
Artificial Intelligence 191–192 (2012) 61–95

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Contents lists available at SciVerse ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

GAMoN: Discovering M-of-N{¬,∨} hypotheses for text classification by a
lattice-based Genetic Algorithm

Veronica L. Policicchio ∗, Adriana Pietramala, Pasquale Rullo

Dept. of Mathematics, University of Calabria, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 November 2011
Received in revised form 4 July 2012
Accepted 11 July 2012
Available online 20 July 2012

While there has been a long history of rule-based text classifiers, to the best of our
knowledge no M-of-N-based approach for text categorization has so far been proposed.
In this paper we argue that M-of-N hypotheses are particularly suitable to model the text
classification task because of the so-called “family resemblance” metaphor: “the members
(i.e., documents) of a family (i.e., category) share some small number of features, yet there
is no common feature among all of them. Nevertheless, they resemble each other”. Starting
from this conjecture, we provide a sound extension of the M-of-N approach with negation
and disjunction, called M-of-N{¬,∨}, which enables to best fit the true structure of the data.
Based on a thorough theoretical study, we show that the M-of-N{¬,∨} hypothesis space has
two partial orders that form complete lattices.
GAMoN is the task-specific Genetic Algorithm (GA) which, by exploiting the lattice-based
structure of the hypothesis space, efficiently induces accurate M-of-N{¬,∨} hypotheses.
Benchmarking was performed over 13 real-world text data sets, by using four rule
induction algorithms: two GAs, namely, BioHEL and OlexGA, and two non-evolutionary
algorithms, namely, C4.5 and Ripper. Further, we included in our study linear SVM, as it
is reported to be among the best methods for text categorization. Experimental results
demonstrate that GAMoN delivers state-of-the-art classification performance, providing
a good balance between accuracy and model complexity. Further, they show that GAMoN
can scale up to large and realistic real-world domains better than both C4.5 and Ripper.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

An M-of-N hypothesis, also called Boolean threshold function, may be thought of intuitively as follows. Given a set of N
features, whenever an example satisfies at least M of such features, it is a positive example; otherwise, it is a negative one.
That is, an M-of-N hypothesis is a description that involves “counting properties”. There is quite a literature on methods
for building M-of-N hypotheses. For instance, in [1] algorithms for extracting M-of-N hypotheses from neural networks are
reported. M-of-N concepts are also constructed as tests for the induction of decision trees [2–5,7].

However, to the best of our knowledge, no M-of-N-based approach for text classification has been so far proposed.
Despite this, we conjecture that M-of-N hypotheses are well suited to model the text classification task.

Text categorization (TC) is aimed at assigning natural language texts to one or more thematic categories on the basis of
their contents. It is a difficult task essentially because of two main factors: on one hand, TC has to do with the complexity
and richness of the natural language, which allows a concept to be expressed by a variety of constructs and words. This
aspect is often amplified by the presence in a category of documents which are not about a single narrow subject with

* Corresponding author.
E-mail address: policicchio@mat.unical.it (V.L. Policicchio).
0004-3702/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2012.07.003

https://core.ac.uk/display/82229045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.artint.2012.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:policicchio@mat.unical.it
http://dx.doi.org/10.1016/j.artint.2012.07.003

62 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
limited vocabulary. On the other hand, the TC task deals with highly dimensional data sets (i.e., with many features).
Both such factors concur to make quite unlikely the existence of a set of features, or even a single feature, that occur in
all documents of a given category. It may even happen that documents that belong to the same category do not share
any content words. However, as argued in [6], the relationship of “family resemblance” holds. That is, documents under
the same category share a (usually small) set of N features, yet this set is not present in every document. Instead, each
document contains (at least) M � N of such features, and different documents may not share features at all. That is, the text
classification task deals with the kind of data that M-of-N hypotheses are able to explain.

A shortcoming of the M-of-N approach, however, is that its propositions handle positive information only, whereas
negative evidence is deemed to play a crucial role in text categorization. This is mainly because natural languages are
intrinsically ambiguous, and negation helps to disambiguate concepts – e.g., the word “ball” may ambiguously refer to
either the concept “sport” or “dance”, whereas the conjunction “ball and not ballroom” much likely refers to “sport”.

To overcome this drawback, we extend classical M-of-N hypotheses by negation. In addition, to best fit the true structure
of the data, we allow disjunctions of hypotheses. That is, we define a new hypothesis language for text classification, called
M-of-N{¬,∨} , which generalizes the classical M-of-N language through negation and disjunction (a preliminary description
of the proposed approach can be found in [8]).

In our approach, a classifier is a propositional formula of the form Hc = H1
c ∨ · · · ∨ Hr

c , where each Hi
c = pi-of-Pos ∧

¬ni-of-Neg is an atom (note that all atoms forming Hc share the same sets Pos and Neg). Here, Pos is the set of positive
terms, Neg the set of negative terms, and pi � 0 and ni > 0 are integers called thresholds. The meaning of an atom Hi

c is:
classify document d under category c if at least pi positive terms occur in d and (strictly) less than ni negative terms occur
in d. That is, M-of-N{¬,∨} provides support for explicitly modeling the interactions between positive and negative features.
Of course, Hc classifies document d under c if any of H1

c , . . . ,Hr
c classifies d under c.

The special case of M-of-N{¬,∨} where a hypothesis is an atom with thresholds p = n = 1 is OlexGA [10].
There is a natural ordering in the space of M-of-N{¬,∨} hypotheses determined by two kinds of subsumption relation-

ships: the feature and the threshold relationships. The feature relationship is determined by the feature sets Pos and Neg
appearing in a classifier Hc . As an example, assume that Hc is the atomic classifier p-of-Pos ∧ ¬n-of-Neg, with p = 2 and
n = 1. Clearly, the larger Pos, the higher the probability that the condition “at least two positive features occur in a docu-
ment” is satisfied. Dually, the smaller Neg, the more likely a document will contain no negative feature in Neg. In summary,
the larger Pos, the smaller Neg, the more general Hc . The threshold relationship, in turn, is determined by the thresh-
olds appearing in Hc . For an instance, if in the above classifier we replace p = 2 by p = 1, we get a new classifier which
is more general than the previous one – intuitively, only one instead of two positive features is necessary for classifying
a document. These relationships define two hierarchies of hypotheses (more precisely, complete lattices) exploitable for an
effective exploration of the hypothesis space. To this end, we provide suitable refinement operators whereby “navigating”
the hypothesis lattices.

As argued in [7], the evolutionary approach seems to be particularly suited for the M-of-N learning task, as the global
search style of GAs (as opposed to the “one-attribute-at-a-time” of the greedy approach) makes them capable of catching the
hidden interactions among attributes that strongly characterize the induction of M-of-N hypotheses. However, the purely
non-deterministic nature of conventional genetic operators does not enable the search strategy to benefit of the structure of
the hypothesis space. To overcome this drawback, we define a task-specific Genetic Algorithm (GA), called GAMoN, relying
on specialized evolutionary operators representing a stochastic implementation of the refinement operators defined over the
subsumption lattices. At a glance, the following are the main characteristics of GAMoN:

• It relies on a variable-length individual representation, where each individual encodes a candidate classifier (Pittsburgh
approach [9]).

• It combines the standard search strategy of GAs with ad hoc generalizing/specializing (GS) reproduction operators which
exploit the structure of the hypothesis space.

• It dynamically adapts the probability of selecting the GS operators over the standard ones.
• It maintains a number of competing subpopulations.
• It uses the F -measure to assess the fitness of an individual.

Unlike in the classical approach, where the feature space is simply a subset of terms from the vocabulary, the one on which
GAMoN builds its hypotheses consists of both a set of positive and a set of negative candidate features. One main issue that
in general arises when inducing a classifier is that of selecting the appropriate dimensionality of the feature space, i.e., how
many features the classifier can access during the learning process. This is a very important design choice, as the quality
of the selected features strongly determines the quality of the learned classifier, especially in text classification, where data
sets are usually highly dimensional, noisy and ambiguous. For most systems, the size of the feature space is managed as
a tuning parameter, that is, the learning process is rerun over feature spaces of different dimensions and the best results
are eventually taken. Unfortunately, this may require very long training times, especially over large data sets. To get over
this inconvenience, GAMoN was provided with techniques to automatically detect convenient dimensionality of the feature
space. This way, no manual feature selection is preliminarily needed.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 63
GAMoN was designed as a binary classification system. We use the “one-vs-all” approach to produce one (independent)
model for each class in a multi-class classification task (this technique is frequently used in multi-label classification, where
each example may have more than one label – as it is the case in text classification).

We performed an extensive empirical analysis aimed at comparing the proposed approach with other well known learn-
ing algorithms. The experimental results show that GAMoN provides an appealing combination of strengths:

• First, it provides state-of-the-art predictive accuracy in a wide class of problem domains.
• Second, it constructs simple and compact models, thereby facilitating human comprehension of what it has learned.
• Third, it can scale up to large data sets better than other state-of-the-art rule-based classifiers.

GAMoN was implemented in Java as a plug-in of the Weka platform [11].
This paper is organized as follows. In Section 2 we discuss different current learning techniques. In Section 3 we provide

an overview of the proposed hypothesis language. In Section 4 we develop a thorough theoretical investigation of its prop-
erties. In Section 5 we define suitable refinement operators exploiting the structure of the hypothesis space. In Section 6
we state the learning problem and show its complexity. In Section 7 we describe the GA, paying particular attention to the
task-specific operators. In Section 8 we describe the experimental framework applied in our empirical analysis. In Section 9
we report the results of a comparative study of GAMoN against two GA-based rule induction systems, namely, OlexGA [10]
and BioHEL [12,13], and three non-GA systems, namely, Ripper [14], C4.5 [15] and the Platt’s Sequential Minimal Optimiza-
tion (SMO) method for linear SVM training [16]. In Section 10 we provide a discussion on the proposed method and relate
it to other learning algorithms. Finally, Section 11 concludes the paper.

2. Background

Various supervised machine learning techniques have been applied to document classification. An excellent overview can
be found in [17].

SVMs are a class of learning algorithms that showed to be highly accurate in many data mining tasks. In [19,6], Joachims
has investigated their application to text classification. The results of the empirical study showed that SVMs are more
effective than other learning algorithms, namely, Naive Bayes, Rocchio, C4.5 and k-Nearest Neighbor. Further, linear SVM
showed to perform as well as non-linear kernels, but substantially more efficiently.

Naive Bayes (NB) has been a very popular technique to classify texts due to its computational efficiency and simplicity.
McCallum and Nigam [20] investigated the two main document representations for NB text classification, the Bernoulli and
multinomial. They concluded that the latter is superior in accuracy in most cases. However, one problem with Multinomial
NB (MNB) is that, when one class has more training examples than another, it selects poor weights for the decision bound-
ary. One additional problem is that MNB does not model text well. To improve the performance of MNB, Rennie et al. [21]
proposed Complement Naive Bayes (CNB). While learning the conditional probability of one class, CNB uses the frequency
information pertaining to all other classes (that is, uses negative information).

In a different view, rule learning algorithms have become a successful strategy for classifier induction. Direct methods
extract rules directly from data, while indirect methods extract rules from other classification models, such as decision trees
(e.g., C4.5 [15]). Representative examples of direct methods include Inductive Rule Learning (IRL) systems, such as FOIL [22]
and Ripper [14], and Associative Rule Learning (ARL) systems, such as CMAR [23], CPAR [24] and TFPC [25]. A sub-class of the
inductive rule learners is that of Genetics-Based Machine Learning algorithms (GBML) [26], which rely on the Evolutionary
Algorithms as search mechanisms. Examples of such systems are XCS [27], SIA [28], GAssist [29] and BioHEL [12,13]. Many
GBML systems have explicit generalization/specialization operators [30–35].

The most well-known rule-based classifiers used to learn from texts, notably, Ripper and C4.5, actually originate from
non-text data mining (see, e.g., [14,19,36]). Among the few examples of rule-based systems specifically designed to classify
texts, we mention the associative classifier NeW [37] and the IRL systems Olex [38] and OlexGA [10]. Olex induces rules
consisting of one positive conjunction and (zero or) more negative conjunctions. It relies on a search technique that greedily
selects at each step the conjunct, either positive or negative, that maximizes the F -measure over the training set. OlexGA
is a GBML which is a special case of GAMoN, where a classifier is an M-of-N{¬,∨} atom with thresholds p = 1 and n = 1.1

A peculiarity of such systems is that of explicitly dealing with negated features.
Even if prior studies found SVMs and Complement Naive Bayes to be particularly effective for text categorization, rule-

based text classifiers are often preferred in real-world applications as they provide interpretable models. Readability is
indeed a very desirable property of classification models, which allows a human being to understand and possibly modify
them based on his a priori knowledge.

However, one drawback with most rule-based systems is the high computational cost, especially on high dimensional
data sets. In ARL systems, the time cost for frequent pattern mining may increase very sharply when the size of data set
grows. In addition, the high number of rules generated usually requires an additional pruning step where redundant rules
are discarded. Also IRL systems typically rely on a two-stage process: a greedy heuristics constructs an initial rule set and,

1 The Olex and OlexGA suite is downloadable from http://www.mat.unical.it/OlexGA.

http://www.mat.unical.it/OlexGA

64 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
then, one or more optimization phases improve compactness and accuracy of the rule set (a similar approach is used for
decision tree as well). All this makes it difficult for most rule induction methods to scale up to large and realistic real-world
data sets.

3. Language overview

The M-of-N{¬,∨} representation generalizes the classical notion of M-of-N concepts by allowing negation and disjunction.
An M-of-N{¬,∨} classifier for category c is a propositional formula of the form Hc = H1

c ∨ · · · ∨ Hr
c , where each Hi

c =
pi-of-Pos ∧ ¬ni-of-Neg is an atom expressing the following condition: classify document d under category c if at least pi
positive features in Pos and less than ni negative features in Neg occur in d. Integers pi � 0 and ni > 0 are called thresholds.
Of course, Hc classifies document d under c if any among H1

c , . . . ,Hr
c classifies d under c.

Since all atoms forming Hc = H1
c ∨ · · · ∨ Hr

c share the same sets of features Pos and Neg, a convenient notation
for Hc is 〈Pos,Neg,T 〉, where T = {(p1,n1), . . . , (pr,nr)} is the set of threshold pairs appearing in the atoms of Hc
(T is called threshold set). For example, (1-of-Pos ∧ ¬2-of-Neg) ∨ (2-of-Pos ∧ ¬3-of-Neg) can be simpler represented as
〈Pos,Neg, {(1,2), (2,3)}〉.

As a concrete example, consider the classifier constructed by GAMoN for category “grain” from the Reuters data set:

Hgrain = 〈
Pos = {barley, cereals, corn,grain,maize, rice, sorghum,wheat},

Neg = {acquisition,bank, earning,pay,profit, tax,york},T = {
(1,1), (2,2)

}〉
.

This is a classifier of order 2 (as its threshold set has two elements, i.e., (1,1) and (2,2)), with 8 positive features (barley,
cereals, etc.) and 7 negative ones (acquisition, bank, etc.). The meaning of Hgrain is the following: classify document d under
category “grain” if either one of the following conditions holds: (1) d contains (exactly) one positive feature and no negative
features, or (2) d contains more than one positive feature and less than two negative ones. That is to say, one single positive
feature has no effect on predicting the category “grain” if any negative feature occurs in d, while one single negative feature
has no effect in denying the classification of d if more positive features occur in d.

As the above example shows, one beneficial aspect of the M-of-N{¬,∨} representation is readability. This is a very impor-
tant feature, as it makes possible for people to visually inspecting and understanding the induced model.

The M-of-N{¬,∨} hypothesis space has a structure determined by two kinds of subsumption relationships: the feature
and the threshold subsumptions.

Intuitively, positive features are indicative of membership for a category, contrary to negative ones that are indicative
of non-membership. Thus, the more elements are in Pos, the less are in Neg, the more general a classifier 〈Pos,Neg,T 〉 is
(i.e., it classifies more documents). Feature subsumption encodes this intuition. As an example, 〈{t0, t1}, {t3, t4},T 〉 subsumes
〈{t0, }, {t3, t4},T 〉 and is subsumed by 〈{t0, t1}, {t3},T 〉.

The threshold subsumption relationship is in turn determined by the threshold sets appearing in the classifiers. For an in-
stance, the hypothesis 〈Pos,Neg, {(1,1)}〉 subsumes 〈Pos,Neg, {(2,1)}〉 as only one, instead of two positive features, is
necessary for it to classify a document.

Thus, both the above hierarchies capture the intuitive notion of general-to-specific ordering, that is, if Hc subsumes H′
c in

either hierarchy, then whatever is classified by H′
c is classified by Hc as well. One interesting property of such relationships

is that they form complete lattices in the hypothesis space (thus, any hypothesis can be reached in the search space).
We can take advantage of this general-to-specific ordering in order to selectively search the hypothesis space. For an in-

stance, if the classifier 〈Pos,Neg, {(2,1)}〉 is too specific (i.e., it covers too few positive examples) it can be generalized either
(i) through the threshold subsumption, by replacing the threshold set {(2,1)} by one less restrictive, say, {(1,1)}, or (ii) by
the feature subsumption, i.e., by adding some term to Pos or removing some term from Neg.

Another way of generalizing or specializing a hypothesis is by “interaction” with another one. To this end, we exploit
the lattice structure of the hypothesis space. That is, the least upper bound (resp. greatest lower bound) of two hypotheses
can be taken, in any of the two lattices, in order to get a more general (resp. specific) one. As an example, given two
hypotheses sharing the same threshold sets, say, 〈{t0, t1}, {t3}, {(2,1)}〉 and 〈{t0, t4}, {t5}, {(2,1)}〉, we can specialize both
by taking the greatest lower bound in the feature subsumption lattice, that is, 〈{t0}, {t3, t5}, {(2,1)}〉 – a classifier whose
sets of positive and negative features are {t0} = {t0, t1} ∩ {t0, t4} and {t3, t5} = {t3} ∪ {t5}, respectively. Likewise, given two
hypotheses sharing the same feature sets, say, 〈Pos,Neg, {(1,1)}〉 and 〈Pos,Neg, {(2,2)}〉, we can specialize both by taking
the greatest lower bound in the threshold subsumption lattice, that is, 〈Pos,Neg, {(2,1)}〉 – a classifier whose threshold set
is {max(1,2),min(1,2)} (see Fig. 1). It can be easily verified that both greatest lower bounds are more specific than the
respective parents.

As we will see later on this paper, the above concepts are at the basis of the definition of the refinement operators. These
are the abstract tools for searching the hypothesis space, that find concrete application in the definition of the reproduction
operators of GAMoN.

4. Language definition and hypothesis space

Now that we have an intuitive view of the basic ideas, in the next subsections we will provide formal definitions of
them. In particular, we will start from the notion of feature space, i.e., the set of features which provide the lexicon from

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 65
Fig. 1. τ -subsumption lattice with threshold bounds P = 2 and N = 3.

which hypotheses are built. Then we formalize the M-of-N{¬,∨} language and define the feature �φ and the threshold �τ

subsumption relationships, showing a number of interesting properties. In particular, we will prove that they form complete
lattices in the hypothesis space and provide a constructive definition of the meet and the join operators in both lattices.
Finally, we will give a deep insight into the structure of the hypothesis space, and show the notion of decision boundary for
M-of-N{¬,∨} classifiers.

Note. For the proofs of the propositions reported in this section, the reader is referred to Appendix A.

4.1. Feature space

We are given a set T of training documents (also called “examples”) and a set C of categories (also called “concepts”).
A document is a set of features (also called “terms”), a feature being a sequence of one or more words (or word stems).
Each document in T is associated with a category in C . We denote by Tc ⊆ T the training set of c, i.e., the set of training
documents associated with category c. We call vocabulary the set of features occurring in the documents of T .

Unlike in the classical definitions, where the feature space is simply a subset of the vocabulary, in our definition the
feature space consists of both a set of positive and a set of negative features. This is because M-of-N{¬,∨} hypotheses
explicitly models the interaction between positive and negative features, the latter being regarded as “first class citizens”.

Definition 4.1 (Feature space). We are given a vocabulary V , a non-negative integer k and a scoring function σ which assigns
a score to every feature in V based on its correlation with category c (e.g., CHI Square [39]). Define the feature space Fc(k)

(of size k) for category c as the pair 〈Pos∗c (k),Neg∗
c (k)〉, where Pos∗c (k) ⊆ V and Neg∗

c (k) ⊆ V are as follows:

• Pos∗c (k) is the set of the k highest scoring features in V for category c, according to σ ; we say that t ∈ Pos∗c (k) is
a candidate positive feature of c.

• given Pos∗(k), consider the set N of terms co-occurring with positive candidate features within negative examples, i.e.,
N = {t ∈ V | t /∈ Pos∗c (k) and (Θ+ ∩ Θ(t) \ Tc) �= ∅} where Θ(t) ⊆ T is the set of training documents containing feature t ,
Θ+ = ⋃

t∈Pos∗c (k) Θ(t) and Tc is the training set of c. With each feature t ∈ N we assign a score η(t) as follows:

η(t) = |Θ+ ∩ Θ(t) \ Tc|
|Θ+ \ Tc| + |Θ(t) ∩ Tc| .

It can be easily seen that 0 < η(t) � 1. In particular, a term t occurring in all negative examples and in no positive one
containing any positive feature has score η(t) = 1. On the other hand, η(t) > 0, ∀t ∈ N as, by definition, t co-occurs
with a candidate positive feature in some negative example. Then, we define Neg∗

c (k) as the set of the best k elements
of N according to η; we say that t ∈ Neg∗

c (k) is a candidate negative feature of c.

The rationale behind the above definition is rather intuitive: candidate positive features are supposed to capture most
of the positive examples, as they are characterized by high scoring values. On the contrary, candidate negative features,
defined as terms co-occurring with positive candidate terms within negative examples, are supposed to discard most of the
(potentially) false positive examples. For an instance, if the feature “ball” is a candidate positive and “ballroom” co-occurs

66 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
with “ball” within some negative examples, “ballroom” becomes a negative candidate feature. Clearly, the higher the scoring
σ(t) (resp. η(t)) of a term t , the higher its value as a candidate positive (resp. negative) feature.

