
 Physics Procedia   25  ( 2012 )  800 – 807 

1875-3892 © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee
doi: 10.1016/j.phpro.2012.03.160 

2012 International Conference on Solid State Devices and Materials Science 

AdaBoost for Feature Selection, Classification and Its 
Relation with SVM*, A Review 

Ruihu Wang 

Department of Science and Technology Chongqing University of Arts and Sciences  
Yongchuan, Chongqing 402160, CHINA 

                                                          
* This work is supported by the Science and Technology Foundations of Chongqing Municipal Education Commission  Grant 
#KJ091216 to Ruihu. Wang and Excellent Science and Technology Program for Overseas Studying Talents of Chongqing 
Municipal Human Resources and Social Security Bureau Grant #00958023 to Ruihu. Wang, and Key project of Science and 
Research Foundation of CQWU Grant #Z2009js07 to Ruihu Wang.

Abstract 

In order to clarify the role of AdaBoost algorithm for feature selection, classifier learning and its relation with SVM, 
this paper provided a brief introduction to the AdaBoost which is used for producing a strong classifier out of weak 
learners firstly. The original adaptive boosting algorithm and its application in face detection and facial expression 
recognition are reviewed. In pattern classification domain, support vector machine has been widely used and shows 
promising performance. However, it is expensive in terms of time-consuming. A sort of cascaded support vector 
machines architecture is capable of improving the classification accuracy based on AdaBoost boosting algorithm, 
namely, AdaboostSVM. It applied boosting algorithm to feature selection and classifier learning for support vector 
machine classification and it has achieved approved performance through some researcher’s pioneering work. 
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1.  Introduction 

The AdaBoost (adaptive boosting) algorithm was proposed by Yoav Freund and Robert Shapire in 
1995 for generating a strong classifier from a set of weak classifiers [1,3]. In [2], Y.Freund and 
R.Schapire illustrated an interesting example, horse-racing gambler, to explain the idea about 
optimization and solution space search behind. Naturally, the gambler would ask some highly successful 
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expert gamblers for their help before he made his decision on which horse he should bet. Each expert 
would give him some good suggestions based on his own experience. In terms of pattern classification, 
these suggestions formed a large pool of classifiers, although they were obviously very rough and 
inaccurate. The point was that could the individuals’ experience be integrated to build up a better 
classifier for the gambler’s betting?  From then on, this issue attracted lots of researchers’ attention to 
seek valuable strategies to deal with. Kearns and Valiant [4,5] were the first to pose this  question of 
whether some weak learning algorithm which runs just a little better than random guessing in the PAC 
model can be “boosted” into an accurate strong learning algorithm.  

If we regard each expert’s suggestion as a training sample for classifier learning, for a given input 
pattern xi , each expert classifier kj can express his opinion, denoted by kj (xi).  Assuming the problem of 
separating the set of training vectors belonging to two classes ,  kj (xi) takes two values only, +1 or -1 
respectively, i.e. kj (xi) {-1,+1}. The final decision of the committee K of experts is made by sign C(xi), 
the sign of the linear combination of the weighted sum of expert opinions, where 

1 1 2 2( ) ( ) ( ) ( )i i i l l iC x k x k x k x ,                             (1) 

and 1k , 2k , , lk  denote the l  experts. 1 , 2 , , l are the weights the gambler assign to the 
opinion of each expert in the committee [6]. This idea of  combining weak classifier to form a expective 
strong decision function contributed the emeging of AdaBoost boosting algorithm. 

2.  Adaboost Algorithm 

AdaBoost algorithm creates a set of poor learners by maintaining a collection of weights over 
training data and adjusts them after each weak learning cycle adaptively. The weights of the training 
samples which are misclassified by current weak learner will be increased while the weights of the 
samples which are correctly classified will be decreased [7]. The original AdaBoost algorithm is 
described in Fig 1. 

2.1AdaBoost Algorithm 

One of the main ideas of AdaBoost algorithm is to maintain a distribution or set of weights over the 
training set.The weight of this distribution on training example i  on round t is denoted )(iDt . Initially, 
all weights are initialized equally, but on each round, the weights of incorrectly classified examples are 
increased so that the weak learner is forced to focus on the hard examples in the trading set. The weak 
learner’s job is to find a weak hypothesis }1,1{: Xht

 appropriate for the distribution tD [3]. 
Given:
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Fig. 1 The boosting algorithm AdaBoost. 

