
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(a) real current im  tracking response                (b) real velocity vm  tracking response                 

Fig.(2). Decoupling control with constant load 
From Fig.(2), we can see that both the real current im and the real velocity vm can track their own 

reference input signal. The coupling characteristic between the current subsystem and the velocity 
subsystem is weak. 
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decoupling control method based on the α-th order inverse system theory and the S� � �� � � �� � � �  a good 
control performance. 

Fig.(3) shows the transient response curves of the velocity vm, the d-axis current id and the q-axis 
current iq, with the initial conditions of FΣ=60N, im0=24A2, vm0=1m/s, and there has a step load 
disturbance of ΔFΣ=+240N at t=0.1s and ΔFΣ=-180N at t=0.3s. 
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Fig.(3). Decoupling control with load disturbance 
From Fig.(3), we can see that when the system subjects a step load disturbance, the q-axis current iq has 

ability to increase or decrease in very fast speed to resist the influence of external mechanical force 
disturbance. As the same time, the d-axis current id can adjust relatively to guarantee the real current im to 
maintain at an invariable value. During the entire period of load disturbance, the adjust response of the 
current iq and id are rapid and without over-shoot, the velocity fluctuation is small and has no steady-state 
error. Fig.(3) shows that the proposed α-th order inverse dynamic decoupling control method can ensure 
PMLSM to meet the need of high accuracy servo application with load disturbance condition. 

5. Conclusions 

In this paper, we have developed an inverse dynamic decoupling controller for PMLSM servo system 
application. Using α-th order inverse system method, the PMLSM system is decoupled into a linear 
current subsystem and a linear velocity subsystem, each subsystem has no coupling and can be controlled 
independently. A variable rate reaching law sliding mode control scheme is adopted to design the two 
subsystems controllers. The controllers can alleviate the chattering and reduce steady state tracking error. 
The simulation results have shown that the proposed α-th order inverse dynamic decoupling controller is 
effectiveness and has good dynamic and static performance. 
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