4.2. Hypothesis space

A hypothesis is a propositional formula used to describe the examples of a given concept. The hypothesis language we
propose in this section is an extension of the M-of-N language, called M-of-N{¬,∨} .

Definition 4.2 (Hypothesis language). We are given the feature space Fc(k) = 〈Pos∗c (k),Neg∗
c (k)〉, along with two integers, P

and N , called threshold bounds. An M-of-N{¬,∨} hypothesis (or “classifier”) for category c over Fc(k) is inductively defined as
follows:

• Basis: p-of-Pos ∧ ¬n-of-Neg is an atom (or 1-order classifier), where 0 � p � P and 0 < n � N are integers called
positive and negative thresholds, respectively, and Pos ⊆ Pos∗c (k) and Neg ⊆ Neg∗

c (k) are (possibly empty) sets of features.
In particular, Pos is the set of positive features and Neg the set of negative features. This classifier classifies a document
d under category c if at least p positive features occur in d and less than n negative features occur in d. A convenient
notation for p-of-Pos ∧ ¬n-of-Neg is 〈Pos,Neg, {(p,n)}〉.

• Induction: let H1
c = 〈Pos,Neg,T1〉 be an r-order classifier and H2

c = 〈Pos,Neg,T2〉 an s-order classifier (note that H1
c

and H2
c share the same sets of features). Then Hc = H1

c ∨H2
c is a classifier of order q � r + s. Hc classifies document

d under c if either H1
c or H2

c classifies d under c. A convenient notation for Hc is 〈Pos,Neg,T 〉, where T = T1 ∪ T2.

As already noticed, all atoms forming an r-order classifier hold the same sets Pos and Neg. That is why we can denote
Hc =H1

c ∨· · ·∨Hr
c by using the compact notation 〈Pos,Neg,T 〉, where T = {(p1,n1), . . . , (pr,nr)} is the set of all threshold

pairs appearing in the atoms of Hc . Clearly, the size of T is the order of the classifier.

Example 4.1. The 2-order classifier (1-of-Pos ∧ ¬2-of-Neg) ∨ (2-of-Pos ∧ ¬3-of-Neg) can be represented as 〈Pos,Neg, {(1,2),

(2,3)}〉.

An atom with p = 0 and n > |Neg| acts as an acceptor, while one with p > |Pos| is to be understood as a rejector. An atom
〈Pos,Neg, {(1,1)}〉 coincides with an OlexGA classifier [10]. In general, a (non-acceptor, non-rejector) atom 〈Pos,Neg, {(p,n)}〉
is logically equivalent to the following propositional formula:

c ← (T1 ∨ · · · ∨ Tk) ∧ ¬(Tk+1 ∨ · · · ∨ Tk+m)

where T1 · · · Tk are all possible conjunctions made of p positive terms in Pos, and Tk+1 · · · Tk+m are all possible conjunctions
made of n negative terms in Neg. The rule-based semantics of an r-order classifier Hc = H1

c ∨ · · · ∨ Hr
c is the obvious

generalization of the base case: Hc is equivalent to the union of the rule sets of all Hi
c , 1 � i � r.

We finally provide the definition of hypothesis space.

Definition 4.3. The hypothesis space H(Fc(k), P , N) is the set of all hypotheses constructible over a feature space Fc(k) and
for given thresholds bounds P and N .

4.3. Ordering the hypothesis space

There is a natural ordering in the hypothesis space determined by two kinds of subsumption relationships, namely,
the feature and the threshold subsumption.

4.3.1. Ordering along the feature dimension
Let HT (Fc(k)) ⊆ H(Fc(k), P , N) be the hypothesis subspace consisting of all hypotheses in H(Fc(k), P , N) having the

same given threshold set T . Hypotheses in HT (Fc(k)) are said τ -homogeneous. On HT (Fc(k)) there exists a binary relation
that we call feature-subsumption (φ-subsumption, for short).

Definition 4.4 (Feature-subsumption). We are given two classifiers in HT (Fc(k)), say, H1
c = 〈Pos1,Neg1,T 〉 and H2

c =
〈Pos2,Neg2,T 〉. H1

c φ-subsumes H2
c (and H2

c is φ-subsumed by H1
c) if both Pos2 ⊆ Pos1 and Neg1 ⊆ Neg2 (write H1

c �φ H2
c).

H1
c is called a φ-generalization of H2

c (and H2
c a φ-specialization of H1

c).

Example 4.2. According to the above definition, the classifier Hc = 〈{t0, t1}, {t3, t4}, {(1,1)}〉 φ-subsumes H′
c = 〈{t0}, {t3, t4},

{(1,1)}〉 and is φ-subsumed by H′′
c = 〈{t0, t1}, {t4}, {(1,1)}〉. Intuitively, the former subsumption holds as the classification

condition on the positive features “at least one of t0 and t1 must occur in d” is clearly weaker than “t0 must occur in d”,
so as (ceteris paribus) more documents will be classifier by Hc than by H′

c . Dually, Hc is φ-subsumed by H′′
c as the condition

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 67
on the negative features expressed by the latter “t4 must not occur in d” is weaker than that expressed by the former
“neither t3 nor t4 can occur in d”.

Next we show that if H1
c �φ H2

c then H1
c classifies all documents classified by H2

c . In the following, we will denote by
D(Hc) ⊆ D the set of documents classified by Hc , for a document set D .

Proposition 4.1. Let H1
c and H2

c be two classifiers in HT (Fc(k)). Then H1
c �φ H2

c implies D(H1
c) ⊇ D(H2

c).

The following proposition shows that (HT (Fc(k)),�φ) is a complete lattice.

Proposition 4.2. (HT (Fc(k)),�φ) is a complete lattice. Indeed, for any H1
c ,H2

c ∈ HT (Fc(k)), there are both the greatest lower
bound glbφ(H1

c ,H2
c) and the least upper bound lubφ(H1

c ,H2
c) as follows:

(a) lubφ(H1
c ,H2

c) = 〈Pos1 ∪ Pos2,Neg1 ∩ Neg2,T 〉.
(b) glbφ(H1

c ,H2
c) = 〈Pos1 ∩ Pos2,Neg1 ∪ Neg2,T 〉.

It is easy to recognize that the bottom element of HT (Fc(k)) is 〈∅,Neg∗(k),T 〉 and the top 〈Pos∗(k),∅,T 〉.

4.3.2. Ordering along the threshold dimension
Let HΦ(P , N) ⊆ H(Fc(k), P , N) be the hypothesis subspace consisting of all hypotheses having the same Φ = 〈Pos,Neg〉,

with Pos and Neg over Fc(k). We say that two classifiers in HΦ(P , N) are φ-homogeneous. Next we show that a subsumption
hierarchy there exists in HΦ(P , N). We call it threshold-subsumption, or τ -subsumption, for short.

Notation. Since φ-homogeneous hypotheses share all the same feature sets, in the following, whenever no ambiguity arises,
we shall represent a classifier 〈Pos,Neg,T 〉 simply by T .

Example 4.3. The 2-order classifier 〈Pos,Neg, {(1,2), (2,3)}〉 may be represented simply as {(1,2), (2,3)}.

Definition 4.5 (Threshold-subsumption). Let T1 = {(p1,n1)} and T2 = {(p2,n2)} be two threshold sets of size 1. Then T1
τ -subsumes T2, denoted T1 �τ T2, if both p1 � p2 and n1 � n2 hold. More in general, given two threshold sets (of any size),
we say that T1 τ -subsumes T2 if, for each element (p,n) ∈ T2, there exists an element (p′,n′) ∈ T1 such that {(p′,n′)} �τ

{(p,n)}.
The relation �τ induces a relation on HΦ(P , N) as follows. Given H1

c = 〈Pos,Neg,T1〉 and H2
c = 〈Pos,Neg,T2〉 in

HΦ(P , N), H1
c τ -subsumes H2

c (and H2
c is τ -subsumed by H1

c), if T1 �τ T2 (write H1
c �τ H2

c). H1
c is called a τ -generalization

of H2
c (and H2

c a τ -specialization of H1
c).

Example 4.4. Given the φ-homogeneous atoms H1
c = {(1,2)} and H2

c = {(2,1)}, H1
c �τ H2

c holds as the positive threshold
of H1

c is smaller than that of H2
c , whereas the vice versa holds for the negative thresholds. As a more general case, let H1

c =
{(1,2), (2,1)} and H2

c = {(1,1)} be φ-homogeneous classifiers. Since {(1,2)} �τ {(1,1)} holds, H1
c �τ H2

c follows.

Next we show that if H1
c �τ H2

c then any document classified by H2
c is classified by H1

c as well.

Proposition 4.3. Let H1
c and H2

c be two classifiers in HΦ(P , N). Then H1
c �τ H2

c implies D(H1
c) ⊇ D(H2

c).

Unlike �φ , the binary relation �τ is not a partial order.

Example 4.5. Classifiers H1
c = {(1,2)} and H2

c = {(1,2), (2,2)} are such that both H1
c �τ H2

c and H2
c �τ H1

c hold.

Definition 4.6 (Equivalence, minimality). Two φ-homogeneous classifiers H1
c and H2

c are equivalent, denoted H1
c ≡H2

c , if both
H1

c �τ H2
c and H2

c �τ H1
c . If a classifier Hc can be expressed as H1

c ∨H2
c such that either H1

c �τ H2
c or H2

c �τ H1
c , then Hc

is redundant. Otherwise Hc is minimal. If Hc = 〈Pos,Neg,T 〉 is minimal, T is minimal. H1
c strictly τ -subsumes H2

c , denoted
H1

c >τ H2
c , if H1

c �τ H2
c and not H1

c ≡H2
c .

Example 4.6. Classifiers H1
c and H2

c of Example 4.5 are equivalent. Classifier Hc = {(1,1), (3,1), (2,2)} is redundant as
Hc =H1

c ∨H2
c , where H1

c = {(1,1), (2,2)} and H2
c = {(3,1)} and, further, H1

c �τ H2
c holds. On the contrary, H1

c is minimal.
It can be easily recognized that Hc ≡H1

c holds.

68 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
The notion of equivalence encodes the intuition that equivalent hypotheses provide the same classification behavior.
In fact, from Proposition 4.3 it immediately follows that equivalent classifiers do classify the same documents. The next
lemma and proposition show that the vice versa holds as well (i.e., classifiers that classify the same documents are equiva-
lent).

Lemma 4.1. Let Hc =H1
c ∨H2

c and Ĥc = Ĥ1
c ∨ Ĥ2

c be given. Then, D(Hc) ⊇ D(Ĥc) only if (D(H1
c) ⊇ D(Ĥ1

c) or D(H2
c) ⊇ D(Ĥ1

c))

and (D(H1
c) ⊇ D(Ĥ2

c) or D(H2
c) ⊇ D(Ĥ2

c)).

Proposition 4.4. Let Hc and H′
c be two classifiers in HΦ(P , N). Then D(Hc) ⊇ D(H′

c) implies Hc �τ H′
c .

From the above proposition and Proposition 4.3 it immediately follows the following statement.

Corollary 4.1. Given classifiers H1
c and H2

c , H1
c ≡H2

c iff D(H1
c) = D(H2

c).

Next we show a number of further interesting properties of classifiers.

Proposition 4.5. Let Hc = 〈Pos,Neg,T 〉 be given. Then:

1. Hc is redundant iff there exist (pi,ni), (p j,n j) ∈ T such that {(pi,ni)}�τ {(p j,n j)}.
2. Hc is minimal iff T = {(p1,n1), . . . , (pr,nr)} is such that pi < p j and ni < n j , or vice versa, for each i, j ∈ [1, r].
3. If Hc =H1

c ∨H2
c and H1

c �τ H2
c , then Hc ≡H1

c .

Example 4.7. According to Part 1 of Proposition 4.5, the classifier Hc = {(1,1), (2,1), (2,2)} is redundant, as {(1,1)} �τ

{(2,1)}, while H1
c = {(1,1), (2,2)} is minimal. It is easily verified that H1

c satisfies the condition p1 < p2 and n1 < n2
of Part 2 of Proposition 4.5. Since Hc = H1

c ∨ H2
c , where H2

c = {(2,1)}, and H1
c �τ H2

c , Hc ≡ H1
c follows from Part 3 of

Proposition 4.5.

Another interesting property of HΦ(P , N) is that, for any two classifiers H1
c and H2

c in it, there exists another classi-
fier Hc in it which is a τ -specialization of both H1

c and H2
c that classifies exactly the documents classified by both H1

c and
H2

c (i.e., Hc is equivalent to the logical AND of H1
c and H2

c). We denote such a classifier by and(H1
c ,H2

c). Next we provide
the (constructive) definition of and(H1

c ,H2
c). As we will see shortly after, this definition is a preliminary step for showing

that �τ forms a complete lattice over the set of minimal classifiers.

Definition 4.7 (AND of classifiers). Given H1
c ,H2

c ∈ HΦ(P , N), and(H1
c ,H2

c) is the classifier inductively defined as follows:

• Basis: if H1
c = {(p1,n1)} and H2

c = {(p2,n2)} are atoms, then and(H1
c ,H2

c) = {(p,n)}, where p = Max{p1, p2} and n =
Min{n1,n2}.

• Inductive step: if H1
c = H1,1

c ∨ H1,2
c and H2

c = H2,1
c ∨ H2,2

c , then and(H1
c ,H2

c) = H1 ∨ H2 ∨ H3 ∨ H4, where H1 =
and(H1,1

c ,H2,1
c), H2 = and(H1,1

c ,H2,2
c), H3 = and(H1,2

c ,H2,1
c) and H4 = and(H1,2

c ,H2,2
c).

Example 4.8. If H1
c = {(1,2)} and H2

c = {(2,3)}, then and(H1
c ,H2

c) = {max{1,2},min{2,3}} = {2,2} (base step of the def-
inition). Intuitively, and(H1

c ,H2
c) is more specific than H1

c and H2
c as the higher the positive threshold, the lower the

negative one, the more specific an atom is. As another example, if H3
c = {(1,1), (2,3)} and H4

c = {(0,1), (2,2)}, then
and(H3

c ,H4
c) = {(1,1), (2,1), (2,2)} (inductive step of the definition). Notice that and(H3

c ,H4
c) is not minimal.

Proposition 4.6. Given Hc, Ĥc ∈ HΦ(P , N), the classifier and(Hc, Ĥc) is such that (1) and(Hc, Ĥc) ∈ HΦ(P , N), (2) D(and(Hc,

Ĥc)) = D(Hc) ∩ D(Ĥc), and (3) Hc �τ and(Hc, Ĥc) and Ĥc �τ and(Hc, Ĥc).

Example 4.9. In Example 4.8 we have seen that and(H1
c ,H2

c) = {(2,2)}, for H1
c = {(1,2)} and H2

c = {(2,3)}. Hence,
and(H1

c ,H2
c) classifies a document d if d contains x � 2 positive features and y < 3 negative features; it is immediately

recognized that a document satisfying such a condition is classified by both H1
c and H2

c . On the other hand, d is classified
by both H1

c and H2
c if it contains x � max(1,2) positive features and y < min(2,3) negative features, that is, if d is classified

by and(H1
c ,H2

c).

The above result shows that the inclusion of the “∧” operator in the definition of classifier would not increase the
expressivity of the language (i.e., it would be redundant).

Now we turn our attention to minimal classifiers. The following proposition shows a key result, that is, the uniqueness
of the minimal classifier for an equivalence class.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 69
Functions �(T1,T2) and �(T1,T2)

1. function Minimize(T)

2. drop from T each (p,n) s.t. ∃(p′,n′) ∈ T s.t. (p′,n′)�τ (p,n).
4. return T .

5. function �(T1,T2)

6. return Minimize(T1 ∪ T2);

8. function �(T1,T2)

9. T = ∅;
10. for each (p,n) ∈ T1
11. for each (p′,n′) ∈ T2
12. T = T ∪ {(Max{p, p′},Min{n,n′})};
13. return Minimize(T);

Fig. 2. Computation of �(T1,T2) and glbτ (T1,T2).

Proposition 4.7. Any equivalence class into which is partitioned the hypothesis subspace HΦ(P , N) by the relation ≡ has a unique
minimal classifier.

We denote by Min(Hc) the minimal classifier of the equivalence class of Hc . From now on, we will restrict our attention
to the set of minimal classifiers MΦ(P , N) ⊆ HΦ(P , N). It is immediate to recognize that the restriction of the binary
relation �τ to MΦ(P , N) is a partial order. More precisely, it is a complete lattice.

Proposition 4.8. The poset (MΦ(P , N),�τ), where MΦ(P , N) is the set of the minimal classifiers in HΦ(P , N), is a complete lattice.
Indeed, for any two elements H1

c and H2
c of MΦ(P , N), there are both the greatest lower bound glbτ (H1

c ,H2
c) and the least upper

bound lubτ (H1
c ,H2

c) as follows:

(a) lubτ (H1
c ,H2

c) = Min(H1
c ∨ H2

c), that is, the least upper bound of H1
c , H2

c is the minimal classifier of the equivalence class of
H1

c ∨H2
c .

(b) glbτ (H1
c ,H2

c) = Min(and(H1
c ,H2

c)), that is, the greatest lower bound of H1
c , H2

c is the minimal classifier of the equivalence class
of and(H1

c ,H2
c).

Example 4.10. The τ -subsumption lattice, for threshold bounds P = 2 and N = 3, is depicted in Fig. 1. How we can see,
there are 19 classifiers; the most general one is {(0,3)} and the most specific one is {(2,1)}. Further, the maximum order
of a classifier is 3 (the order of {(0,1), (1,2), (2,3)}).

We conclude this section by providing a constructive definition of both lubτ and glbτ . Let H1
c = 〈Pos,Neg,T1〉 and

H2
c = 〈Pos,Neg,T2〉. Now, by Proposition 4.8, lubτ (H1

c ,H2
c) = Min(H1

c ∨H2
c), that is, lubτ (H1

c ,H2
c) = Min(〈Pos,Neg,T1 ∪T2〉)

(by Definition 4.2), that is, lubτ (H1
c ,H2

c) = 〈Pos,Neg,Min(T1 ∪ T2)〉, where Min(T1 ∪ T2) is obtained from T1 ∪ T2 simply
by discarding every (p,n) such that there exists (p′,n′) ∈ T1 ∪ T2 such that {(p′,n′)} �τ {(p,n)} (immediate from Proposi-
tion 4.5, Part 1). We denote Min(T1 ∪ T2) by �(T1,T2), so that lubτ (H1

c ,H2
c) = 〈Pos,Neg,�(T1,T2)〉. Likewise, by Proposi-

tion 4.8, we have that glbτ (H1
c ,H2

c) = Min(and(H1
c ,H2

c)). We denote by �(T1,T2) the threshold set constructed by using
Definition 4.7 and then minimized as shown above, so as glbτ (H1

c ,H2
c) = 〈Pos,Neg,�(T1,T2)〉.

Proposition 4.9. Let H1
c = 〈Pos,Neg,T1〉 and H2

c = 〈Pos,Neg,T2〉 be two (minimal) classifiers in MΦ(P , N). Then

lub
τ

(
H1

c ,H2
c

) = 〈
Pos,Neg,�(T1,T2)

〉
,

glb
τ

(
H1

c ,H2
c

) = 〈
Pos,Neg,�(T1,T2)

〉
where �(T1,T2) and �(T1,T2) are constructively defined as shown in Fig. 2.

A proof of correctness of the algorithms of Fig. 2 is reported in Appendix A.

4.4. The minimal hypothesis space

In the previous subsection we defined the notion of minimal classifier as the representative hypothesis of an equiva-
lence class. Minimality is a desirable property of classifiers as, by guaranteeing the uniqueness of representation, imposes
an ordered structure within the hypothesis space. For this reason, we restrict ourselves to minimal classifiers.

70 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Definition 4.8. Let the feature space Fc(k) = 〈Pos∗(k),Neg∗(k)〉 and the threshold bounds P and N be given. The minimal
hypothesis space constructible over Fc(k), for the given P and N values, is (M(Fc(k), P , N),�τ ,�φ), where

M
(
Fc(k), P , N

) =
⋃
Φ

MΦ(P , N) s.t. Φ ∈ {〈Pos,Neg〉 ∣∣ Pos ⊆ Pos∗(k), Neg ⊆ Neg∗(k)
}
.

Thus, a minimal hypothesis space is uniquely determined by k, P and N .
Using the previously defined notational convention, in the following we will denote by Mτ (Fc(k)) the set of (minimal)

classifiers in M(Fc(k), P , N) with threshold set T . It is immediate to recognize that, given the minimal threshold set T ,
Mτ (Fc(k)) and Hτ (Fc(k)) coincide, as both consist of all (minimal) classifiers with threshold set T constructible over Fc(k).
It turns out that (Mτ (Fc(k)),�φ) and (Hτ (Fc(k)),�φ) coincide as well.

Next we discuss on the structure of (M(Fc(k), P , N) �τ ,�φ), as determined by the two subsumption relations. Since the
φ-subsumption and the τ -subsumption lattices are the basic building blocks of a minimal hypothesis space, we start our
discussion by preliminarily showing the size of such lattices.

4.4.1. The size of the two types of lattice
A φ-subsumption lattice MT (Fc(k)) consists, for a given T , of all hypotheses that can be built over a given feature

space Fc(k), each hypothesis corresponding to a particular choice of the sets Pos and Neg over Fc(k). It is immediate to
recognize the following fact.

Fact 4.1. The size of MT (Fc(k)) is equal to the number of sets Pos and Neg constructible over the feature space Fc(k) =
〈Pos∗(k),Neg∗(k)〉, that is, |HT (Fc(k))| = 22k.

A τ -subsumption lattice MΦ(P , N) consists, for a given Φ = 〈Pos,Neg〉, of all hypotheses that can be built for the given
threshold bounds P and N , each hypothesis corresponding to a particular threshold set satisfying P and N . The next lemma
and proposition show both the size of MΦ(P , N) and the maximum order of a classifier.