2.2AdaBoost For Feature Extraction and Selection 

AdaBoost is one of the most promising, fast convergence, and easy to be implemented machine 
learning algorithm. It requires no prior knowledge about the weak learner and can be easily combined 
with other method to find weak hypothesis, such as support vector machine. In Table 1, two main 
biometric recognition applications: Face Detection and Facial Expression Recognition are presented 
which associated with AdaBoost algorithm for feature extraction, feature selection and classifier learning. 

Table 1 adaboost for face detection and facial expression recognition 

Application Feature Extraction 
Feature Selection and Classifier 

Learning 

Face Detection 

Rectangle Feature[19], 
PCA[21,25],LDA[26] 

Haar-like Rectangle Feature[23] 
Gabor Wavelet[24] 

AdaBoost[19,21,23] 

Facial Expression 
Recognition

LBP[17], 
Gabor Filter[22,24], 

Rectangle Feature[18], 
PCA[20,22] 

PCA, 
AdaBoost[17,18,19,20,22] 
BP Neutral Network[20] 

3.  Feature Extraction 

Any pattern classification and recognition problem can be regarded as machine learning and 
intelligent human computer interaction ultimately. The goal of machine intelligence system is to learn a 
classification function from a given feature set and a training set of positive and negative samples. In its 
original form, described in Fig 1, the AdaBoost learning algorithm is used to boost the classification 
performance out of some weak learners. This rough feature set has to be selected and refined before being 
submitted to classifier learning. Feature selection is an optimization process to reduce a large set of 
original rough features to a relatively smaller feature subset which containing only significant to improve 
the classification accuracy fast and effectively.  
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3.1Feature Dimensionality Curse  

An automated object recognition must solve two basic problems: feature extraction and classifier 
design. Among different kinds of feature extraction methods, Gabor filter is a quite useful tool to 
computer vision and image analysis because it has optimal localization properties in both spatial analysis 
and frequency domain. The application of Gabor wavelet for face recognition was put forward by Lades 
et al. since Dynamic Link Architecture (DLA) was proposed in 1993 [27]. It has been found that Gabor 
wavelet-based features are relatively robust to illumination changes and head movement due to multiple 
resolution and multiple orientation filtering [28]. Unfortunately, it requires expensive computational costs 
to implement. 

A 2D Gabor filter ( , )k x  is defined as a Gaussian low-pass filter modulated by a plane wave. 

2 2 2 2

2 2
( , ) exp exp exp

2 2
Tk k x

k x ik x                           (2) 

where x represents the spatial localization and the wave vector k= cos , sin
T

k k  represents the 
translation and orientation of the tuned filter in the frequency domain [29]. The Gabor wavelet outputs are 
generated by convolving the region of interest images with the bank of 40 Gabor filters, 5 frequencies and 
six orientations. For facial expression database JAFFE, in which the face image is sized 256×256, there 
are over 2,600,000 features. In [28], the filters in their approach were modulated to three frequencies 

{ / 4, / 8, /16}k  and six orientations { / 6, / 3, / 2, 2 / 3,5 / 6, } . After Gabor filtering, 
altogether 18 filter outputs per region of interest. With their normalized image sizes of 150×100 pixels for 
the eye region, the filtering operation produces 270,000 features per image. They used PCA to reduce this 
large number of features. In [30,31], AdaBoost is also used for facial expression feature extraction and 
selection.

3.2AdaBoost for Feature Selection 

Algorithm :AdaBoost for Feature Selection 

Given example images:
1 1( , ), , ( , )n nx y x y  where , {0,1)i ix X y Y  for 

negative and positive examples respectively 

Initialize weights 1,

1 1
,
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where 0ie  if example ix is classified correctly, 1ie  otherwise, and 

1
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The final strong classifier is: 
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logt
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Fig. 2  The AdaBoost algorithm for classifier learning 

4.   Support Vector Machine 

Support vector machine was developed by Vapnik from the theory of Structural Risk Minimization. 
However, the classification performance of the practically implemented is often far from the theoretically 
expected. In order to improve the the classification performance of the real SVM, some researchers 
attempt to employ ensemble methods, such as conventional Bagging and AdaBoost [14]. However, in 
[15,16], AdaBoost algorithm are not always expected to improve the performance of SVMs, and even 
they worsen the performance particularly. This fact is SVM is essentailly a stable and strong classifier.  