Lemma 4.2. Given threshold bounds P and N, along with k � Min(P + 1, N), let T +
k = {p1, . . . , pk} and T −

k = {n1, . . . ,nk} be sets of
integers, where ∀i � k, 0 � pi � P and 0 < ni � N. Then there exists a unique subset S ⊆ T +

k × T −
k having size k which is a minimal

threshold set.

Proposition 4.10. Given the threshold bounds P and N, (1) the maximum order of a classifier in MΦ(P , N) is Min(P + 1, N),
and (2) the number of minimal threshold sets that can be constructed for the given bounds is

λ(P , N) =
Min{P+1,N}∑

j=1

(
P + 1

j

)(
N
j

)
. (1)

4.4.2. The landscape from the τ -subsumption perspective
Given threshold bounds P and N , let us consider two lattices (MΦ(P , N),�τ) and (MΦ ′ (P , N),�τ), where Φ = 〈Pos,Neg〉

and Φ ′ = 〈Pos′,Neg′〉. By Proposition 4.10, they have the same number λ(P , N) of classifiers, i.e., all those constructible
for the given P and N . Hence, there is a one to one correspondence g between the classifiers of MΦ(P , N) and those
of MΦ ′ (P , N), two related classifiers having the same threshold sets. Since the τ -subsumption relation among classifiers
is determined by the τ -subsumption relation among the respective threshold sets (see Definition 4.5), clearly H1

c �τ H2
c

holds in (MΦ(P , N),�τ) iff g(H1
c) �τ g(H2

c) holds in (MΦ ′ (P , N),�τ). That is, the two lattices are isomorphic. Further,
all classifiers in MΦ(P , N) share the feature sets 〈Pos,Neg〉, while those in MΦ ′ (P , N) share the feature sets 〈Pos′,Neg′〉,
so as MΦ(P , N) and MΦ ′ (P , N) are disjoint. Since the number of different Φs (i.e., pairs of sets Pos and Neg) constructible
over a given feature space Fc(k) is 22k , we may conclude that (M(Fc(k), P , N),�τ) has a structure made of 22k isomorphic,
disjoint lattices (MΦ(P , N),�τ), each of size λ(P , N). For an instance, given P = 2 and N = 3, (M(Fc(k),2,3),�τ) will
consists of 22k lattices whose structure is that depicted in Fig. 1.

Fact 4.2. The partial order (M(Fc(k), P , N),�τ) consists of 22k isomorphic, disjoint lattices (MΦ(P , N),�τ), each of size λ(P , N).

4.4.3. The landscape from the φ-subsumption perspective
The φ-subsumption perspective is of course dual to the τ -subsumption one. Consider two lattices (MT (Fc(k)),�φ)

and MT ′(Fc(k),�φ), for any T , T ′ . As stated by Fact 4.1, their size is 22k . Since the relationship �φ among classifiers
is determined only by the inclusion relationship among the respective sets of features (see Definition 4.4), the structure
of the above lattices does not depend on T . Hence, MT (Fc(k)) and MT ′ (Fc(k)) are isomorphic under �φ . Since any
hypothesis in MT (Fc(k)) has threshold set T and any hypothesis in MT ′(Fc(k)) has threshold set T ′ , MT (Fc(k)) and
MT ′ (Fc(k)) are disjoint. Therefore, in the hypothesis space (M(Fc(k), P , N),�φ) there exist λ(P , N) isomorphic, disjoint
lattices (MT (Fc(k)),�φ), each of size 22k .

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 71
Fig. 3. Decision boundaries of {(1,2)} (left side) and {(1,2), (2,3)} (right side).

Fact 4.3. The partial order (M(Fc(k), P , N),�φ) consists of λ(P , N) isomorphic, disjoint lattices (Mτ (Fc(k)),�τ), each of size 22k.

4.5. Decision boundaries

There is an interesting graphical representation of a classifier Hc = 〈Pos,Neg,T 〉 on the 2-dimensional space N2

(see Fig. 3). Here, each point (x, y), with x and y non-negative integers, is labeled by a pair of integers 〈π(x, y), ν(x, y)〉,
where π(x, y) is the number of positive examples (documents) and ν(x, y) the number of negative ones containing exactly x
features from Pos and y features from Neg. Intuitively, we may think of a point (x, y) as identifying the set of (both positive
and negative) examples with x positive features and y negative ones. Hence, the region of the plane

RHc = {
(x, y)

∣∣ x � |Pos|, y � |Neg|, ∃(pi,ni) ∈ T s.t. x � pi, y < ni
}
,

whose points satisfy the threshold conditions, identifies the documents that are classified by Hc (we call RHc classification
region). It turns out that the number of documents classified by Hc is

∑
(x,y)∈RHc

(π(x, y) + ν(x, y)). The border of the
region RHc is the decision boundary of Hc .

As an example, the classification regions of the (φ-homogeneous) classifiers Hc = {(1,2)} and H′
c = {(1,2), (2,3)} are

those depicted in Fig. 3. Here, the following should be noted:

1. the decision boundary of the atom Hc is a rectangle (left side of Fig. 3), while that of the 2-order classifier H′
c is the

overlapping of two rectangles, one for each atom (right side of Fig. 3), and
2. the classification region of Hc , which is a τ -specialization of H′

c , is contained in the classification region of Hc .

The above two statements can be generalized. In particular, concerning point (2), it can be easily verified that, for any two
classifiers H′

c , Hc such that H′
c �τ Hc , the condition RH′

c
⊇ RHc holds, and vice versa (it suffices to use the above definition

of classification region along with Definition 4.5). As for point (1), we can state that the decision boundary of a classifier
H1

c ∨ · · · ∨Hr
c is a step-wise non-decreasing polyline in N2 consisting alternately of vertical and horizontal segments. To see

why, it suffices to observe the following:

a. the decision boundary of each single atom Hi
c = {(pi,ni)}, 1 � i � r, is a rectangle subtending the points (x, y) which

satisfy the test conditions pi � x � |Pos| and 0 � y < ni , and
b. the r atoms H1

c · · ·Hr
c are such that pi−1 < pi and ni−1 < ni , for each i ∈ [1, r] (see Proposition 4.5, Part 2).

Intuitively, the non-decreasingness of decision boundaries implies that documents which are less likely to belong to
a category c (that is, documents with few positive features and many negative ones) are also less likely to be classified
by Hc . For an instance, consider two documents d(x, y) and d′(x′, y), having x and x′ positive features, respectively, with
x′ � x, and both containing the same number y of negative features. Intuitively, d(x, y) is less likely to be a positive example
for c than d′(x′, y) (as it holds less positive features, which are indicative of membership, for the same number of negative
ones). On the other hand, since the boundary is non-decreasing, it also happens that d(x, y) is less likely to fall within RHc

than d′(x′, y), that is, d(x, y) is less likely to be classified by Hc .

4.6. Remarks on the proposed language

The “family resemblance” metaphor. In a binary classification task there are two families (classes): the positive, call it P ,
and the negative, call it N . Let us assume that the atom p-of-Pos ∧ ¬n-of-Neg is used to characterize the members of P .

72 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Here, Pos is the set of features that such members share, while the threshold p states how many of such features each
member must hold. Symmetrically, Neg is the set of features shared by the members of the other family N . Actually, not
all members, but more specifically only those that are most similar to the members of P (recall that, by Definition 4.1,
the features in Neg are those that characterize members of N holding some features of the family P). Thus, an example
that exhibits p positive features is a member of P provided that it holds less than n negative features. To use an analogy,
imagine that the members of the Brown family hold at least two of the following features: green eyes, black hair and
tallness. However, also in the White family there are members that are tall and have green eyes, but they also hold at least
two of the following features: fair hair, long nose and high forehead. Thus, an individual that is tall and has green eyes
belongs to the Brown family provided that he possesses less than two of such features (that would play the role of negative
features for the Brown family with threshold n = 2).

On the expressivity of M-of-N{¬,∨} . M-of-N hypotheses can be regarded as M-of-N{¬,∨} atoms with only positive features,
i.e., atoms of the form p-of-Pos. Simple M-of-N hypotheses are often sufficient for the classification of new and unseen
data, but it is well known that there are cases where the need for negative features cannot be avoided. A simple example
is the following: document {t0, t1} belongs to c, document {t0, t1, t2} belongs to c′ and document {t1, t2} belongs to c′′ . It is
easy to recognize that this scenario can be modeled by the atoms Hc = 〈{t0}, {t2}, {(1,1)}〉, Hc′ = 〈{t0, t2},∅, {(2,1)}〉, and
Hc′′ = 〈{t1}, {t0}, {(1,1)}〉, where the negative features are needed to discriminate among classes.

Although M-of-N{¬,∨} atoms surpass classical M-of-N hypotheses in expressive power, there are data sets that cannot
be represented simply by atoms. As an example, assume that documents d1 = {t0}, d2 = {t0, t1} and d3 = {t0, t1, t2} are
associated with category c, while d4 = {t0, t2} is not. Intuitively, to correctly classify such data we need a hypothesis Hc

stating the following: the occurrence of either t0 or t1 is sufficient in order for a document d be classified under c, provided
that t2 does not appear in d; but, if t2 does appear in d, a stronger condition is needed, that is, both t0 and t1 must occur
in d. We can easily recognize that Hc is the 2-order classifier 〈{t0, t1}, {t2}, {(1,1), (2,2)}〉, and that no atomic equivalent
classifier there exists.

However, though the proposed language improves the expressive power of M-of-N concepts, M-of-N{¬,∨} does not ac-
tually reach the full expressiveness of DNF. For an instance, there is no M-of-N{¬,∨} hypothesis capable of explaining the
following data: d1 = {t0}, d2 = {t1, t2} and d3 = {t0, t2}, with d1 and d2 belonging to class c and d3 to its complement. It is
easy to recognize that the reason for this limitation is that all atoms forming a hypothesis share the same sets of positive
and negative features. As we will see in the next sections, the rationale for this choice is that it drastically restricts the
search space. That is, effectiveness is traded-of against efficiency.

Why subsumption relations are important. As we have seen, the two relations �τ and �φ codify the intuitive notion of
“more-general-than” between hypotheses. That is, given H1

c and H2
c such that H1

c �τ H2
c , any example covered by H2

c is
covered by H1

c as well.
The idea of ordering the concept space by a “more-general-than” relation is not new in Inductive Logic Programming

(see, e.g., [40]). What is actually original in our approach is the ordering along two dimensions, the feature and the threshold
dimensions.

The ordering relations are important because they provide the learning algorithm with a means to selectively search
the hypothesis space. For an instance, the search strategy can move towards a more general hypothesis whenever too few
positive examples are covered by the current one or, vice versa, towards a more specific hypothesis if too negative examples
are covered.

The implementation of a selective search requires the definition of suitable operators which, by exploiting the subsump-
tion relations, enable the generalization/specialization of a hypothesis. This is what we will do in the next section.

5. Refinement operators

Informally, a refinement operator is a function which enables to “navigate” the space of the minimal classifiers through
the partial order relations. We next provide two classes of refinement operators: unary and binary refinement operators.

Notation. For the sake of simplicity, in the following definitions we will often denote the set of minimal hypotheses
M(Fc(k), P , N,) simply by M.

5.1. Unary refinement operators

A unary refinement operator is a non-deterministic function which returns a “neighbor” of Hc either in the φ-subsumption
or in the τ -subsumption relationship. It is used to move a classifier “one step” upward or downward in either one of the
two hierarchies.

Definition 5.1 (Unary refinement operators). A unary refinement operator is a non-deterministic function from M to M. In par-
ticular, the unary x-generalization operator, denoted by ↑x , with x ∈ {φ,τ }, is a function such that: ↑x (Hc) = Hc if
�H′

c ∈ M such that H′
c >x Hc (i.e., Hc is the top element); otherwise, ↑x (Hc) = H′

c where H′
c >x Hc and �H′′

c such
that H′

c >x H′′
c >x Hc . The unary x-specialization operator ↓x is defined accordingly.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 73
We first provide a constructive definition of both ↑φ (Hc) and ↓φ (Hc) in the φ-subsumption lattice. Informally, a direct
ancestor of Hc in the φ-subsumption hierarchy is obtained from Hc either by adding to Pos a candidate positive term or by
removing any term from Neg (a direct descendant is obtained in a dual way).

� COMPUTATION of ↑φ (Hc) and ↓φ (Hc). Given Hc = 〈Pos,Neg,T 〉, compute:
↑φ (Hc) =Hc if Pos = Pos∗(k) and Neg = ∅ (i.e., if Hc is the top element in the φ-subsumption lattice), otherwise

↑φ (Hc) =
{ 〈Pos ∪ {t},Neg,T 〉 where t ∈ Pos∗(k), or

〈Pos,Neg \ {t},T 〉 where t ∈ Neg.

↓φ (Hc) =Hc if Pos = ∅ and Neg = Neg∗(k), otherwise

↓φ (Hc) =
{ 〈Pos \ {t},Neg,T 〉 where t ∈ Pos, or

〈Pos,Neg ∪ {t},T 〉 where t ∈ Neg∗(k).
�

A proof of correctness of the above computation is reported in Appendix A.

Example 5.1. Given Hc = 〈{t0, t1}, {t2},T 〉, let t ∈ Pos∗(k) and t′ ∈ Neg∗(k) be two candidate features. Then, the following
hypotheses are “neighbors” of Hc in the φ-subsumption hierarchy:

↑φ (Hc) = 〈{t0, t1, t}, {t2},T
〉
, ↑φ (Hc) = 〈{t0, t1},∅,T

〉
,

↓φ (Hc) = 〈{t1}, {t2},T
〉
, ↓φ (Hc) = 〈{t0, t1},

{
t2, t′},T 〉

.

Let us now see how a neighbor ↑τ (Hc) or ↓τ (Hc) of Hc in the τ -subsumption lattice is computed. Clearly, to obtain,
say, ↑τ (Hc), we have to replace in Hc the threshold set T by an immediate ancestor ↑ T in the τ -subsumption lattice.
So as the problem reduces to the computation of ↑ T .

� COMPUTATION of ↑τ (Hc) and ↓τ (Hc). Given Hc = 〈Pos,Neg,T 〉, compute ↑τ (Hc) and ↓τ (Hc) as follows

↑τ (Hc) = 〈Pos,Neg,↑ T 〉 and ↓τ (Hc) = 〈Pos,Neg,↓ T 〉
where the non-deterministic operator ↑ (resp. ↓) applied to T returns an immediate ancestor (resp. descendant) of T
in the τ -subsumption hierarchy. ↑ T is constructed from T by the algorithm of Fig. 4 (we do not report the dual
algorithm for ↓ T for space reason). �

For a description of the algorithm of Fig. 4 the reader is referred to Appendix B.

5.2. Binary refinement operators

Binary refinement operators are aimed at exploiting the lattice structure of both the φ-subsumption and the
τ -subsumption hierarchies. In particular, given two classifiers, they return a classifier which is either the lub or the glb
of the two classifiers in any of the two subsumption lattices, depending on whether a generalization or a specialization is
needed, respectively.

Definition 5.2 (Binary refinement operators). A binary refinement operator is a function from M × M to M. Let classifiers
H1

c = 〈Pos1,Neg1,T1〉 and H2
c = 〈Pos2,Neg2,T2〉 be given. There are two binary generalization operators, the τ -generalization∨

τ and the φ-generalization
∨

φ , defined as follows:∨
τ

(
H1

c ,H2
c

) = 〈
Pos1,Neg1,�(T1,T2)

〉
,∨

φ

(
H1

c ,H2
c

) = 〈Pos1 ∪ Pos2,Neg1 ∩ Neg2,T1〉
and two binary specialization operators

∧
τ and

∧
φ defined as follows:∧

τ

(
H1

c ,H2
c

) = 〈
Pos1,Neg1,�(T1,T2)

〉
,∧

φ

(
H1

c ,H2
c

) = 〈Pos1 ∩ Pos2,Neg1 ∪ Neg2,T1〉.

It should be noted that all the above operators are not commutative. In fact,
∨

x(H1
c ,H2

c), with x ∈ {τ ,φ}, yields a general-
ization of H1

c (through H2
c), and

∧
x(H1

c ,H2
c) yields a specialization of H1

c (through H2
c).

74 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Non-deterministic function ↑ T

Input: threshold bounds P and N; a minimal threshold set T = {τ1, . . . , τk}, where
τi = (pi,ni) for each i ∈ [1,k] and pi < pi+1, ni < ni+1, for each i ∈ [1,k) (see Proposition 4.5)

Output: a direct ancestor ↑ T of T ;

function NewElement(X, Y)

1. if (px > p y) then swap X = (px,nx) and Y = (p y,ny)

2. δ+ = |p y − px|, δ− = |ny − nx|;
3. if (δ+ > 1 and δ− > 1) then compute the most specific threshold pair (p,n) such that
4. px < p < p y and nx < n < ny , i.e., (p,n) = (p y − 1,nx + 1)

5. else compute the most specific threshold pair (p,n) such that px � p � p y

6. and nx � n � ny and:
7. if δ+ > 1 then (p,n) �τ Y ; set (p,n) = (p y − 1,ny);
8. else if δ− > 1 then (p,n)�τ X ; set (p,n) = (px,nx + 1)

9. else (p,n) �τ X and (p,n) �τ Y ; set (p,n) = (px,ny)

10. return {(p,n)}.

11. begin
12. if T = {(0, N)} (i.e., T is the top of the lattice) return ∅;
13. τ0 = (p0,n0) = (−1,0); τk+1 = (pk+1,nk+1) = (P + 1, N + 1);
14. randomly select i ∈ [1,k];
15. if i = 1 and pi = 0 then adj = τi+1 // right adjacent
16. else if i = k and ni = N then adj = τi−1; // left adjacent
17. else randomly select adj ∈ {τi−1, τi+1}; ;
18. return ↑ T = Minimize(T ∪ NewElement(τi,adj));

Fig. 4. Pseudo code for the random selection of a direct ancestor of a threshold set in the τ -subsumption lattice.

Fig. 5. Given H1
c = 〈Pos1,Neg1,T1〉 and H2

c = 〈Pos2,Neg2,T2〉, the hypothesis
∨

τ (H1
c ,H2

c) is the least upper bound of H1
c and the φ-homogeneous

classifier 〈Pos1,Neg1,T2〉, i.e.,
∨

τ (H1
c ,H2

c) = 〈Pos1,Neg1,�(T1,T2)〉.

Intuitively,
∨

τ (H1
c ,H2

c) is the least upper bound of H1
c and the φ-homogeneous classifier having the same threshold set

of H2
c (see Fig. 5). Dually,

∨
φ(H1

c ,H2
c) is the least upper bound of H1

c and the τ -homogeneous classifier having the same

feature sets of H2
c (the specialization operators are defined accordingly).

Example 5.2. Consider H1
c = 〈Pos1,Neg1,T1〉 and H2

c = 〈Pos2,Neg2,T2〉, where T1 = {(2,2)} and T2 = {(1,1)}. According to
Definition 5.2, we have that∨

τ

(
H1

c ,H2
c

) = 〈
Pos1,Neg1,�(T1,T2)

〉 = 〈
Pos1,Neg1,

{
(1,1), (2,2)

}〉
,∧

τ

(
H1

c ,H2
c

) = 〈
Pos1,Neg1,�(T1,T2)

〉 = 〈
Pos1,Neg1,

{
(2,1)

}〉
.

It is easily verified that
∨

τ (H1
c ,H2

c) is a generalization of H1
c , while

∧
τ is a specialization of H1

c .
Now, assume that Pos1 = {t1, t2}, Neg1 = {t3, t4}, Pos2 = {t2, t5}, Neg2 = {t3}. We generalize H1

c (through H2
c) by using

the
∨

φ operator as follows:∨ (
H1

c ,H2
c

) = 〈Pos1 ∪ Pos2,Neg1 ∩ Neg2,T1〉 = 〈{t1, t2, t5}, {t3},T1
〉

φ

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 75
and specialize H1
c (through H2

c) by
∧

φ as follows:

∧
φ

(
H1

c ,H2
c

) = 〈Pos1 ∩ Pos2,Neg1 ∪ Neg2,T1〉 = 〈{t2}, {t3, t4},T1
〉
.

It is easy to recognize that both
∨

φ(H1
c ,H2

c) �φ H1
c and H1

c �φ

∧
φ(H1

c ,H2
c) hold.

Proposition 5.1. Given classifiers H1
c and H2

c , the following hold:

• ∨
x(H1

c ,H2
c)�x H1

c ,
• H1

c �x
∧

x(H1
c ,H2

c),

where x ∈ {τ ,φ}.

6. Learning problem and complexity

Before providing an effective algorithm for the learning of classifiers, in this section we give a definition of the learning
problem and show its complexity.

The goal is to find, for each category c ∈ C , a (minimal) hypothesis Hc ∈ M(Fc(k), P , N) that best fits the training
data. To this end, we assume that categories in C are mutually independent, so as the whole learning task consists of |C|
independent binary sub-tasks, one for each category.

To assess Hc we use the F -measure. This is a measure that trades off precision Pr versus recall Re and is defined as the
harmonic mean of Pr and Re as follows2:

F = 2 Pr Re

Pr + Re
. (2)

Let us denote by F (Hc, T) the F -measure obtained by Hc when it is applied to the documents of the training set T . Now,
the learning problem can be formulated as the following optimization problem.

Definition 6.1 (Learning problem). Let the feature space Fc(k) and the threshold bounds P , N be given. The learning problem
is to find a (minimal) classifier Hc ∈ M(Fc(k), P , N) that maximizes the F -measure F (Hc, T) of Hc over the training set T .

The above learning problem is essentially an instance of Inductive Logic Programming (ILP) [41], which deals with the
general problem of inducing logic programs from examples in the presence of background knowledge. It is well known that
ILP problems are computationally intractable.

Proposition 6.1. The decision version of the learning problem is NP-complete.

The reader is referred to Appendix A for a proof of the above statement.
The theory of PAC-learnability, first proposed by Valiant in [42], provides a model of approximated polynomial learning

where the polynomially bound amount of resources (both number of examples and computational time) is traded-off against
the accuracy of the induced hypothesis. However, as shown by the above proposition, there is no algorithm that produces
a consistent M-of-N{¬,∨} hypothesis on p examples in time polynomial in p, so as M-of-N{¬,∨} hypotheses are not PAC-
learnable (this should not be surprising, given that M-of-N concepts are not PAC-learnable – see Pitt and Valiant [43]).

7. Learning a classifier: a GA-based approach

So far, we have seen the structural properties of the M-of-N{¬,∨} hypothesis space and designed a set of refinement
operators that are the search abstract tools. Further, we have defined the learning problem and showed that it is compu-
tationally difficult. In this section we provide an effective algorithm for learning classifiers in the M-of-N{¬,∨} hypothesis
space. In particular, we propose a heuristic approach based on a Genetic Algorithm (GA).

A GA represents a well known and powerful domain-independent search technique based on natural evolutionary opera-
tors. A standard GA can be regarded as composed of three basic elements: (1) A population, i.e., a set of candidate solutions
(classifiers), called individuals or chromosomes, that will evolve during a number of iterations (generations); (2) a fitness

2 This is also known as the F 1-measure, because recall and precision are evenly weighted.

76 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
function used to assign a score to each individual of the population; (3) an evolution mechanism based on operators such
as elitism, selection, crossover and mutation. A comprehensive description of GAs can be found in [44].

GAs showed to be well suited for learning classification rules (see, e.g., [29,28,27]) as well as M-of-N hypotheses [7],
as they perform a thorough search of the hypothesis space, not limited by any greedy search bias. However, GAs also have
some disadvantages for rule discovery. For instance, conventional genetic operators, such as crossover and mutation, are nor-
mally applied without directly trying to optimize the quality of the new candidate solution by exploiting the structure of
the hypothesis space. A recent research trend aimed at overcoming this drawback is that of combining the standard search
strategy of GAs with that of task-specific genetic operators which incorporate the knowledge about the specific applica-
tion [30–33] (here, by “application” we mean the task of inducing classification rules).

Next we present GAMoN, the task-specific GA designed to induce M-of-N{¬,∨} hypotheses. As we will see, GAMoN relies
on a search strategy where ad hoc, selective reproduction operators, aimed at exploiting the structure of the hypothesis
space, are combined with standard ones.

Detecting the “best” hypothesis space M(Fc(k), P , N) to be explored by GAMoN is a fundamental task which strongly
affects the quality of the learning process. In principle, we might either (1) manage the model parameters k, P and N
(which uniquely determines the hypothesis space) as parameters to be manually tuned, or (2) embed them in the evolutive
dynamics of the GA, letting it to adaptively evolve the best values. GAMoN incorporates this latter approach. To this end,
evolution relies on a number of competing subpopulations S(k1, P1, N1), . . . , S(kn, Pn, Nn), where each S(ki, Pi, Ni) consists
of individuals encoding classifiers in the same hypothesis space Mi(Fc(ki), Pi, Ni), 1 � i � n.

A preliminary step for the creation of the subpopulations S(k1, P1, N1), . . . , S(kn, Pn, Nn) is the detection of a suitable
range [kmin,kmax] for the feature space dimensionality ki of each subpopulation. This is the subject of the next subsection.
Afterward, we will discuss on individual encoding and reproduction operators. Then, we report a detailed description of the
genetic algorithm GAMoN and, finally, we provide some remarks on the proposed GA.

7.1. Detecting the feature space dimensionality

The feature space Fc(k) provides the basic symbols from which the classifiers of a given hypothesis space M(Fc(k), P , N)

are constructed. Behind its definition there is the implicit assumption that only the selected terms are representative of the
category being learned, while the rest are redundant. Thus, predicting the right value of the dimensionality k is a crucial
step. On one hand, a reduced feature space is desirable as redundant or noisy features may “deceive” the learning algorithm
and have detrimental effect on classification results (this is particularly true in the text classification task, where data sets
are usually noisy and ambiguous). Further, reducing the number of features makes the learning process more efficient
(especially in the evolutionary approach, where large feature spaces may entail large individuals and, thus, more match
operations). On the other hand, an aggressive feature selection might discard features that carry essential information.

Next we provide a criterion, inspired to the one proposed in [36], for detecting a range of dimensionality values based
on the statistical characteristics of the data set at hand.

Definition 7.1 (Dimensionality range). We are given a vocabulary V c and a scoring function σ . We define the dimensionality
range [kmin,kmax] for category c as follows:

kmin = ∣∣{t ∈ V c
∣∣ σ(t, c) � m + s

}∣∣,
kmax = ∣∣{t ∈ V c

∣∣ σ(t, c) � m + 3s
}∣∣

where σ(t, c) is the score of feature t ∈ V c w.r.t. category c, and m and s are the average and standard deviation of the
scoring values, respectively.

We notice that the above definition is essentially aimed at selecting a good set Pos∗c (k) of candidate positive features
(recall that Neg∗

c (k) consists of terms co-occurring with terms in Pos∗c (k) – see Definition 4.1). Indeed, to determine kmin
(resp. kmax) we compute the scoring function σ for all features, and then count the number of features whose score is
higher than 1 (resp. 3) standard deviations above the average, i.e., features with high discriminating power.

7.2. Individual encoding

Given a hypothesis space M(Fc(k), P , N), a candidate (minimal) classifier Hc = 〈Pos,Neg,T 〉 ∈ M(Fc(k), P , N) is encoded
by a bit string I = 〈I+, I−, I�τ 〉, where:

1. the positive component I+ is used to encode Pos ⊆ Pos∗c (k). It is made of k bits, each associated with a candidate feature
ti ∈ Pos∗c (k). A ‘1’ or ‘0’ in the gene I+[ti], 1 � i � k, indicates whether or not ti ∈ Pos∗c (k) belongs to Pos.

2. The negative component I− is used to encode Neg ⊆ Neg∗
c (k). It is made of k bits, each associated with a candidate

feature ti ∈ Neg∗
c (k). A ‘1’ or ‘0’ in the gene I−[ti], 1 � i � k, indicates whether or not the i-th candidate feature ti

belongs to Neg.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 77
3. The threshold component I�τ is used to encode the threshold set T . The encoding of T relies on a straightforward
binary representation of all pairs (p,n) ∈ T , with 0 � p � P and 0 < n � N . One additional bit for each element (p,n)

is used to represent presence/absence of that element. Thus, the length of I�τ is Min(P + 1, N)(�log(N(P + 1))� + 1),
where Min(P + 1, N) is the maximum order of a classifier with threshold bounds P and N (see Proposition 4.10). In the
following we will denote by enc the encoding function, i.e., I�τ = enc(T).

It turns out that the length L(I) of I is the following function of k, P and N

L(I) = L
(

I+
) + L

(
I−

) + L
(

I�τ
) = 2k + Min(P + 1, N)

(⌈
log

(
N(P + 1)

)⌉ + 1
)
.

Clearly, individuals encoding classifiers in the same hypothesis space M(Fc(k), P , N) are of equal length.

Example 7.1. Let the hypothesis space M(Fc(k), P , N) be given, where k = 50, P = 2 and N = 3. According to Proposi-
tion 4.10, the maximum order of a classifier is Min(P + 1, N) = Min(3,3) = 3 (see also Example 4.10). Thus, an individual
encoding a classifier 〈Pos,Neg,T 〉 ∈ M(Fc(k), P , N) consists of 2k = 100 bits needed to represent sets Pos and Neg, and fur-
ther Min(P + 1, N)(�log(N(P + 1))� + 1) = 15 bits to encode the threshold set T .

7.3. Fitness

The performance measure used for evaluating the fitness of an individual is the objective function of the learning prob-
lem (see Definition 6.1).

Definition 7.2 (Fitness). We are given a chromosome I , encoding classifier Hc , and the training set T . The fitness of I is
F (Hc, T).

7.4. Task-specific GA operators and stochastic refinement

Next we propose some application-specific reproduction operators as an implementation of the refinement operators
defined in Section 5. Such operators provide a concrete means whereby the learning algorithm selectively searches the
hypothesis space. In particular, we next define two classes of Generalizing/Specializing (GS) operators: GS Crossover and GS
Mutation.

7.4.1. Generalizing/specializing crossover
Crossover is the operation of swapping genetical material between two individuals (parents). GS crossover (GSX) is

a special kind of crossover aimed at making a classifier more general or more specific.
The GSX operators we are defining are an application of the binary refinement operators given by Definition 5.2. As we

have seen, they combine two classifiers of the same hypothesis space and provide a new classifier in the same space. Thus,
GSX operators combine two parents belonging to the same subpopulation (i.e., encoding classifiers in the same hypothesis
space) and yields an individual in the same subpopulation. Therefore, they operate on individuals of equal length (and iso-
morphic).

Notation. With a small abuse of notation, in the following we will denote by
∨

x(I1, I2) and
∧

x(I1, I2) the individuals
encoding the classifiers

∨
x(H1

c ,H2
c) and

∧
x(H1

c ,H2
c), respectively, where x ∈ {τ ,φ} and Ii is the binary encoding of Hi

c
(1 � i � 2). Further, we write I1 �x I2 if H1

c �x H2
c .

Definition 7.3 (GSX operators). We are given individuals I1 and I2 encoding classifiers H1
c ,H2

c ∈ M(Fc(k), P , N), respectively.
The generalization crossover GX(I1, I2) of I1 and I2 is the individual encoding either the binary φ-generalization

∨
φ(H1

c ,H2
c)

or the binary τ -generalization
∨

τ (H1
c ,H2

c) of H1
c and H2

c . More precisely, using the above agreed notation

GX(I1, I2) =
{∨

τ (I1, I2) with probability p = 0.5,∨
φ(I1, I2) otherwise.

The specialization crossover operator SX(I1, I2) is defined accordingly (i.e., using
∧

x in place of
∨

x , with x ∈ {τ ,φ}).

Based on Definition 5.2, the implementation of
∨

φ(I1, I2) and
∧

φ(I1, I2) can be achieved by simple bitwise logical
operations (OR and AND) on I1 and I2 as follows:

• ∨
φ(I1, I2) = I s.t. I+ = OR(I+1 , I+2), I− = AND(I−1 , I−2), I�τ = I�τ

1 .

• ∧
φ(I1, I2) = I s.t. I+ = AND(I+1 , I+2), I− = OR(I−1 , I−2), I�τ = I�τ

1 .

Here I+ = OR(I+, I+) stands for ∀i ∈ [1,k], I+[ti] = OR(I+[ti], I+[ti]) (AND is defined accordingly).
1 2 1 2

78 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Fig. 6. Relevance ρ(t) and irrelevance ρ̄(t) functions. Terms t0, . . . , tn are in increasing order of scoring value.

However, there is a problem with the above implementation. In fact, by performing a “blind” OR or AND, the two
individuals exchange 0’s and 1’s with no regard for the relevance of the features they represent. This may be detrimental,
as a surplus of low-quality features may increase the risk of overfitting the training data. To overcome this drawback,
we introduce the probabilistic OR (pOR) and the probabilistic AND (pAND), which are logical operators biased towards high-
quality features. They both rely on the notion of relevance of a candidate feature.

Definition 7.4. Given the feature space 〈Pos∗c (k),Neg∗
c (k)〉, let σ and η be the scoring functions for the positive and the neg-

ative candidate terms, respectively (see Definition 4.1). With each t ∈ Pos∗(k)∪ Neg∗(k) we assign the relevance measure ρ(t)
as follows:

ρ(t) = f (t)

Max{ f (ti)|ti ∈ S} ,

where f (t) = σ(t) and S = Pos∗c (k) if t is candidate positive feature,3 or f (t) = η(t) and S = Neg∗(t) otherwise. Dually,
we define the irrelevance ρ̄(t) of t as

ρ̄(t) = Min{ f (ti)|ti ∈ S}
f (t)

where f and S are as above. Clearly, 0 < ρ(t) � 1 takes on the value 1 for the highest scoring term t , while 0 < ρ̄(t) � 1
takes on the value 1 for the lowest scoring term t (see Fig. 6).

Definition 7.5 (Probabilistic logical operators). Given two individuals I1 and I2, and a feature t , define the probabilistic OR as
follows:

pOR
(

I1[t], I2[t]
) =

{
OR(I1[t], I2[t]) with probability p = ρ(t),
I1[t] alternatively,

where ρ(t) is the relevance of t (see Definition 7.4). The pAND operator is defined accordingly, using ρ̄(t) in place of ρ(t).

We note that neither operators are commutative. An important property of pOR is that pOR(I1[t], I2[t]) � OR(I1[t], I2[t])
holds, i.e., pOR(I1[t], I2[t]) may be 0 while OR(I1[t], I2[t]) is not, but not vice versa. In particular, pOR(I1[t], I2[t]) =
OR(I1[t], I2[t]) when either I1[t] = 1 or I1[t] = I2[t] = 0. Otherwise, i.e., I1[t] = 0 and I2[t] = 1, pOR(I1[t], I2[t]) =
OR(I1[t], I2[t]) = 1 with probability p = ρ(t). Clearly, the higher the relevance ρ(t) (recall that ρ(t) = 1 when t is the
highest scoring term), the higher the probability that a 1 is “moved” from I2 to I1 (at phenotypic level, this means that the
classifier encoded by I1 acquires a new feature t from the classifier encoded by I2). Thus, the overall effect of pOR is that
of “moving” preferably the most relevant features from I2 to I1. The pAND operator works in a dual way. That is, the effect
of pAND is that of “discarding” from I1 (by moving zeroes from I2 to I1) preferably the least relevant features.

Now, by using the above probabilistic logical operators in place of the standard ones, we compute an “approximation” of
both

∨
φ and

∧
φ as follows.

� COMPUTATION of ≈ ∨
φ(I1, I2) and ≈ ∧

φ(I1, I2). Given the individuals I1 and I2, compute ≈ ∨
φ(I1, I2) and ≈∧

φ(I1, I2) as follows:

• ≈ ∨
φ(I1, I2) = I s.t. I+ = pOR(I+1 , I+2), I− = pAND(I−1 , I−2), I�τ = I�τ

1 .

• ≈ ∧
φ(I1, I2) = I s.t. I+ = pAND(I+1 , I+2), I− = pOR(I−1 , I−2), I�τ = I�τ

1 . �
It can be easily verified that ≈ ∨

φ(I1, I2) is a generalization of I1 and ≈ ∧
φ(I1, I2) a specialization of I1.

3 We assume that σ(t) > 0 for any t ∈ Pos∗(t).

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 79
Unlike the implementation of the φ-subsumption primitives
∨

φ and
∧

φ , which relies on bit-wise operations performed
at the genotype level, the implementation of the τ -subsumption primitives

∨
τ and

∧
τ is performed at phenotype level.

To see this point, we preliminarily recall that
∨

τ (H1
c ,H2

c) = 〈Pos1,Neg1,�(T1,T2)〉 (see Definition 5.2). Thus, to implement∨
τ (I1, I2), we first extract from the individuals I1 and I2 the threshold sets T1 and T2 by using the inverse of the en-

coding function, i.e., Ti = enc−1(I�τ

i) (1 � i � 2). Then, we compute �(T1,T2) by using the algorithm of Fig. 2 and, finally,
we apply the encoding function enc(�(T1,T2)). Therefore,

∨
τ (I1, I2) is the individual having the same positive and negative

components of I1 and threshold component enc(�(T1,T2)).

� COMPUTATION of
∨

τ (I1, I2) and
∧

τ (I1, I2). Let I1 and I2 be two individuals, and let Ti = enc−1(I�τ

i) be the thresh-
old set of the classifier encoded by Ii (1 � i � 2). Then compute
• ∨

τ (I1, I2) = I such that I+ = I+1 , I− = I−1 , I�τ = enc(�(T1,T2)),
• ∧

τ (I1, I2) = I such that I+ = I+1 , I− = I−1 , I�τ = enc(�(T1,T2))

where �(T1,T2) and �(T1,T2) are constructed by the algorithm of Fig. 2. �
The correctness of the above computation directly follows from Definition 5.2.

7.4.2. Generalizing/specializing (GS) mutation
The GS mutation (GSM) operators are an implementation of the unary refinement operators defined in Definition 5.1.

Therefore, the GSM applied to an individual encoding Hc returns another individual encoding a neighbor (generalization or
specialization) of Hc in either one of the two hierarchies.

Notation. In the following we will denote, with a small abuse of notation, by ↑x (I) (resp. ↓x (I)) the individual encoding
the classifiers in ↑x (Hc) (resp. ↓x (Hc)), where x ∈ {φ,τ } and I is the encoding of Hc (see Definition 5.1).

Definition 7.6 (GSM operators). Let I be an individual encoding Hc ∈ M(Fc(k), P , N). The generalization mutation GM(I) of I
is an individual encoding a direct ancestor of Hc in M(Fc(k), P , N) either in the τ - or in the φ-generalization hierarchy, i.e.,
either GM(I) =↑τ (I) or GM(I) =↑φ (I). More precisely,

GM(I) =
{↑φ (I) with probability p = 0.5,

↑τ (I) otherwise.

The specialization mutation SM(I) is defined accordingly.

That is, the GS mutation of I yields an individual encoding, with equal probability, a neighbor of the classifier encoded
by I either in the φ- or the τ -hierarchy (this is exactly what in our model is a “small” change in a hypothesis).

The computation of the non-deterministic primitives ↑φ (I) and ↓φ (I) is clearly the transposition at genotype level of
the computation of the unary refinement operators ↑φ (Hc) and ↓φ (Hc) shown in Section 5.1. Hence, we obtain the binary
encoding ↑φ (I) of a classifier ↑φ (Hc) simply by flipping either one 0 into 1 in I+ (i.e., add a positive feature to Hc) or a 1
into 0 in I− (i.e., remove a negative feature from Hc). Dually, we get the binary encoding ↓φ (I) of a classifier ↓φ (Hc) by
flipping a 1 into 0 in I+ or a 0 into 1 in I− .

However, like in the case of the GS crossover, we bias the GM mutation towards high-relevance features. To this end,
we introduce the notions of insertion probability ip(t) and removal probability rp(t) of a candidate feature t as follows

ip(t) = ρ(t)∑
i=1,k ρ(ti)

, rp(t) = ρ̄(t)∑
i=1,k ρ̄(ti)

where ρ(t) and ρ̄(t) are the relevance and the irrelevance measures of t , respectively (see Definition 7.4). Intuitively, the
probability ip(t) represents the chance that I[t] is flipped from 0 to 1, that is, the chance that the candidate feature t is
selected as a term (either positive or negative) for the classifier encoded by individual I . The meaning of rp(t) is dual.
We notice that, since ρ(ti) � 1, the condition

∑
i=1,k ρ(ti) � k holds (recall that k is the number of both positive and

negative features). Therefore, for the highest scoring feature t (for which ρ(t) = 1) we have that ip(t) = 1/
∑

i=1,k ρ(ti) � 1/k,
i.e., the maximum insertion probability is not smaller than 1/k (defined in [45] as the lower bound of the optimal mutation
rate). Dually, the removal probability rp(t) is maximum for the lowest scoring feature t , for which the relation rp(t) � 1/k
holds as well. We are now ready to provide the computation of ↑φ (I) and ↓φ (I).

� COMPUTATION of ↑φ (I) and ↓φ (I). Let the individual I be given. Compute ↑φ (I) and ↓φ (I) as follows:
(a) ↑φ (I): select randomly (with probability 0.5) either one of the options below:

1. probabilistically select a bit I+[t] = 0 according to the insertion probability distribution ip(t); mutate it from 0
to 1, or

2. probabilistically select a bit I−[t] = 1 according to the removal probability distribution rp(t); mutate it from 1 to 0.

80 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
(b) ↓φ (I): select randomly (with probability 0.5) either one of the options below:
1. probabilistically select a bit I+[t] = 1 according to the removal probability distribution rp(t); mutate it from 1

to 0, or
2. probabilistically select a bit I−[t] = 0 according to the insertion probability distribution ip(t); mutate it from 0

to 1. �
Now let us consider the τ -subsumption primitives ↑τ and ↓τ . Like in the case previously seen of the τ -subsumption

primitives
∨

τ and
∧

τ , also the implementation of ↑τ and ↓τ is performed at phenotype level. To this end, we first
extract from the individual I the threshold set T by using the inverse of the encoding function, i.e., T = enc−1(I�τ). Then,
we compute ↑ T by using the algorithm of Fig. 4 and, finally, we apply the encoding function enc(↑ T). Therefore, ↑ T is
the individual having the same positive and negative components of I and threshold component enc(↑ T).

� COMPUTATION of ↑τ (I) and ↓τ (I). Let the individual I be given, and let T = enc−1(I�τ) be the threshold set
encoded by I�τ . Now, ↑τ (I) is implemented simply by replacing the encoding I�τ of T by the encoding enc(↑ T) of
any direct ancestor ↑ T computed by the algorithm of Fig. 4. ↓τ (I) is implemented accordingly. That is:
• ↑τ (I) = I ′ , where I ′+ = I+ , I ′− = I− , and I ′�τ = enc(↑ T).
• ↓τ (I) = I ′ , where I ′+ = I+ , I ′− = I− , and I ′�τ = enc(↓ T). �

7.5. The genetic algorithm

First, the dimensionality range [kmin,kmax] is computed from the input vocabulary by applying Definition 7.1. Then,
given the (user-defined) input values Pmax and Nmax , for each randomly generated triple (k, P , N), with k ∈ [kmin,kmax],
0 � P � Pmax and 0 < N � Nmax , a random number (> 1) of individuals of length 2k + Min(P + 1, N)(�log(N(P + 1))�+ 1) is
created. Each of such individuals encodes a classifier in the hypothesis space M(Fc(k), P , N). The set of individuals created
for the same triple (k, P , N) form a subpopulation S(k, P , N). Each individual I ∈ S(k, P , N) is initialized as follows: the k bits
in I+ and I− are set to 1 with probability 0.5, while I�τ is randomly set to a (minimal) threshold set {(p1,n1), . . . , (pr,nr)}
such that 0 � pi � P and 0 < ni � N , for each i = 1, r (see Definition 4.2). Afterwards, evolution takes place by iterating
elitism, selection, crossover and mutation, until a pre-defined number of generations is created. Finally, the phenotype of
the best generated chromosome is returned.