Considering the problem of classifying a set of training vectors belonging to two separate classes, 

1 1{( , ), , ( , )}l lT x y x y X Y                                        (3) 

where  

, { 1, 1}, 1,2, , .n
i ix X R y Y i l

SVM can be trained by solving the following optimization problem: 

21
min ( , )

2 iw
i

w w C                                          (4) 

subject to ( , ( ) ) 1 , 1, 2,i i iy w x b i l                         (5) 

where 0i  is the i-th slack variable and C is the regularization parameter. 
The above optimization problem can be solved in its dual form: 

*

1 1 1

1
arg max ,

2

l l l

i j i j i j k
i j k

y y K x x                        (6) 

where ,i jK x x  is the kernel function performing the nonlinear mapping into feature space. The 
most frequently used kernel are Radius Basis Functions (RBF): 

2

22( , )
i jx x

i jk x x e                                                    (7) 
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There are two parameters in SVM-RBF, i.e. the regularization parameter C, and the Gaussian width  .
 According to Yang and Honvar [8], the choice of feature used to represent patterns that are 

presented to a classifier has great impact on several pattern recognition properties, including the accuracy 
of the learned classification algorithm, the time need for learning a classification function, and the 
number of examples needed for learning, the cost associated with the features.  In addition to feature 
selection, C.Huang and C. Wang [9] suggested that proper parameters setting can also improve the SVM 
classification accuracy. The parameters include penalty parameter C and the kernel function parameter 

for RBF, which should be optimized before training.   In order to achieve optimal feature subset 
selection and SVM-RBF parameters, Hsu and Lin [10] proposed a Grid algorithm to find the best C and 
sigma for RBF kernel. However their method has expensive computational complexity and does not 
perform well. Genetic algorithm is an another alternative tool, which has the potential to generate both the 
optimal feature subset and SVM parameters at the same time. Huang and Wang [9] conducted some 
experiments on UCI database using GA-based approach. Their result has better accuracy performance 
with fewer features than grid algorithm. Compared to Genetic Algorithm, Particle Swarm Optimization 
has no evolution operators such as crossover and mutation. There are few parameters to adjust. It works 
well in a wide variety of applications with slight variations [11].    

5.  AdaBoostSVM 

The classification performance of Support Vector Machine is affected by its parameters. For SVM-
RBF, the parameters are Gaussian width  and regularization parameter C. SVM-RBF classifier’s 
performance largely rely on the  value if a roughly suitable C is choosen [12].  For a given C, the 
performance of SVM-RBF can be changed by simply adjusting the value of . Increasing the value 
often reduces the complexity of learner model, and lowering the classification performance and vice 
versus So when the SVM-RBF is used as weak classifier for AdaBoost, a relatively large   value is 
preferred, which  brings a SVMRBF with relatively weak learn ability [13].   

Algorithm: Varation of  AdaBoost SVM-RBF 
Given:  a set of training samples labeled 

1 1( , ), , ( , )n nT x y x y ,

where , { 1, 1)i ix X y Y

Initialize the weight value of training samples: 
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n
.

For t = 1,··, T: 

Using SVM-RBF to train weak learner tC  on the weighted training 

sample set and select training sample subset td of tC  , td T .

Calculating the standard variation 
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Fig 3. Varation of  AdaBoost SVM-RBF Algorithm 

6. Conclusion and Future Work 

In this paper we first reviewed some fundamental background knowledge about AdaBoost 
Algorithm briefly. As a productive machine learning method, AdaBoost has been widely used in many 
kinds of real application. Not only feature extraction but also feature selection, AdaBoost shows 
promising and satisfied performance. Other than AdaBoost, there is another effective and easily to be 
implemented optimization algorithm is Particle Swarm Optimization (PSO). We will conduct experiments 
on this two kinds of optimization methods for facial expression recognition to provide a real time, fast, 
spontaneous emotional human computer interaction in intelligent biometric surveillance system. 
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