Next we give some details about selection, crossover and mutation.
Selection. We want to be able to preserve subpopulations under the pressure of selection, in order to guarantee a certain

degree of population diversity (niching methods are often used for this purpose [46,47]). At the same time, we want to avoid
premature convergence within subpopulations that consist of a small number of individuals. At these aims, we maintain a
set of mating pools, each being the union of all subpopulations with the same threshold bounds P and N , i.e., M(P , N) =⋃

i S(ki, P , N). So, individuals in M(P , N) may have different length, while belonging to isomorphic τ -subsumption lattices.
In particular, the lengths of two individuals in M(P , N) may differ only as far as the feature components are concerned, the
threshold components being of equal length (as they have the same threshold bounds P and N – see Section 7.2). Now,
selection is performed as follows: a mating pool is randomly selected, and tournament selection is then applied over its
individuals.

Crossover. We are given individuals I1 ∈ S(k1, P , N) and I2 ∈ S(k2, P , N), thus belonging to the same mating pool
M(P , N). The GAMoN crossover of I1, I2 combines a slightly modified version of the uniform crossover (called MUX) with
the GS crossover operators defined in the previous sections. A sketch of the proposed method is shown in Fig. 7. It basically
relies on two steps:

Step 1: Decide probabilistically whether or not MUX(I1, I2) takes place (line 18). This decision is made positively with
(user-defined) probability px . MUX is an adaptation of the uniform crossover UX to deal with (i) the different lengths of
the feature components of two mating individuals, and (ii) the presence of threshold sets. Informally, MUX(I1, I2) can be
regarded as UX(I1, I2) where (1) only the first min(k1,k2) bits of the positive and negative components of I1 and I2 are
probabilistically exchanged (lines 2–4), and (2) I�1 and I�2 are swapped as if they were single bits (line 5). Note that the
offspring J1 and J2 are such that J1 ∈ S(k1, P , N) and J2 ∈ S(k2, P , N) (i.e., they belong to the same subpopulations of their
parents).

Step 2: If the decision for MUX has not been made positively in Step 1, then perform the GS crossover by invoking
function GSX(I1, I2) (line 20). This is executed with a probability equal to the F -measure of the classifier Hc encoded by I1
(line 13). This way, we give fitter individuals a higher chance to generalize or specialize so as to allow them for further
refinement – see discussion in Section 7.7. Whether a generalization or a specialization of I1 is to be performed, depends
on whether Hc is too specific or too general (line 14). However, to carry out GSX(I1, I2), individual I2 has preliminarily
to be “promoted” citizen of the subpopulation S(k1, P , N) of I1 as, by Definition 7.3, the GS crossover can be applied only
to members of the same subpopulation. To this end, I2 is made of the same length of I1 by invoking function promote
(line 15). The following two cases may arise (recall that the threshold set components of I1 and I2 are of equal length):

• k1 � k2. Only the first k1 bits of I+ and I− are picked up (lines 7–8).
2 2

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 81
GAMoN Xover(I1, I2)

Input: individuals I1 ∈ S(k1, P , N) and I2 ∈ S(k2, P , N); MUX probability px;
Output: offspring J1 ∈ S(k1, P , N) and J2 ∈ S(k2, P , N)

function MUX(I1, I2)

1. J1 = I1, J2 = I2;
2. for i = 1 to min(k1,k2) do
3. Swap(J+

1 [i], J+
2 [i]) with probability 0.5;

4. Swap(J−
1 [i], J−

2 [i]) with probability 0.5;

5. Swap(J�τ
1 , J�τ

2) with probability 0.5;
return J1, J2.
function promote(I2,generalize)

6. J�τ = I�τ
2 ; /* copy the threshold component of I2 into J */

7. for i = 1,min(k1,k2) do /* copy the first min(k1,k2) positive and negative features from I2 to J */
8. J+[i] = I+2 [i], J−[i] = I−2 [i];
9. for i = k2 + 1,k1 do /* when k1 > k2 add further k1 − k2 bits to both J+ and J− so that their length becomes k1 */
10. if generalize then
11. J+[i] = 0, J−[i] = 1 /* pad J+ , J− with k1 − k2 0’s and 1’s, resp., */
12. else J+[i] = 1, J−[i] = 0; /* pad J+ , J− with k1 − k2 1’s and 0’s, resp. */
return J .
function GSX(I1, I2)

13. with probability equal to Fmeasure(Hc) do /* Hc is the classifier encoded by I1 */
14. generalize = (precision(Hc) > recall(Hc));
15. Î2 = promote(I2,generalize); /* I2 becomes a citizen of S(k1, P , N) */
16. if generalize then J = GX(I1, Î2)

17. else J = SX(I1, Î2) /* GX or SX are performed according to Definition 7.3 */
return j.
begin
18. with probability px set 〈 J1, J2〉 = MUX(I1, I2);
19. if MUX has not been performed then
20. J1 = GSX(I1, I2); J2 = GSX(I2, I1)

return J1, J2.

Fig. 7. Pseudocode for the GAMoN Xover.

• k1 > k2. Both I+2 and I−2 are extended with further n = k1 − k2 bits. In particular, I+2 is padded with n 1’s (resp. 0’s) and
I−2 with n 0’s (resp. 1’s) if a generalization (resp. specialization) is to be performed (lines 9–12).

At this point, either GX(I1, I2) or SX(I1, I2) is computed according to Definition 7.3 (lines 16–17). Once GSX(I1, I2) has been
carried out, GSX(I2, I1) is performed likewise (line 20). Again, the offspring J1 and J2 belong to subpopulations S(k1, P , N)

and S(k2, P , N), respectively.
Mutation. Mutation is performed by using a similar framework. This is a combination of a modified version of stan-

dard mutation (denoted MSM), which takes into account threshold sets, with the GS mutation (GSM) operators previously
defined. In particular, MSM(I) works as follows: first, it randomly decides (with probability 0.5) whether to operate over
the feature or the threshold component. In the former case, MSM(I) randomly flips the bits of I+ and I− with prob-
ability 1/(2k). In the latter case, MSM(I) replaces I� by the encoding of a randomly chosen neighbor of the threshold
set encoded by I� (contrary to GSM which selectively chooses either a direct ancestor or a direct descendant depending
on whether generalization or specialization is to be performed, respectively). Note that, in all cases, MSM(I) causes small
changes of position in the subsumption lattices. Now, GAMoN mutation works as follows (for each offspring):

• Step 1: decide probabilistically whether or not GSM(I) takes place. This decision is made positively with probability
F -measure(Hc), Hc being the phenotype of I .

• Step 2: If the decision for GSM(I) has not been made positively in step 1, execute MSM(I).

7.6. GAMoN time complexity

It is immediate to recognize that the cost of the task-specific reproduction operators is O (k), while the cost of the
fitness computation is O (km), where k is the size of the feature space and m the number of examples in the training set
(in fact, the evaluation of the fitness of an individual requires the evaluation of the number of candidate (both positive
and negative) features occurring in each document of the training set). Now, since the number of different features (words)
occurring in the training set is asymptotically independent of m (as the lexicon is finite), irrespective of feature selection,
k is (asymptotically) independent of m. Thus, technically, we have that O (km) = O (m), that is, the asymptotic behavior of
GAMoN is linear in the size of the training set. Quite obviously, for relatively small values of m (like those that characterize
real-life data sets), the practical complexity is O (km).

82 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
7.7. Remarks on the proposed GA

Individual encoding. There are two basic approaches, according to whether a chromosome of the population is used to
represent a single rule or a rule set [9]. Within the former approach (i.e., “chromosome = one rule”) there are rule induction
GAs like XCS [27], SIA [28], COGIN [48]. In the second approach (i.e., the “chromosome = set of rules”), called Pittsburgh
approach, a rule is used to code an entire classifier. GAssist [29], OlexGA [10] and BioHEL [12,13] fall in this category.

From one side, the “chromosome = one rule” approach makes the individual encoding simpler, but the fitness of a geno-
type may not be a meaningful indicator of the quality of the phenotype [49]. Further, under the competitive style of GA,
there may be a conflict between individual and collective interests of the rules forming a classifier [9]. On the other side,
the “chromosome = set of rules” approach requires a more sophisticated encoding of individuals, but the fitness provides
a more reliable indicator [49]. Moreover, no conflict of interests can happen in this case, as competition occurs among
classifiers (and not single rules).

In our approach, an individual encodes a candidate classifier – so it falls in the class of Pittsburgh methods. Despite this,
individual encoding is very simple and compact – 2k bits for the encoding of Pos and Neg (a few tens of bits altogether)
and a handful of bits to encode the threshold set. Thus, GAMoN combines the advantages of both the above mentioned
approaches, i.e., the individual simplicity and compactness of the “chromosome = one rule” approach, along with the effec-
tiveness of both the reproductive competition and the fitness function of the “chromosome = set of rules” approach.

Search strategy. It is well known that standard reproduction operators are rather disruptive, in the sense that the offspring
may be very different from the parents. On one hand, this has the advantage of making unlikely the GA getting stuck into
local optima but, on the other hand, the high degree of unpredictability in the generation of new candidate classifiers may
make the GA converge very slowly. In contrast, GS operators move hypotheses from one position to another in either one
of the two hierarchies in a controlled way, depending on the “state” of the current hypothesis. Such a search bias, however,
forces a search strategy which may quickly converge to local optima.

As we have seen, GAMoN combines the space search of a standard GA with that based on GS operators. The rationale
behind this choice is that of exploiting the latter to perform a selective search, and to compensate the selectiveness of
this search by introducing a certain degree of diversity through the standard operators. In particular, GAMoN runs the GS
operators (both crossover and mutation) with increasing probability, this being defined as the F -measure achieved by an
individual I over the training set. This way, as the generations pass and the algorithm more and more approaches the
optimal solution, a more controlled search of the space is performed.

8. Empirical investigation framework

8.1. Machine learning algorithms

To evaluate the GAMoN approach proposed in this paper, we focused on comparisons with other rule learning algorithms.
To this end, we selected two rule induction GAs, namely, BioHEL and OlexGA, and two non-evolutionary algorithms, namely,
C4.5 and Ripper. Further, we included in our study Platt’s Sequential Minimal Optimization (SMO) method for linear SVM
training [16], as it is reported to be one of the best methods for text categorization.

Our interest for OlexGA was that of assessing to what extent GAMoN is an effective extension (see Section 2). BioHEL
was chosen as it is one of best performing GA-based methods. We are not aware of experimental results of BioHEL on
textual data sets. Finally, C4.5 and Ripper were selected as they are standard decision tree/rule learners widely used for text
classification.

All the selected learning algorithms are implemented in Java, but not all are available on the same platform. In particular,
GAMoN runs only on the Weka platform, while BioHEL is available only on the KEEL platform (KEEL – Knowledge Extraction
based on Evolutionary Learning – is a suite of machine learning software tools – [50]). C4.5, Ripper, SMO and OlexGA run
on both platforms. For the purpose of our work, we used Weka (version 3.5.8) for all algorithms, but BioHEL.

8.2. Data sets

We carried out our empirical work on 13 real-world data sets whose properties are summarized in Table 1. As we can
see, they span over a wide range of sizes, from a minimum of around 900 (Oh15) to a maximum of nearly 204,000 (market)
documents. The rarest category has 51 documents (Oh0), while the most frequent has 85,440 documents (Market). Most of
these datasets have been widely used in large scale text classification tasks, and are publicly available.

Market is a data set of 203,926 documents extracted from Reuters Corpus Volume I (RCV1) [63]. R10 is the standard
subset of the Reuters-21578 Distribution 1.0 which consists of 12,897 documents and uses the 10 most frequent Top-
ics categories [51]. Ohsumed is from the Ohsumed-233445 collection subset of MEDLINE database [52] and is made of
all 34,389 cardiovascular diseases abstracts out of 50,216 medical abstracts contained in the year 1991. The classification
scheme consists of the 23 cardiovascular diseases MeSH categories. Ohscale, Oh0, Oh5, Oh10 and Oh15 are other subsets
of Ohsumed-233445 [53]. Data sets SRAA and 20NG (20-newsgroups) are articles from newsgroups. In particular, 20NG is

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 83
Table 1
Data set description.

Name Source Original
format

#Doc #Feat #Cat Cat size

Min Max

Oh15 Ohsumed-233445 arff 913 3100 10 53 157
Oh5 Ohsumed-233445 arff 918 3012 10 59 149
Oh0 Ohsumed-233445 arff 1003 3182 10 51 194
Oh10 Ohsumed-233445 arff 1050 3238 10 52 165
BlogsGender Blog author gender text 3232 15,026 2 1548 1684
Ohscale Ohsumed-233445 arff 11,162 11,465 10 709 1621
R10 Reuters-21578 text 12,897 21,363 10 237 3964
20NG 20 newsgroups csv 18,846 59,903 20 628 999
Ohsumed Ohsumed-233445 text 34,389 34,359 23 427 9611
Cade12 Gerindo Proj. csv 40,983 69,470 12 625 8473
SRAA UseNet text 73,218 63,966 4 4796 41,351
ODP-S22 ODP text 107,262 25,068 22 88 28,286
Market Rcv1 text 203,926 68,604 4 26,036 85,440

a collection of 18,846 newsgroup documents organized into 20 different categories. We used the version sorted by date,
which does not include newsgroup-identifying headers. The SRAA [54] data set contains 73,218 articles from four discus-
sion groups on simulated auto racing, simulated aviation, real autos, and real aviation. BlogsGender is a binary data set of
3232 blogs used for author gender classification [55]. Cade12 is a subset of the CADE Web Directory consisting of 40,983
web pages classified across 12 categories [56]. ODP-S22 is a subset of ODP (Open Directory Project) [57] whose documents
are stored as RDF files. For our experimentation, we used the subset of 107,262 documents classified under the categories
of the Top/Science subtree, which has 25 first-level categories. We first collapsed each of the 25 subtrees into the respective
root, thus obtaining a flat structure made of 25 categories. Then, we grouped together into one category “Misc” the 4 small-
est categories, namely, Search Engines (7 documents), Charts-and-forums (16 documents), Directories (27 documents) and
Events (38 documents), thus getting a set of 22 categories. From each document (web page), we extracted the title and the
description (thus, discarding the URL).

8.3. Experimental setup

We preliminarily pre-processed all data sets downloaded in textual format, by performing tokenization (word unigrams)
and stopword removal. We used the bag-of-words representation with binary word weighting. Each feature was represented
as a numerical attribute.

Experiments were performed in a binary classification setting. To this end, we binarized all data sets by performing
multi-class to two-class conversion. This way, the m-class learning problem is decomposed into m independent two-class
sub-problems, one for each class, with the i-th classifier separating class i from all the remaining ones.

Finally, for each category, feature scoring by CHI square [39] was performed (on the training set).
Following are two major issues arose during the design of experiments.

1. Dimensionality of the feature space.
(a) Unlike the other systems, GAMoN automatically detects the appropriate dimensionality of the feature space. That is,

no manual feature selection is preliminarily needed. As we will see later on this section, the feature spaces selected
by GAMoN usually consist of a few tens of features.

(b) Previous works show that systems like Ripper, C4.5 and SVM require relatively large vocabularies (usually a few
thousands of features) to learn good prediction functions.

(c) The efficiency of OlexGA, like that of most evolutionary methods, strongly depends on the feature space dimen-
sionality, as many features imply long individuals and, thus, low efficiency.

(d) BioHEL represents an exception in the evolutionary landscape, as it was designed to efficiently deal with high
dimensional data sets. However, the memory space limitations of the KEEL platform severely limits the number of
attributes that can actually be used in case of large data sets.

The above observations demonstrate the difficulty of applying a single feature selection policy to all systems. In fact,
it would be unfair using for the non-evolutionary methods the feature dimensionalities detected by GAMoN (too small
for their characteristics – see points (a) and (b)). On the other hand, running OlexGA and BioHEL over the same number
of features used for the non-evolutionary methods would practically be unfeasible – see points (c) and (d).

2. Time efficiency. As we have seen, our empirical study involves very large data sets (e.g., ODP-S22 and Market), on which
most of the experimented systems perform quite inefficiently. In particular, Ripper and C4.5 showed to be extremely
slow on such data sets, especially when we tried to use large vocabularies (for an instance, on vocabularies of 10,000
features, we had to stop C4.5 as it was overly inefficient). This prevented us from performing optimization over more
vocabularies.

84 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Table 2
Feature space dimensionality range [kmin,kmax], size of the feature space on which the “optimal” classifier has been found kopt and F -measure for categories
of R10.

acq corn crud earn grain int mon ship trad wheat

kmin 105 16 58 37 42 59 86 53 78 18
kmax 172 43 106 60 77 102 148 97 141 41
kopt 132 21 100 41 55 68 99 61 86 21

PRavg 86.66 90.20 87.50 95.18 92.09 56.05 68.12 80.41 69.15 88.66

Given the above premises, the following experimental design choices were finally taken:

1. GAMoN was run with 500 individuals, 200 generations, elitism rate 0.2, MUX probability 0.6 (see Section 7.5). The max-
imum threshold bounds were Pmax = Nmax = 4.

2. OlexGA and BioHEL were executed over the same vocabularies made of 100 features. The former was run with the
default parameters shown at http://www.mat.unical.it/OlexGA, while the latter with those provided by KEEL.

3. The remaining (non-evolutionary) systems were all executed over vocabularies made of 2000 terms, with the default
settings provided by Weka. The SMO normalization option was turned off to improve the training time.

Due to efficiency reasons, we performed 5-fold cross validation (80% training, 20% test) only on small data sets (from Oh15
up to R10), while holdout (70% training, 30% test) was applied on the remaining data sets.

8.4. Predictive performance measure and statistical tests

Performance was measured, as is common in text classification, by the arithmetic mean of Precision and Recall – denoted
by PRavg (an approximation of the Precision/Recall Break-Even Point). To obtain global estimates over more categories,
the standard definitions of micro-averaged Precision and Recall were used, notably:

μPr =
∑

c∈C |TPc|∑
c∈C(|TPc| + |FPc|) ,

μRe =
∑

c∈C |TPc|∑
c∈C(|TPc| + |FNc|) ,

where TPc is the set of documents correctly assigned by the classifier to category c, FPc is the set of documents incorrectly
assigned by the classifier to category c, and FNc is the set of documents incorrectly not assigned by the classifier to cate-
gory c. We note that micro-averaging gives equal weight to every document (it is called a document-pivoted measure) and
is largely dependent on the most common categories.

Each run of the evolutionary algorithms was repeated 3 times, and the average PRavg was taken.
In order to make comparisons statistically significant, we performed the Iman–Davenport test, with the Holm’s post-hoc

test, recommended for comparison of more classifiers on multiple data sets in [58].

9. Experimental results

9.1. A glimpse to M-of-N{¬,∨} hypotheses

The experimental results show that GAMoN has a bias towards learning compact and readable hypotheses. The following
are examples of classifiers induced for categories “corn”, “wheat” and “grain” from R10:

Hwheat = 〈{wheat}, {deficit, investment,net, treasury,york},{(1,1)
}〉

,

Hcorn = 〈{corn,maize}, {london,money,quarter},{(1,1)
}〉

,

Hgrain = 〈{barley, cereals, corn,grain,maize, rice, sorghum,wheat},
{acquisition,bank, earning,pay,profit, tax,york},{(1,1), (2,2)

}〉
.

As we can see, the former two classifiers are atoms, while the latter is a 2-order classifier (for a description see Section 3).
It must be emphasized the high semantic correlation between the positive features and the respective categories.

9.2. Automatic selection of the feature space dimensionality

Table 2 shows, for the categories from R10, the values of kmin , kmax and kopt given by one execution of GAMoN, where
kmin and kmax define the dimensionality range of the feature space, and kopt (kmin < kopt < kmax) is the size of the feature

http://www.mat.unical.it/OlexGA

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 85
Fig. 8. Distribution of features by CHI square for two categories from R10 – “corn” (left side) and “acq” (right side). Only first 200 features are shown.

Fig. 9. Decision boundary of the classifier 〈Pos,Neg, {(1,1), (2,2), (3,3)}〉 for category “earn” from R10. Each label (π(x, y), ν(x, y)) represents the number
π(x, y) of positive examples and the number ν(x, y) of negative ones with x positive features and y negative ones. Labels (0,0) are omitted from the
figure.

space on which the “optimal” classifier has been found. As it can be seen, the learning of all categories generally relies on
small sets of candidate features. As an example, for “corn” we have kmin = 19 and kmax = 43 (and PRavg equal to 90.20),
meaning that the positive terms for the “best” classifier are to be found among the first k higher scoring features, with
19 � k � 43. This is clearly indicative of an aggressive feature selection. To see why, let us have a look at Fig. 8 – left side,
where the distribution of features by CHI square is reported. As we can see, “corn” has a few features scoring very high,
while the remaining ones rapidly approach near-zero values. The sharply declining shape of this graph is indicative of an
“easy” category, i.e., a category for which a high performance can be achieved with only a few discriminative words.

In contrast, “acq” is a more “difficult” category. As we can see from Fig. 8 – right side, it has lower initial CHI square
values, and the graph has a smooth (decreasing) trend. That is, no features with highly discriminative power there exist.
As a consequence, the dimensionality range is shifted rightwards on the x-axis (kmin = 105 and kmax = 172), this being
indicative of a less aggressive reduction of the feature space.

9.3. Decision boundaries

Fig. 9 shows the decision boundary DBHearn of the 3-order classifier Hearn = 〈Pos,Neg, {(1,1), (2,2), (3,3)}〉 for category
“earn” from R10. Here, Pos is made of 14 positive features and Neg consists of 16 negative features. As we can see, DBHearn

is a three-step polyline. From the data reported in Fig. 9, it results that the subset of documents classified by Hearn consists
of the 2954 positive examples and the 113 negative ones lying in the classification region RHearn delimited by DBHearn .
The generalization error and the PRavg value of Hearn are

err = b + c = 0.031; PRavg = 2a2 + a + ac = 0.94

a + b + c + d 2(a + b)(a + c)

86 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Table 3
Micro-averaged PRavg values on each data set obtained by GAMoN and GAMoN* (a version of GAMoN with no GS reproduction operators). Legend –
BG: BlogsGender, OhS: Ohscale, Ohsu: Ohsumed, Mkt: Market.

Oh15 Oh5 Oh0 Oh10 BG OhS R10 20NG Ohsu cade SRAA ODP Mkt

GAMoN 80.46 84.85 84.27 78.62 68.82 75.03 86.50 75.72 67.25 48.42 85.25 71.14 92.42
GAMoN* 77.59 82.55 82.90 75.54 68.33 74.28 84.56 75.21 67.09 46.43 84.27 70.20 90.59

Table 4
Micro-averaged PRavg results obtained by 5-fold cross-validation on Oh0, Oh5, Oh10, Oh15, BlogsGender, Ohscale and R10 (80/20 split) and by holdout on
the remaining data sets (70/30 split).

Dataset Ripper SMO C4.5 OlexGA BioHEL GAMoN

Oh15 79.55 79.95 76.75 74.33 66.03 80.46
Oh5 83.74 84.29 82.30 80.76 76.72 84.85
Oh0 84.37 84.80 79.24 81.29 73.20 84.27
Oh10 78.82 74.70 74.78 74.46 67.39 78.62
BlogsGender 60.96 60.95 58.33 66.75 62.82 68.82
Ohscale 72.96 69.52 70.77 74.36 68.26 75.03
R10 85.21 88.94 84.67 84.07 83.59 86.50
20NG 72.66 83.64 74.86 72.97 70.65 75.72
Ohsumed 60.35 66.94 63.25 65.58 63.79 67.25
cade 44.31 54.06 48.10 44.10 42.96 48.42
SRAA 81.04 90.06 86.85 79.60 81.34 85.25
ODP 66.73 80.65 74.76 69.46 71.21 71.14
Market 94.63 95.56 95.37 88.95 74.75 92.42

avg microPRavg 74.26 78.00 74.62 73.59 69.44 76.83
avg rank 3.96 2.08 3.62 4.31 5.23 2.08

where a, b, c and d are computed as follows (see Section 4.5):

a =
∑

(x,y)∈RHhearn

π(x, y) = 2954, b =
∑

(x,y)∈RHhearn

ν(x, y) = 113,

c =
∑

(x,y)/∈RHhearn

π(x, y) = 205, d =
∑

(x,y)/∈RHhearn

ν(x, y) = 6988.

9.4. Effect of GS operators

To see the effect of the GS reproduction operators defined in this paper, we compared the accuracy results of GAMoN
over the data sets previously seen with those obtained by running a version of GAMoN where the GS operators (GS Xover
and GS mutation) were disabled. The experimental results, reported in Table 3, show that the GS operators improve the
accuracy on every single data set, even though on some they induce only trivial improvements (e.g., Ohsu and BG), while
on other the gain is remarkable (e.g., Oh15, Oh10, R10, cade and Mkt). On average, the enhancement over all data sets is of
around 1.5 points. As discussed earlier in this paper, the aim of GS operators is that of further refining fitter individuals by
exploiting the structure of the hypothesis space. This explains why often significant improvements are obtained.

9.5. Comparison with other systems

Table 4 shows, for each algorithm and data set, the micro-averaged PRavg. The average values over all data sets along
with the average ranking of each algorithm, are also included (bottom of the table). The best results are stressed in bold-
face. The ranking is obtained by assigning a position to each algorithm depending on its performance on each data set.
The algorithm showing the best accuracy on a given data set is assigned rank 1.

As we can see, SMO is the best performer (PRavg = 78.00), followed by GAMoN (PRavg = 76.83). The two algorithms,
however, show the same average rank (2.08). We note that GAMoN outperforms all the other rule induction methods.
In particular, it behaves uniformly better than OlexGA on all individual data sets, and compares favorably with the other
rule learners on most of the data sets.

In order to establish whether the above differences in performance are statistically significant, the Iman–Davenport’s test
is applied. This is a non-parametric statistical test recommended in [58] for comparing two or more classifiers on multiple
data sets. In brief, with 13 data sets, 6 algorithms and confidence α = 0.05, the Iman–Davenport statistics is 9.54, greater
than the critical value CV = 2.37. Thus, the null hypothesis (which states that all the algorithms are equivalent) is rejected.
Hence, we apply the Holm’s post-hoc test [58], with GAMoN as control algorithm, for controlling the family-wise error
in multiple hypothesis testing. The results of this test are summarized in Table 5. Based on them, we can reject the null

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 87
Table 5
Holm’s test with GAMoN as control algorithm. The null hypothesis is rejected when p-value < α/i.

i Method z = (R0−Ri)
SE p-value α/i

5 BioHEL −4.2980 0.0005 0.01
4 OlexGA −3.0400 0.0024 0.0125
3 Ripper −2.2014 0.0278 0.0167
2 C4.5 −2.0966 0.0366 0.025
1 SMO 0.0000 1.0000 0.05

Table 6
Avg size of the rule-based classifiers on R10.

Algorithm Avg size of classifiers

GAMoN #Pos = 20, #Neg = 10, order = 1.8
Ripper #Rules = 16
C4.5 #Rules = 78
BioHEL #Rules = 14, #literals/rule = 19
OlexGA #Pos = 16, #Neg = 15

Table 7
Learning times expressed in hours. Each run of GAMoN, OlexGA and BioHEL was repeated 3 times.

Ripper C4.5 SMO OlexGA BioHEL Gamon

Overall learning time (h) 445 488 71 46 185 156
runs 395 395 395 1185 1185 1185
Avg learning time per category (h) 1.13 1.23 0.18 0.04 0.16 0.12

hypothesis of equivalence only for BioHEL and OlexGA (as p-value < α/i holds). That is, with confidence 95%, we can state
that GAMoN performs better than such algorithms, while it is statistically equivalent to SMO, Ripper and C4.5.

9.6. Size of the classifiers

Apart from SMO, the other classifiers yield models as sets of rules. Although we do not have a unique formal definition
of size of a classifier, being either the number of rules, number of features, etc., in Table 6 we provide some statistical data
(averaged over the five folds) giving an insight into the quantitative characteristics of the classifiers induced on R10. As we
can see, Ripper, C4.5 and BioHEL induce classifiers consisting on average of 16 rules, 78 rules and 14 rules, respectively,
each BioHEL rule having 19 literals on average. In turn, GAMoN induces classifiers of 20 positive features and 10 negative
ones on average, against the 16 positive features and 15 negative ones of OlexGA classifiers. Going beyond the results given
in the table, nearly 44% of the classifiers induced by GAMoN are atoms, 38% are of order 2, 18% of order 3 and 2% of order 4
(note that with P = N = 4, the maximum order of a classifier is Min(P + 1, N) = 4 – see Proposition 4.10).

9.7. Time efficiency

The experiments previously described were performed on an Intel Xeon 2.33 GHz machine with 4 Gb RAM.
The learning times needed to achieve the accuracy results previously seen are reported for each method in Table 7 –

first row. As we can see, OlexGA (46 hours) is the best performers, followed by SMO (71), GAMoN (156), BioHEL (185),
Ripper (445) and C4.5 (488) (recall that each run of GAMoN, OlexGA and BioHEL was repeated 3 times). Table 7 also reports
the average learning times per category. Again, OlexGA is the fastest algorithm (0.04 h/category), followed by GAMoN (0.12),
BioHEL (0.16) and SMO (0.18). Ripper and C4.5 are ten times slower than GAMoN (1.13 and 1.23, respectively).

To see the effect of the training set size over learning times, in Fig. 10 we plotted the average learning times per category
over each data set (data sets are ordered by increasing size). The graph provides an empirical picture of the progression of
learning times with the number of training documents. As we can see, GAMoN asymptotically behaves similarly to OlexGA,
BioHEL and SMO, while its has a significantly smoother trend than both Ripper and C4.5. That is, GAMoN scales better than
the two non-evolutionary rule induction methods.

10. Discussion and related work

The experimental study described in the previous sections shows that GAMoN induces classifiers that are both accurate
and compact. Interestingly, these properties have consistently been observed over all 13 data sets, on which GAMoN showed
a uniform behavior. Given the very different application domains the corpora refer to, this is a clear proof of robustness.
Further, GAMoN showed to perform efficiently on large data sets.

M-of-N{¬,∨} representation. As discussed in Section 4.6, the “family resemblance” metaphor provides us with a quali-
tative understanding on the basic reason why the M-of-N paradigm is well suited for the purpose of text categorization.

88 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
Fig. 10. Comparison of the average learning time per category over each data set (data sets are ordered by increasing size).

M-of-N{¬,∨} extends M-of-N through negation and disjunction, two constructs that enables to express hypotheses capable
of best fitting the true structure of the data (a discussion on the expressivity of M-of-N{¬,∨} has been reported in Sec-
tion 4.6). Unlike most of the existing classifiers which focus on features that positively discriminate a class, in our approach
negation is used as a “first class citizen” allowing us to explicitly model the interactions between positive and negative
features within a given example. In turn, disjunction enables to “modulate” such interactions, by capturing the positive cor-
relation (that simple atoms would miss) existing between positive and negative features (see Section 4.5). Negation takes
precision under control, while disjunction improves recall.

One advantage of the proposed language over a DNF-type representation is conciseness. Indeed, although an M-of-
N{¬,∨} hypothesis can be represented in terms of disjunctions of conjunctions (see Section 4.2), a DNF-type representation
of an M-of-N{¬,∨} concept would be prohibitively long (the number of disjuncts is exponential in the size of Pos and Neg).
We believe that the proposed language is one main contribution of this paper. One interesting direction for future work
could be that of using a mathematical relationship (e.g., a linear function) between thresholds p and n, instead of the
current threshold multiple pairs.

Feature space. M-of-N{¬,∨} hypotheses are built over a set of pre-selected candidate features. While there has been a long
history of applying dimensionality reduction methods, one contribution of this paper is represented by an original definition
of the feature space, as consisting of both terms indicative of membership and terms indicative of non-membership for
a category. Unlike in the traditional feature selection approach, where only positive terms are selected, using our definition
enables the learner to focus on negative information in the same way as it does with positive one (a similar approach
distinguishing between positive and negative features was proposed in [59]). A criterion for the automatic detection of
a suitable dimension has also been provided (see Definition 7.1). This criterion proved to be very effective in practice.
Experimental results showed indeed that a few tens of well-selected features are sufficient to build accurate prediction
functions, irrespective of the data set.

GAMoN biases. Apart from the language bias, we can characterize GAMoN in terms of both a search bias and an overfitting
avoidance bias [18]. We have extensively discussed about the former, which refers to the way the hypothesis space is
searched through the subsumption relationships by means of the task-dependent genetic operators. The proposed approach,
actually not new in inductive learning (see, e.g., [30–35]), overcomes a major problem in the use of conventional GAs
which do not take into account the structure of the search space. The overfitting avoidance bias is a preference for simpler
classifiers. GAMoN includes such a bias in the induction mechanisms by using suitable feature probability distributions
(see Section 7.4) which enable the reproduction operators to select few, high-quality features. In combination with the
proposed feature selection technique, which provides GAMoN with an effective lexicon, capable of expressing the essential
patterns, the overfitting avoidance bias guarantees the induction of classifiers that are parsimonious, made of a handful of
well-selected features. This makes them effective on the unseen data, as few high-quality features drastically reduce the risk
of overfitting the training data.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 89
GAMoN, C4.5 and Ripper. Unlike GAMoN, the two rule-based non-evolutionary classifiers used in this work, notably, C4.5
and Ripper, achieve the full expressive power of DNF. Despite this, the conducted experimental study showed that they do
not outperform GAMoN. This is a clear proof of the effectiveness of the proposed algorithm.

In addition, GAMoN performs significantly more efficiently than both C4.5 and Ripper on large data sets, as the graphs
of Fig. 10 show. This should not be surprising, as the time complexity of Ripper is O (m log2 m) and that of C4.5 O (m3),
while the complexity of GAMoN is O (m), where m the number of examples in the training set (see Section 7.6). That is,
GAMoN can scale up to large and realistic real-world domains better than the other two rule-based classifiers. We point
out that further improvements of the learning times may be obtained by, e.g., a more efficient implementation of the task-
specific reproduction operators and, in a real application environment, by distributed approaches. Current research is likely
to further improve efficiency of GAMoN.

GAMoN, OlexGA and BioHEL. GAMoN is a substantial extension of OlexGA from two respects. The first is the language.
An OlexGA hypothesis is the special case of an M-of-N{¬,∨} atom where both thresholds are equal to 1, i.e., 〈Pos,Neg, (1,1)〉
(thus, M-of-N{¬,∨} is strictly more expressive than the language of OlexGA). The second is the genetic algorithm. Since the
hypothesis space of OlexGA does not provide any structure, OlexGA relies on a simple, standard GA, where the population
is made of fixed-length individuals, and the reproduction operators are the standard uniform crossover and mutation. That
is, OlexGA is a special case of GAMoN. As shown in Table 4, the proposed extension results in a statistically significant
improvement over OlexGA. Needless to say, the price for that is a slower learning procedure.

BioHEL (Bioinformatics-oriented Hierarchical Evolutionary Learning) is a state-of-the-art GA which showed to perform
very effectively on non-textual data sets [60]. To the best of our knowledge, this is the first study where BioHEL has been
tested on text classification problems. BioHEL inherits several features from GAssist. It relies on the Pittsburgh represen-
tation approach and applies the iterative rule learning approach [28]. BioHEL was explicitly designed to handle large-scale
datasets. To this end, a rule, instead of coding all the domain attributes, keeps only a subset of them, thus avoiding hun-
dreds of irrelevant computations. Using such an approach, BioHEL is able to handle problems with hundreds of attributes
(in datasets with large sets of instances [13]) or even tens of thousands of attributes (but with few instances). In addition,
in order to further reduce the computational cost, BioHEL uses a windowing scheme called ILAS (incremental learning with
alternating strata). The experimental results of this paper confirm that BioHEL behaves quite efficiently, with a learning
time similar to that of GAMoN (see Table 7). On the contrary, in terms of predictive accuracy, it showed to be statistically
inferior to GAMoN. However, we feel that better results could be obtained by a finer tuning of the system. For an instance,
a recent publication [62] shows that BioHEL has a parameter which is highly problem sensitive, the coverage breakpoint.
Also, an appropriate use of the ILAS windowing scheme, as well as the usage of the C++ implementation4 (in place of the
KEEL implementation), could further improve efficiency.

Other systems learning with negation. As already mentioned, using negative evidence is deemed important in the text
classification task. However, apart from OlexGA and GAMoN, none of the experimented systems focuses on the exploitation
of negative information. In general, examples of IRL (Inductive Rule Learning) approaches that involve the direct generation
of negation are very rare (see, e.g., [61,38]). Outside the realm of rule learners, Complement Naive Bayes (CNB) is among
the few text classifiers that leverage negative features [21]. Its peculiarity is that of learning the weights for a class using
all training data not in that class. CNB works in a multi-class setting (i.e., it needs at least 3 classes). In [21], the authors
claim that CNB approaches the state-of-the-art accuracy of SVMs. Unfortunately, we could not compare GAMoN with CNB
in our empirical study, as the (binary) one-versus-all technique was used to deal with multi-label classification (basically,
the problem was that Weka does not provide support for a multi-label data set representation that would be necessary in
order to provide CNB with the same input of the other systems).

Other M-of-N approaches. Several research works have recently been done to develop methods for inducing M-of-N con-
cepts but, to the best of our knowledge, none for text categorization. For an instance, in [1] a technique for extracting
M-of-N hypotheses from neural networks is reported. However, most work in this field has been carried out for construc-
tive induction. ID-2-of-3 [2] is an M-of-N induction algorithm which incorporates M-of-N tests in decision-tree learning.
It is based on a (greedy) hill-climbing approach to get the best M-of-N hypotheses at each node of a decision tree. XofN [4]
is another greedy constructive induction algorithm that learns X-of-N nominal attributes. Both ID-2-of-3 and XofN, when
building a decision tree, construct a new attribute for each decision node using the local training set. More recently, a Ge-
netic Algorithm for constructive induction has been proposed in [7]. It relies on a variable length individual representation
encoding the set of N attribute-value pairs composing an X-of-N attribute. The fitness is defined as the information gain
ratio of the constructed attribute. The genetic operators are the standard uniform crossover along with a mutation which is
a simple variant of the standard one. A conventional niching method to foster population diversity is also used.

11. Conclusions

In this paper we proposed a new language, called M-of-N{¬,∨} , for text classification, along with a GA-based approach
for constructing M-of-N{¬,∨} hypotheses from training data.

4 Available at http://icos.cs.nott.ac.uk/software/biohel.html.

http://icos.cs.nott.ac.uk/software/biohel.html

90 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
The M-of-N{¬,∨} representation generalizes the classical notion of M-of-N concepts by allowing negation and disjunction.
We conjectured that it is well-suited to express text classification conditions, as it complies with the so-called “family
resemblance” metaphor. We have shown that the space of M-of-N{¬,∨} hypotheses has a structure determined by two
kinds of subsumption relationships – the feature and the threshold relationships, that form complete lattices. Based on that,
suitable refinement operators for an effective exploration of the hypothesis space were designed.

To induce M-of-N{¬,∨} hypotheses, the task-specific genetic algorithm GAMoN was proposed. It is based on the Pittsburgh
approach, where an individual encodes a candidate classifier, as well as on ad hoc GS reproduction operators which are
a stochastic implementation of the refinement operators. GAMoN dynamically adapts the probability of selecting the GS
operators. The population is partitioned into a number of competing subpopulations, each consisting of individuals belonging
to the same hypothesis subspace. To this end, a statistical criterion for automatically detecting the dimensionality range of
the feature space has been proposed.

This paper also presented empirical results obtained by extensive experiments on 13 real-world test collections in a wide
spectrum of sizes – from a few hundreds to a few hundreds thousands of documents. We found that GAMoN is competitive
with a large collection of state-of-the-art learning techniques belonging to different classes, and that it provides hypotheses
that are compact and easily interpretable. In particular, though there are small differences in predictive accuracy between
GAMoN and SMO (the latter being a bit more performant), and between GAMoN and both Ripper and C4.5 (the latter two
being a bit less performant), all such systems showed to be statistically equivalent. Whereas, GAMoN proved to be superior
to the other evolutionary algorithms. In particular, it showed statistically significant improvements over its predecessor
OlexGA, thus confirming the effectiveness of the proposed extension. Finally, we observed that, as we scale up the size of
the data set, GAMoN performs much more efficiently then both Ripper and C4.5.

Acknowledgement

The authors wish to thank Giuseppe Manco for his helpful comments on earlier versions of this paper.

Appendix A. Proofs

Proof of Proposition 4.1. Let H1
c and H2

c be two classifiers in HT (Fc(k)). Next we show that H1
c �φ H2

c implies D(H1
c) ⊇

D(H2
c). The proof proceeds by induction. (Basis) H1

c and H2
c are atoms in HT (Fc(k)) of the form, say, 〈Pos1,Neg1, {(p,n)}〉

and 〈Pos2,Neg2, {(p,n)}〉. A document d is classified by H2
c iff |d ∩ Pos2| � p and |d ∩ Neg2| � n (recall that a document

is a set of features – see Section 4.1). It can be easily seen that, since both Pos2 ⊆ Pos1 and Neg1 ⊆ Neg2 hold by hypoth-
esis, |d ∩ Pos1| � p and |d ∩ Neg1| � n is verified as well, that is, d is classified by H1

c . (Inductive step) H1
c and H2

c are
two generic classifiers 〈Pos1,Neg1,T 〉 and 〈Pos2,Neg2,T 〉 in HT (Fc(k)) such that H1

c �φ H2
c . Thus, they can be expressed

in the following form: H1
c = H1,1

c ∨ H1,2
c and H2

c = H2,1
c ∨ H2,2

c , where H1,1
c = 〈Pos1,Neg1,T1〉, H1,2

c = 〈Pos1,Neg1,T2〉,
H2,1

c = 〈Pos2,Neg2,T1〉 and H2,2
c = 〈Pos2,Neg2,T2〉. By inductive hypothesis, since both Pos2 ⊆ Pos1 and Neg1 ⊆ Neg2 hold,

any document classified by H2,1
c is classified by H1,1

c and any document classified by H2,2
c is classified by H1,2

c . It turns out
that H1

c classifies all documents classified by H2
c , i.e., D(H1

c) ⊇ D(H2
c). �

Proof of Proposition 4.2. Next we show that (HT (Fc(k)),�φ) is a complete lattice. To this end, we first prove
statement (a) – lubφ(H1

c ,H2
c) = 〈Pos1 ∪ Pos2,Neg1 ∩ Neg2,T 〉. From Definition 4.4 it immediately follows that both

lubφ(H1
c ,H2

c) �φ H1
c and lubφ(H1

c ,H2
c) �φ H2

c hold. Now let us assume, by absurd, the existence of H′
c = 〈Pos,Neg,T 〉 such

that lubφ(H1
c ,H2

c) �φ H ′
c and, further, H ′

c �φ H1
c and H ′

c �φ H2
c . From lubφ(H1

c ,H2
c) �φ H ′

c we have that Pos ⊆ Pos1 ∪ Pos2
(see Definition 4.4). However, if so, the conditions H ′

c �φ H1
c and H ′

c �φ H2
c cannot hold, as Pos1 ⊆ Pos and Pos2 ⊆ Pos

cannot be both true (a contradiction). From which statement (a) follows. Now we prove statement (b) – glbφ(H1
c ,H2

c) =
〈Pos1 ∩ Pos2,Neg1 ∪ Neg2,T 〉. By Definition 4.4 we have that H1

c �φ glbφ and H2
c �φ glbφ . Now let us assume, by ab-

surd, the existence of H′
c = 〈Pos,Neg,T 〉 such that H ′

c �φ glbφ(H1
c ,H2

c) and, further, H1
c �φ H ′

c and H2
c �φ H ′

c . From
H ′

c �φ glbφ(H1
c ,H2

c) it turns out that Pos1 ∩ Pos2 ⊆ Pos. But, if so, the conditions H1
c �φ H ′

c and H2
c �φ H ′

c cannot hold,
as Pos is not a subset of both Pos1 and Pos2 (a contradiction). From which statement (b) follows. �
Proof of Proposition 4.3. Let H1

c and H2
c be two classifiers in HΦ(P , N). Next we show that H1

c �τ H2
c implies

D(H1
c) ⊇ D(H2

c). The proof proceeds by induction. (Basis) H1
c and H2

c are atoms of the form, say, 〈Pos,Neg, {(p1,n1)}〉 and
〈Pos,Neg, {(p2,n2)}〉. By Definition 4.2, a document d is classified by H2

c if (and only if) |d ∩ Pos| � p2 and |d ∩ Neg| � n2.
Now, H1

c �τ H2
c only if p1 � p2 and n1 � n2 (by Definition 4.5), which implies that a document d classified by H2

c is classi-
fied by H1

c as well, i.e., D(H1
c) ⊇ D(H2

c). (Inductive step) H1
c �τ H2

c only if, for each atom H2,i
c appearing in H2

c there exists

an atom H1, j
c appearing in H1

c such that H1, j
c �τ H2,i

c (immediate from Definition 4.5). Since H1, j
c classifies all documents

classified by H2,i
c (inductive hypothesis), it follows that H1

c classifies all documents classified by H2
c . �

Proof of Lemma 4.1. Next we prove that, given Hc = H1
c ∨ H2

c and Ĥc = Ĥ1
c ∨ Ĥ2

c , the following holds: D(Hc) ⊇ D(Ĥc)

only if (D(H1
c) ⊇ D(Ĥ1

c) or D(H2
c) ⊇ D(Ĥ1

c)) and (D(H1
c) ⊇ D(Ĥ2

c) or D(H2
c) ⊇ D(Ĥ2

c)). The proof proceeds by induction.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 91
(Basis) H1
c = {(p1,n1)}, H2

c = {(p2,n2)} and Ĥc = {(p̂, n̂)} are atoms. By Definition 4.2, D(Hc) = {d ∈ D s.t. |d ∩ Pos| �
p1 ∧|d∩Neg| � n1 ∨|d∩Pos| � p2 ∧|d∩Neg| � n2} and D(Ĥc) = {d ∈ D s.t. |d∩Pos|� p̂ ∧|d∩Neg| � n̂}. Thus, D(H) ⊇ D(Ĥc)

only if either (1) p̂ � p1 and n̂ � n1 or (2) p̂ � p2 and n̂ � n2. By Definition 4.5, condition (1) entails H1
c �τ Ĥc and

condition (2) H2
c �τ Ĥc , so as D(H) ⊇ D(Ĥc) only if D(H1

c) ⊇ D(Ĥc) or D(H2
c) ⊇ D(Ĥc). (Inductive step) D(H) ⊇ D(Ĥc)

only if D(H1
c)∪ D(H2

c) ⊇ D(Ĥ1
c)∪ D(Ĥ2

c) only if D(H1
c)∪ D(H2

c) ⊇ D(Ĥ1
c) and D(H1

c)∪ D(H2
c) ⊇ D(Ĥ2

c) only if (by inductive
hypothesis) D(H1

c) ⊇ D(Ĥ1
c) or D(H2

c) ⊇ D(Ĥ1
c) and D(H1

c) ⊇ D(Ĥ2
c) or D(H2

c) ⊇ D(Ĥ2
c). �

Proof of Proposition 4.4. Let Hc and H′
c be two classifiers in HΦ(P , N). We next show that D(Hc) ⊇ D(H′

c) implies
Hc �τ H′

c . The proof proceeds by induction. (Basis) Hc = {(p,n)} and H′
c = {(p′,n′)} are atoms. By Definition 4.2, D(Hc) =

{d ∈ D s.t. d ∩ Pos| � p ∧ |d ∩ Neg| � n} and D(H′
c) = {d ∈ D s.t. d ∩ Pos| � p′ ∧ |d ∩ Neg| � n′}. Clearly, D(Hc) ⊇ D(H′

c) only
if p � p′ and n � n′ , that is, only if Hc �τ H′

c . (Inductive step) Let Hc = H1 ∨H2 and H′
c = H′

1 ∨H′
2. Now, D(Hc) ⊇ D(H′

c)

only if D(H1) ∪ D(H2) ⊇ D(H′
1) ∪ D(H ′

2) only if (by Lemma 4.1) (D(H1) ⊇ D(H′
1) ∨ D(H2) ⊇ D(H′

1)) ∧ (D(H1) ⊇
D(H′

2) ∨ D(H2) ⊇ D(H ′
2)) only if (by inductive hypothesis) H1 �τ H′

1 or H2 �τ H′
1 and H1 �τ H′

2 or H2 �τ H′
2 only

if Hc �τ H′
c . �

Proof of Corollary 4.1. We next prove that, given classifiers H1
c and H2

c , H1
c ≡ H2

c iff D(H1
c) = D(H2

c). Indeed, H1
c ≡ H2

c
iff H1

c �H2
c and H2

c �H1
c iff D(H1

c) ⊇ D(H2
c) and D(H2

c) ⊇ D(H1
c) (by Proposition 4.3 and Proposition 4.4) iff D(H1

c) =
D(H2

c). �
Proof of Proposition 4.6. Next we show that, given Hc, Ĥc ∈ HΦ(P , N), the classifier and(Hc, Ĥc) is such that (1)
and(Hc, Ĥc) ∈ HΦ(P , N), (2) D(and(Hc, Ĥc)) = D(Hc) ∩ D(Ĥc), and (3) Hc �τ and(Hc, Ĥc) and Ĥc �τ and(Hc, Ĥc).
The proof proceeds by induction. (Basis) Hc = {(p,n)} and Ĥc = {(p̂, n̂)} are atoms. Statement (1). To show that and(Hc, Ĥc)

is in HΦ(P , N) it suffices to observe that both p = Max{p, p̂} � P and n = Min{n, n̂} � N hold. Statement (2). A document d
is classified by and(Hc, Ĥc) iff d contains x � Max{p, p̂} positive features and y < Min{n1, n̂} negative features, iff x � p,
x � p̂, y < n and y < n̂, iff d is classified by both Hc and Ĥc , i.e., D(Hc) = D(Hc) ∩ D(Ĥc). Statement (3). Immediate from
Statement 1 and Proposition 4.4. (Inductive step) Let Hc =H1

c ∨H2
c and Ĥc = Ĥ1

c ∨Ĥ2
c be two classifiers. Statement (1). From

Definition 4.7, and(Hc, Ĥc) = H1 ∨ H2 ∨ H3 ∨ H4, where H1 = and(H1
c , Ĥ1

c), H2 = and(H1
c , Ĥ2

c), H3 = and(H2
c , Ĥ1

c) and
H4 = and(H2

c , Ĥ2
c). By the inductive hypothesis, H1,H2,H3,H4 are in HΦ(P , N) and thus, by Definition 4.2, and(Hc, Ĥc)

is in HΦ(P , N). Statement (2). By using the inductive step of Definition 4.7, along with the inductive hypothesis of State-
ment (2), we get D(and(Hc, Ĥc)) = D(H1

c) ∩ D(Ĥ1
c) ∪ D(H1

c) ∩ D(Ĥ2
c) ∪ D(H2

c) ∩ D(Ĥ1
c) ∪ D(H2

c) ∩ D(Ĥ2
c), from which

D(and(Hc, Ĥc)) = D(H1
c) ∩ D(H2

c) immediately follows. Statement (3). By using the inductive step of Definition 4.7, and ap-
plying the inductive hypothesis of Statement (3), we have that H1

c �τ H1 and Ĥ1
c �τ H1 (as H1 = and(H1

c , Ĥ1
c)), H1

c �τ H2

and Ĥ2
c �τ H2 (as H2 = and(H1

c , Ĥ2
c)), H2

c �τ H3 and Ĥ1
c �τ H3 (as H3 = and(H2

c , Ĥ1
c)), H2

c �τ H4 and Ĥ2
c �τ H4

(as H4 = and(H2
c , Ĥ2

c)). Thus, by Definition 4.5, it follows that both Hc �τ and(Hc, Ĥc) and Ĥc �τ and(Hc, Ĥc) hold
(that is, and(Hc, Ĥc) is more specific than both Hc and Ĥc). �
Proof of Proposition 4.5. Let Hc = 〈Pos,Neg,T 〉 be given. We next show that the following properties hold:

1. Hc is redundant iff there exist (pi,ni), (p j,n j) ∈ T such that {(pi,ni)}�τ {(p j,n j)}.
2. Hc is minimal iff T = {(p1,n1), . . . , (pr,nr)} is such that pi < p j and ni < n j , or vice versa, for each i, j ∈ [1, r].
3. If Hc =H1

c ∨H2
c and H1

c �τ H2
c , then Hc ≡H1

c .

(1) Let Hc =H1
c ∨ · · · ∨Hr

c . By Definition 4.5, {(pi,ni)} �τ {(p j,n j)} iff Hi
c �H j

c , with i, j ∈ [1, r], iff Hc =H′
c ∨H j

c and

H′
c �H j

c , where H′
c =H1

c ∨ · · · ∨H j−1
c ∨H j+1

c ∨ · · · ∨Hi
c ∨ · · · ∨Hr

c , iff Hc is redundant (by Definition 4.6).
(2) From point 1 above, Hc is minimal iff for each pair (pi,ni), (p j,n j) ∈ T neither {(pi,ni)} �τ {(p j,n j)} nor

{(p j,n j)} �τ {(pi,ni)} iff neither (pi � p j and ni � n j) nor (p j � pi and n j � ni) (by Definition 4.5) iff pi < p j and ni < n j ,
or vice versa.

(3) H1
c �τ H2

c only if D(H1
c) ⊇ D(H2

c) (by Proposition 4.3) only if D(Hc) = D(H1
c) ∪ (H2

c) = D(H1
c) only if Hc ≡ H1

c
(by Proposition 4.4). �
Proof of Proposition 4.7. Next we show that any equivalence class into which is partitioned the hypothesis subspace
HΦ(P , N) by the relation ≡ has a unique minimal classifier. To this end, we prove that, if Hc and Ĥc are two minimal clas-
sifiers such that Hc ≡ Ĥc , then Hc = Ĥc . From which the statement immediately follows. The proof proceeds by induction.
(Basis) Hc and Ĥc are atoms. Trivial. (Inductive step) Hc =H1

c ∨H2
c and Ĥc = Ĥ1

c ∨Ĥ2
c . Note that, from the minimality of Hc

and Ĥc , the minimality of H1
c ,H2

c , Ĥ1
c and Ĥ2

c follows. By Corollary 4.1, Hc ≡ Ĥc iff D(Hc) = D(Ĥc) iff D(Hc) ⊇ D(Ĥc)

and D(Hc) ⊆ D(Ĥc). By Lemma 4.1, D(Hc) ⊇ D(Ĥc) only if D(H1
c) ⊇ D(Ĥ1

c) or D(H2
c) ⊇ D(Ĥ1

c) and D(H1
c) ⊇ D(Ĥ2

c)

or D(H2
c) ⊇ D(Ĥ2

c). Likewise, D(Hc) ⊆ D(Ĥc) only if D(H1
c) ⊆ D(Ĥ1

c) or D(H1
c) ⊆ D(Ĥ2

c) and D(H2
c) ⊆ D(Ĥ1

c) or

92 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
D(H2
c) ⊆ D(Ĥ2

c). It turns out that, because of the minimality of H1
c ,H2

c , Ĥ1
c and Ĥ2

c , either (1) D(H1
c) = D(Ĥ1

c) and
D(H2

c) = D(Ĥ2
c) or (2) D(H1

c) = D(Ĥ2
c) and D(H2

c) = D(Ĥ1
c), only if (by Corollary 4.1) either (1) H1

c ≡ Ĥ1
c and H2

c ≡ Ĥ2
c or

(2) H1
c ≡ Ĥ2

c and H2
c ≡ Ĥ1

c . By the inductive hypothesis, Hi
c ≡ Ĥ j

c only if Hi
c = Ĥ j

c , from which Hc = Ĥc . �
Proof of Proposition 4.8. The statement we are going to prove is that the poset (MΦ(P , N),�τ), where MΦ(P , N) is the
set of the minimal classifiers in HΦ(P , N), is a complete lattice. To this end, let us consider two classifiers H1

c and H2
c in

MΦ(P , N). We first show that lubτ (H1
c ,H2

c) = Min(H1
c ∨H2

c). Let Hc ∈ MΦ(P , N) be a τ -generalization of both H1
c and H2

c ,
i.e., Hc �τ H1

c and Hc �τ H2
c . Thus, by Proposition 4.3, both D(Hc) ⊇ D(H1

c) and D(Hc) ⊇ D(H2
c) hold. On the other hand,

D(Min(H1
c ∨H2

c)) = D(H1
c)∪ D(H2

c), so that D(Hc) ⊇ D(Min(H1
c ∨H2

c)). Therefore, by Proposition 4.4, Hc �τ Min(H1
c ∨H2

c),
from which the statement lubτ (H1

c ,H2
c) = Min(H1

c ∨H2
c) follows.

Now we prove that glbτ (H1
c ,H2

c) = Min(and(H1
c ,H2

c)). Let Hc be a τ -specialization of both H1
c and H2

c , i.e.,
H1

c �τ Hc and H2
c �τ Hc . Thus, by Proposition 4.3, both D(H1

c) ⊇ D(Hc) and D(H2
c) ⊇ D(Hc) hold. On the other hand,

D(Min(and(H1
c ,H2

c))) = D(H1
c) ∩ D(H2

c) by Proposition 4.6, so that D(Min(and(H1
c ,H2

c))) ⊇ D(Hc). Therefore, by Proposi-
tion 4.4, Min(and(H1

c ,H2
c)) �τ Hc , from which the statement glbτ (H1

c ,H2
c) = Min(and(H1

c ,H2
c)) follows. �

Proof of Proposition 4.9. We first prove lubτ (H1
c ,H2

c) = 〈Pos,Neg,�(T1,T2)〉. By Proposition 4.8, lubτ (H1
c ,H2

c) =
Min(H1

c ∨H2
c), that is, lubτ (H1

c ,H2
c) = Min(〈Pos,Neg,T1 ∪ T2〉). It is immediate to recognize that this classifier is

〈Pos,Neg,�(T1,T2)〉 (see Fig. 2), as function �(T1,T2) simply minimizes T1 ∪ T2 by discarding all thresholds (p j,n j) such
that there exists (pi,ni) such that {(pi,ni)} �τ {(p j,n j)} holds (see Proposition 4.5 – Part 1).

Now we show that glbτ (H1
c ,H2

c) = 〈Pos,Neg,�(T1,T2)〉. By Proposition 4.8, we have that glbτ = Min(and(H1
c ,H2

c)). Next
we show that Min(and(H1

c ,H2
c)) = 〈Pos,Neg,�(T1,T2)〉. To this end, we observe that lines 9–12 of Fig. 2 are the iterative

version of the inductive definition of and(H1
c ,H2

c) (Definition 4.7). Indeed, if both H1
c and H2

c are atoms, then the function
computes �(T1,T2) = {(Max(p1, p2),Min(n1,n2))}, which coincides with the base step of Definition 4.7 (of course, the clas-
sifier 〈Pos,Neg, {(Max(p1, p2),Min(n1,n2))}〉 is minimal, being an atom). Now, let us consider the general case. It is easy
to see that the inductive step of Definition 4.7 generates, for each couple of pairs (p1,n1) ∈ T1 and (p2,n2) ∈ T2, a pair
{(Max(p1, p2),Min(n1,n2))}. And this is exactly what function �(T1,T2) does at lines 9–12. Thus, after the two nested “for”
have been carried out (lines 10–12), the classifier and(H1

c ,H2
c) is generated. However, this classifier may not be minimal

(see Example 4.8), so that function Minimize is invoked. So, we finally get 〈Pos,Neg,�(T1,T2)〉 = Min(and(H1
c ,H2

c)). �
Proof of Lemma 4.2. Given threshold bounds P and N , along with k � Min(P + 1, N), let T +

k = {p1, . . . , pk} and T −
k =

{n1, . . . ,nk} be sets of integers, where ∀i � k, 0 � pi � P and 0 < ni � N . Next we show that there exists a unique subset
S ⊆ T +

k × T −
k having size k which is a minimal threshold set. Without loss of generality, we assume that ∀pi, p j ∈ T +

k and
∀ni,n j ∈ T −

k , such that i < j, both pi < p j and ni < n j hold.
Existence. The set S = {(p1,n1), . . . , (pi,ni), . . . , (pk,nk)} is a subset of T +

k × T −
k of size k where, for each pair of elements

(pi,ni) and (p j,n j), with i < j, both pi < p j and ni < n j hold. Thus, by Proposition 4.5 – Part 2, S is a minimal threshold set.
Uniqueness. We show that any another subset S ′ �= S of T +

k × T −
k , which is a minimal threshold set, has size lower than

k. Suppose that (pi,n j) ∈ S ′ is such that i < j (the case j < i is likewise). Since S ′ is a minimal threshold set, by Proposi-
tion 4.5 – Part 2, for any (ps,nt) ∈ S ′ , either ps < pi and nt < n j or pi < ps and n j < nt . Now, it is immediate to recognize
that, by the above assumption on the ordering of the elements of T +

k and T −
k , the elements ps ∈ T +

k such that s < i (i.e.,
smaller than pi) are i − 1, while the elements nt ∈ T −

k such that j < t (i.e., greater than nt) are k − j. It turns out that
(1) there are at most i − 1 elements (ps,nt) ∈ S ′ such that s < i, and (2) there are at most k − j elements (ps,nt) ∈ S ′ such
that j < t . That is, the size of S ′ is at most i + k − j < k. �
Proof of Proposition 4.10. Part 1. Every classifier in MΦ(P , N) is of order r � Min{P + 1, N}. In fact, given T =
{(p1,n1), . . . , (pr,nr)}, from Part 2 of Proposition 4.5 we have that pi �= p j and ni �= n j for all i, j ∈ [1, r], i �= j. That is,
in T there appear r different positive thresholds and r negative thresholds. Since 0 � pi � P and 0 < ni � N , for each
i ∈ [1, r], it turns out that r � P + 1 and r � N , i.e., r � Min{P + 1, N}.

Part 2. Given P , N and s = Min{P + 1, N}, let us consider the sets T + = {0,1, . . . , P } and T − = {1, . . . , N}. T + (resp. T −)
is the set of possible values for the positive (resp. negative) thresholds appearing in the classifiers of MΦ(P , N). Now,
∀r ∈ [1, s], there exist binom(P + 1, r) subsets T +

r ⊆ T + (made of r elements from T +) and binom(N, r) subsets T −
r ⊆ T − .

Also, from Lemma 4.2 we know that, for each pair of sets T +
r , T −

r , there is a unique minimal threshold set S ⊂ T +
r × T −

r or
order r constructible from T + and T − . It turns out that there are binom(P + 1, r) × binom(N, r) minimal threshold sets of
order r. Therefore, since r � Min{P + 1, N}, the total number of threshold sets in MΦ(P , N) is that given by Eq. (1). �
Correctness of the computation of ↑φ (Hc). – See Section 5.1. We restrict the proof to the correctness of the computation
of ↑φ (Hc). The proof concerning ↓φ (Hc) follows a similar framework.

Let us start by proving ↑φ (Hc) = 〈Pos′,Neg′,T 〉, where Pos′ = Pos ∪ {t}, t ∈ Pos∗(k) and Neg′ = Neg. First of all we note
that, since both Pos′ ⊇ Pos and Neg′ = Neg, ↑φ (Hc) �φ Hc holds – see Definition 4.4. Now assume by absurd the existence
of H′′

c = 〈Pos′′,Neg′′,T 〉 such that ↑φ (Hc) �τ H ′′
c �τ Hc . Thus, both Pos′ ⊇ Pos′′ ⊇ Pos and Neg′ ⊆ Neg′′ ⊆ Neg. However, since

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 93
Pos′ and Pos differ for exactly one term, either Pos′ = Pos′′ or Pos′′ = Pos holds. Further, since Neg = Neg′ , Neg′ = Neg′′ = Neg
holds as well. That is, either H′′

c =Hc or H′′
c = ↑φ(Hc), a contradiction.

Now let us prove ↑φ (Hc) = 〈Pos′,Neg′,T 〉, where Pos′ = Pos, Neg′ = Neg \ {t} and t ∈ Neg. Since both Pos′ = Pos and
Neg′ ⊆ Neg, ↑φ (Hc) �φ Hc holds – see Definition 4.4. Now, by absurd, assume that there exists H′′

c = 〈Pos′′,Neg′′,T 〉
such that ↑φ (Hc) �τ H ′′

c �τ Hc . Since both Pos′ ⊇ Pos′′ ⊇ Pos and Pos = Pos′ , it follows that Pos′′ = Pos. Moreover, since
Neg′ ⊆ Neg′′ ⊆ Neg and, further, Neg and Neg′ differ for exactly one feature, either Neg′′ = Neg or Neg′′ = Neg′ . That is, either
H′′

c =Hc or H′′
c =↑φ (Hc), a contradiction.

Proof of Proposition 5.1. Next we show that, given classifiers H1
c and H2

c , the following holds:
∨

x(H1
c ,H2

c) �x H1
c and

H1
c �x

∧
x(H1

c ,H2
c), where x ∈ {τ ,φ}. By Definition 5.2, we have that

∨
x(H1

c ,H2
c) = lubx(H1

c ,H1,2
c). Since lubx(H1

c ,H1,2
c)

�x H1
c , it turns out that

∨
x(H1

c ,H2
c) �x H1

c . Dually, from
∧

x(H1
c ,H2

c) = glbx(H1
c ,H1,2

c) and H1
c �x glbx(H1

c ,H1,2
c), H1

c �x∧
x(H1

c ,H2
c) follows.

Proof of Proposition 6.1. We have to prove that the decision version of the GAMoN learning problem is NP-complete.
The proof is by a reduction from the Knapsack problem. Given an atom Hc = 〈Pos,Neg, {(p,n)}〉, let S ⊆ T be the set of
training documents classified by Hc under c, i.e., S = {d ∈ D s.t. |d ∩ Pos| � p ∧ |d ∩ Neg| < n}. Precision is defined as the
probability that a document in S is also in the training set Tc of c, i.e.,

Pr(Hc, T) = |S ∩ Tc|
|S| (A.1)

and Recall is defined as the probability that a document in Tc is also in S , i.e.,

Re(Hc, T) = |S ∩ Tc|
|Tc| . (A.2)

By replacing Eqs. (A.1) and (A.2) into Eq. (2), after some algebra, we get the following formulation of the objective function

F (Hc, T) = 2 · a

b + |Tc|
where a = |S ∩ Tc | and b = |S \ Tc |. Hence, to maximize F (Hc, T) we want a to be as large as possible, while keeping b
bound to some given value (note that |Tc | is a constant). Thus, the problem of learning an atomic classifier, in its recognition
version, can be formulated as follows:

LEARN-ATOM-DECISION (LAD): Given the training set T , the feature space 〈Pos∗c (k),Neg∗
c (k)〉 and two positive integers U

and V , does there exist a hypothesis Hc = 〈Pos,Neg, {(p,n)}〉 over 〈Pos∗c (k),Neg∗
c (k)〉 such that a � U and b � V ? That is,

does there exist a hypothesis which is consistent with at least a positive examples and is not consistent with at most b
negative examples?

Now KNAPSACK is the following NP-complete problem: Given 2n + 2 positive integers w1, . . . , wn , v1, . . . , vn , W and Z ,
does there exist X ⊆ {1, . . . ,n} such that

∑
i∈X wi � W and

∑
i∈X vi � Z ?

We claim KNAPSACK polynomially reduces to LAD. To see this, suppose I = (w1, . . . , wn, v1, . . . , vn, W , Z) is an instance
of KNAPSACK. Make the following instance for LAD: (a) U = Z and V = W ; (b) 〈Pos∗c (k),Neg∗

c (k)〉 = 〈{t1, . . . , tn},∅〉, i.e.,
the feature space consists of n positive candidate features and no negative candidate feature; (c) the training set T is such
that:

(c.1) Θ(ti) ∩ Θ(t j) = ∅, for each ti, t j ∈ {t1, . . . , tn}, and
(c.2) vi = |Θ(ti) ∩ Tc | and wi = |Θ(ti) \ Tc |, for each i ∈ [1,n]

where Θ(ti) denotes the set of examples (documents) in T where term ti occurs. From point (c.1) above it follows that each
document contains at most one positive candidate term. Further, from points (c.1) and (c.2) it turns out that, for a given
Pos ⊆ {t1, . . . , tn}, the following holds: a = ∑

t∈Pos vi and b = ∑
t∈Pos wi . Thus, LAD turns out to be the following problem:

“does there exist Hc = 〈Pos,∅, {(1,∗)}〉 such that
∑

t∈Pos vi � V and
∑

t∈Pos wi � C (the symbol “*” stands for “immaterial”,
as Neg = ∅)?” Or, equivalently: “does there exist X ⊆ {1, . . . ,n} such that

∑
i∈X vi � V and

∑
i∈X wi � C?” Clearly, the an-

swer to this LAD is “yes” iff I is an instance of KNAPSACK, then proving our claim. To conclude the proof it suffices to notice
that verifying a YES instance of LAD requires polynomial time. Hence, problem LAD, i.e., the problem of deciding whether
there exists an atom satisfying the constraints a � U and b � V , is NP-complete. It is immediate to realize that the decision
version of the learning problem (see Definition 6.1) is NP-complete as well.

Appendix B. The non-deterministic function ↑T

Next we give a description of the algorithm of Fig. 4. It creates a direct ancestor ↑T of T = {τ1, . . . , τk}, where τi =
(pi,ni), 1 � i � k, by applying to T only local changes. We preliminarily recall that, by Proposition 4.5, the minimality of T

94 V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95
requires that pi < p j , ni < n j , or vice versa, for each i, j ∈ [1,k]. In the following discussion we assume pi < p j , ni < n j
(read “τi smaller than τ j ”) if i < j.

The algorithm starts by checking the condition T = {0, N}, that is, if T is the top element. Clearly, in such a case
no direct ancestor exists and the algorithm returns the empty set (line 12). Since the algorithm works on the “distance”
between two elements of T , in order not to exclude the first element τ1 and the last one τk , two fictitious elements are
defined, namely, τ0 = (−1,0) and τk+1 = (P + 1, N + 1) (line 2). Then, an element τi of T , along with one adjacent (left or
right), are randomly selected at lines 14–17. Of course, if i = 1, i.e., τi = (pi,ni) is the smallest element of T , and pi = 0,
then the adjacent of τi will be the right one, i.e., τi+1 (line 15). Symmetrically, if i = k, i.e., τk = (pk,nk) is the greatest
element of T , and ni = N (recall that N is the negative threshold bound), then the adjacent of τi will be the left one,
i.e., τi−1 (line 16). Then, the function NewElement is invoked by passing τi and the selected adjacent adj (line 18). This
function works as follows. First, it orders the element X = (px,nx) and its adjacent Y = (p y,ny) in such a way that X is the
smallest one (line 1). Then, the distances δ+ and δ− between X and Y are computed (line 2). Now, there are two ways for
constructing an immediate ancestor of T : either (1) by adding a suitable element τ to T , or (2) by replacing an element τi
of T by the most specific τ which generalizes τi . Which one of the two alternatives is applied depends on the distances δ+
and δ− . In particular, if both distances are greater than one (line 3 – intuitively, this means that there is “enough room” in
between X and Y to accommodate a new element in T), then the most specific threshold pair (p,n) such that px < p < p y
and nx < n < ny is computed, i.e., p = p y − 1 and n = nx + 1 (the most specific (p,n) is the one with the highest possible p
value and the lowest possible n value). Then, ↑T is set to Minimize(T ∪ {(p,n)}) (line 18), where Minimize is the function
sketched in Fig. 2.

As an example, let us consider the classifier Hc = 〈Pos,Neg,T 〉, where T = {τ1, τ2}, τ1 = {(0,1)} and τ2 = {(2,3)},
and assume that the threshold bounds are P = 2 and N = 3. Note that τ1 is smaller than τ2. Now, suppose that the algorithm
at line 13 selects i = 2 (i.e., τ2 = (2,3)). Since τ2 is the greatest element of T and n2 = N , the algorithm choses the left
adjacent, i.e., τ1 (line 15). Then, the function is invoked (line 18) and the distances δ+ = p2 − p1 = 2 and δ− = n2 − n1 = 2
are computed (line 3). Since (δ+ > 1 and δ− > 1) holds (line 3), the function sets (p,n) = (p2 − 1,n1 + 1) = (1,2) (line 4)
and returns it to the main. The resulting threshold set is ↑ T = Minimize(T ∪ {(1,2)}), that is, {(0,1), (1,2), (2,3)}, which
is an immediate ancestor of T (see Fig. 1).

If the condition on the distances at line 3 does not apply, then the most specific threshold pair (p,n) which generalizes
either X or Y is computed. Again, this is done depending on the values of two distances δ+ and δ− . In particular, if δ+ > 1,
then the algorithm generates the most specific element (p,n) which generalizes Y , i.e., (p,n) = (p y −1,ny). On the contrary,
if δ− > 1, then the algorithm generates the most specific element (p,n) which generalizes X , i.e., (p,n) = (px,nx +1). Finally,
if none of the above conditions hold (line 9), the algorithm generates the most specific element (p,n) which generalizes
both X and Y , i.e., (p,n) = (px,ny).

As an example, assume that T = {τ1, τ2}, with τ1 = {(1,1)} and τ2 = {(2,2)}, and let i = 2 (i.e., τ2 = (2,2)). Suppose
that the chosen adjacent is the left one, i.e., τ1. Since δ+ = δ− = 1, none of the conditions at lines 3, 7 and 8 applies. Thus
(p,n) = (p1,n2) = (1,2) is computed at line 9 and returned to the main. This element is then added to T (line 18) and,
after minimization, the algorithm returns ↑ T = {(1,2)}, which is an immediate ancestor of T (see Fig. 1).

References

[1] R. Setiono, Extracting M-of-N rules from trained neural networks, IEEE Trans. Neural Netw. 11 (2001) 512–519.
[2] P.M. Murphy, M.J. Pazzani, Id2-of-3: Constructive induction of M-of-N concepts for discriminators in decision trees, in: Proc. of the Eighth Int. Work-

shop on Machine Learning, Evanston, IL, 1991, pp. 183–187.
[3] G.G. Towell, J.W. Shavlik, Extracting refined rules from knowledge-based neural networks, Mach. Learn. 13 (1993) 71–101.
[4] Z. Zheng, Constructing x-of-n attributes for decision tree learning, Mach. Learn. 40 (1) (2000) 35–75.
[5] R. Setiono, S. Pan, M. Hsieh, A. Azcarraga, Automatic knowledge extraction from survey data: learning M-of-N constructs using a hybrid approach, J.

Oper. Res. Soc. (2005) 3–14.
[6] T. Joachims, Learning to Classify Text Using Support Vector Machines, Kluwer, 2002.
[7] O. Larsen, A.A. Freitas, J.C. Nievola, Constructing X-of-N attributes with a genetic algorithm, in: Proc. of the Genetic and Evolutionary Computation

Conference, Morgan Kaufmann, 2002, p. 1268.
[8] V.L. Policicchio, A. Pietramala, P. Rullo, A GA-based learning algorithm for inducing M-of-N-like text classifiers, in: Proceedings of the 10th International

Conference on Machine Learning and Applications and Workshops, ICMLA, vol. 1 2011, pp. 269–274.
[9] F. Herrera, Genetic fuzzy systems: Status, critical considerations and future directions, International Journal of Computational Intelligence Research 1

(2005) 59–67.
[10] A. Pietramala, V. Policicchio, P. Rullo, I. Sidhu, A genetic algorithm for text classification rule induction, in: Proceedings of the European Conference on

Machine Learning and Knowledge Discovery in Databases – Part II, ECML PKDD’08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 188–203.
[11] I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd edition, The Morgan Kaufmann Series in Data Management

Systems, Morgan Kaufmann Publishers, San Francisco, CA, 2005.
[12] J. Bacardit, E.K. Burke, N. Krasnogor, Improving the scalability of rule-based evolutionary learning, Memetic Comput. 1 (1) (2009) 55–67.
[13] M. Franco, N. Krasnogor, J. Bacardit, Speeding up the evaluation of evolutionary learning systems using GPGPUs, in: Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation, GECCO’10, 2010, pp. 1039–1046.
[14] W.W. Cohen, Y. Singer, Context-sensitive learning methods for text categorization, in: ACM Transactions on Information Systems, ACM Press, 1996,

pp. 307–315.
[15] J.R. Quinlan, Generating production rules from decision trees, in: Proceedings of the 10th International Joint Conference on Artificial Intelligence, vol. 1,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987, pp. 304–307.
[16] J. Platt, Fast training of support vector machines using sequential minimal optimization, in: B. Scholkopf, C. Burges, A. Smola (Eds.), Advances in Kernel

Methods: Support Vector Learning, MIT Press, Cambridge, MA, 1998.

V.L. Policicchio et al. / Artificial Intelligence 191–192 (2012) 61–95 95
[17] F. Sebastiani, Machine learning in automated text categorization, ACM Comput. Surv. 34 (2002) 1–47.
[18] C. Schaffer, Overfitting avoidance as bias, Mach. Learn. 10 (1993) 153–178.
[19] T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: Proceedings of ECML-98, 10th European

Conference on Machine Learning, No. 1398, Springer-Verlag, Heidelberg, 1998.
[20] A. McCallum, K. Nigam, A comparison of event models for naive Bayes text classification, in: AAAI-98 Workshop on Learning for Text Categorization,

AAAI Press, 1998, pp. 41–48.
[21] J.D. Rennie, L. Shih, J. Teevan, D.R. Karger, Tackling the poor assumptions of naive Bayes text classifiers, in: ICML, 2003, pp. 616–623.
[22] J.R. Quinlan, Learning logical definitions from relations, Mach. Learn. 5 (1990) 239–266.
[23] W. Li, J. Han, J. Pei, CMAR: Accurate and efficient classification based on multiple class-association rules, in: Proceedings of the IEEE International

Conference on Data Mining, 2001, pp. 369–376.
[24] X. Yin, J. Han, CPAR: Classification based on predictive association rules, in: Proceedings of the SIAM International Conference on Data Mining, 2003,

pp. 331–335.
[25] F. Coenen, P. Leng, The effect of threshold values on association rule based classification accuracy, Data Knowl. Eng. 60 (2007) 345–360.
[26] A. Fernández, S. García, J. Luengo, E. Bernadó-Mansilla, F. Herrera, Genetics-based machine learning for rule induction: state of the art, taxonomy, and

comparative study, Trans. Evol. Comput. 14 (2010) 913–941.
[27] S.W. Wilson, Classifier fitness based on accuracy, Evol. Comput. 3 (1995) 149–175.
[28] G. Venturini, SIA: A supervised inductive algorithm with genetic search for learning attributes based concepts, Mach. Learn. ECML-93 (1993) 280–296.
[29] J. Bacardit, D.E. Goldberg, M.V. Butz, Improving the performance of a Pittsburgh learning classifier system using a default rule, in: Proceedings of the

2003–2005 International Conference on Learning Classifier Systems, IWLCS’03–05, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 291–307.
[30] J.J. Liu, J.T. Kwok, An extended genetic rule induction algorithm, in: Proceedings of the 2000 Congress on Evolutionary Computation (CEC00), 2000,

pp. 458–463.
[31] D.R. Carvalho, A.A. Freitas, A hybrid decision tree/genetic algorithm method for data mining, Inform. Sci. 163 (2004) 13–35.
[32] A. Giordana, L. Saitta, F. Zini, Learning disjunctive concept definitions using a genetic algorithm, in: ECAI, 1994, pp. 483–486.
[33] A. Giordana, C. Anglano, A. Giordana, G.L. Bello, L. Saitta, A network genetic algorithm for concept learning, in: Proceedings of the Sixth International

Conference on Genetic Algorithms, Morgan Kaufmann, 1997, pp. 436–443.
[34] F. Divina, M. Keijzer, E. Marchiori, A method for handling numerical attributes in GA-based inductive concept learners, in: GECCO, 2003, pp. 898–908.
[35] J. Bacardit, N. Krasnogor, Performance and efficiency of memetic Pittsburgh learning classifier systems, Evol. Comput. 17 (3) (2009) 307–342.
[36] E. Gabrilovich, S. Markovitch, Text categorization with many redundant features: Using aggressive feature selection to make SVMs competitive with

C4.5, in: ICMLí04, 2004, pp. 321–328.
[37] E. Baralis, P. Garza, Associative text categorization exploiting negated words, in: Proceedings of the 2006 ACM Symposium on Applied Computing,

2006, pp. 530–535.
[38] P. Rullo, L. Policicchio, C. Cumbo, S. Iiritano, Olex: effective rule learning for text categorization, IEEE Trans. Knowl. Data Eng. 21 (2009) 1118–1132.
[39] G. Forman, I. Guyon, A. Elisseeff, An extensive empirical study of feature selection metrics for text classification, J. Mach. Learn. Res. 3 (2003) 1289–

1305.
[40] A. Tamaddoni-Nezhad, S. Muggleton, A genetic algorithms approach to ILP, in: Proceedings of the 12th International Conference on Inductive Logic

Programming, ILP’02, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 285–300.
[41] S.-H. Nienhuys-Cheng, R.d. Wolf, Foundations of Inductive Logic Programming, Springer-Verlag, New York, Secaucus, NJ, USA, 1997.
[42] STOC’84: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, ACM, New York, NY, USA, 1984, 508840.
[43] L. Pitt, L.G. Valiant, Computational limitations on learning from examples, J. ACM 35 (1988) 965–984.
[44] Ahn, C. Wook, Advances in Evolutionary Algorithms: Theory, Design and Practice (Studies in Computational Intelligence), Springer-Verlag, New York,

Secaucus, NJ, USA, 2006.
[45] T. Baick, Optimal mutation rates in genetic search, in: Proc. Fifth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,

1993, pp. 2–9.
[46] D.E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodalfunction optimization, in: ICGA, 1987, pp. 41–49.
[47] J. Bacardit, Pittsburgh genetics-based machine learning in the data mining era: Representations, generalization, and run-time, Ph.D. thesis, Ramon Llull

University, Barcelona, Spain, 2004.
[48] D.P. Greene, S.F. Smith, Competition-based induction of decision models from examples, Mach. Learn. 13 (1993) 229–257.
[49] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer-Verlag, New York, Secaucus, NJ, USA, 2002.
[50] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesús, S. Ventura, J.M. Garell, J. Otera, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera, KEEL: a

software tool to assess evolutionary algorithms for data mining problems, Soft Comput. 13 (3) (2009) 307–318.
[51] F. Debole, F. Sebastiani, An analysis of the relative difficulty of Reuters-21578 subsets, in: Proceedings of the 4th International Conference on Language

Resources and Evaluation (LREC 2004), 2004, pp. 971–974.
[52] W. Hersh, C. Buckley, T. Leone, D. Hickman, Ohsumed: an interactive retrieval evaluation and new large text collection for research, in: W.B. Croft, C.J.

Van Rijsbergen (Eds.), Proceedings of SIGIR-94, 17th ACM International Conference on Research and Development in Information Retrieval, Springer-
Verlag, Heidelberg/Dublin, 1994, pp. 192–201.

[53] E. hong Han, G. Karypis, Centroid-based document classification: Analysis and experimental results, in: Principles of Data Mining and Knowledge
Discovery, 2000, pp. 424–431.

[54] http://www.cs.umass.edu/~mccallum/data.html.
[55] http://www.cs.uic.edu/~liub/FBS/blog-gender-dataset.rar.
[56] http://web.ist.utl.pt/~acardoso/datasets/.
[57] http://www.dmoz.org/rdf.html (content.rdf.u8.gz).
[58] J. Demšar, Statistical comparison of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (1) (2006) 1–30.
[59] Z. Zheng, R. Srihari, Optimally combining positive and negative features for text categorization, in: Workshop for Learning from Imbalanced Datasets II,

Proceedings of the ICML, 2003.
[60] J. Bacardit, M. Stout, J.D. Hirst, K. Sastry, X. Llorà, N. Krasnogor, Automated alphabet reduction method with evolutionary algorithms for protein

structure prediction, in: GECCO’07: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM Press, 2007, pp. 346–
353.

[61] S. Chua, F. Coenen, G. Malcolm, Classification inductive rule learning with negated features, in: Proceedings of the 6th International Conference on
Advanced Data Mining and Applications: Part I, Springer-Verlag, 2010, pp. 125–136.

[62] M.A. Franco, N. Krasnogor, J. Bacardit, Analysing BioHEL using challenging boolean functions, Evol. Intell. 5 (2) (2012) 87–102.
[63] D.D. Lewis, Y. Yang, T. Rose, F. Li, RCV1: A new benchmark collection for text categorization research, Journal of Machine Learning Research 5 (2004)

361–397.

http://www.cs.umass.edu/~mccallum/data.html
http://www.cs.uic.edu/~liub/FBS/blog-gender-dataset.rar
http://web.ist.utl.pt/~acardoso/datasets/
http://www.dmoz.org/rdf.html

	GAMoN: Discovering M-of-N{¬,v} hypotheses for text classiﬁcation by a lattice-based Genetic Algorithm
	1 Introduction
	2 Background
	3 Language overview
	4 Language deﬁnition and hypothesis space
	4.1 Feature space
	4.2 Hypothesis space
	4.3 Ordering the hypothesis space
	4.3.1 Ordering along the feature dimension
	4.3.2 Ordering along the threshold dimension

	4.4 The minimal hypothesis space
	4.4.1 The size of the two types of lattice
	4.4.2 The landscape from the τ-subsumption perspective
	4.4.3 The landscape from the φ-subsumption perspective

	4.5 Decision boundaries
	4.6 Remarks on the proposed language

	5 Reﬁnement operators
	5.1 Unary reﬁnement operators
	5.2 Binary reﬁnement operators

	6 Learning problem and complexity
	7 Learning a classiﬁer: a GA-based approach
	7.1 Detecting the feature space dimensionality
	7.2 Individual encoding
	7.3 Fitness
	7.4 Task-speciﬁc GA operators and stochastic reﬁnement
	7.4.1 Generalizing/specializing crossover
	7.4.2 Generalizing/specializing (GS) mutation

	7.5 The genetic algorithm
	7.6 GAMoN time complexity
	7.7 Remarks on the proposed GA

	8 Empirical investigation framework
	8.1 Machine learning algorithms
	8.2 Data sets
	8.3 Experimental setup
	8.4 Predictive performance measure and statistical tests

	9 Experimental results
	9.1 A glimpse to M-of-N{¬,v} hypotheses
	9.2 Automatic selection of the feature space dimensionality
	9.3 Decision boundaries
	9.4 Effect of GS operators
	9.5 Comparison with other systems
	9.6 Size of the classiﬁers
	9.7 Time efﬁciency

	10 Discussion and related work
	11 Conclusions
	Acknowledgement
	Appendix A Proofs
	Appendix B The non-deterministic function T
	References

