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Abstract

Certain classes of matrices are indicated for which the star, left-star, right-star, and minus
partial orderings, or some of them, are equivalent. Characterizations of the left-star and right-
star orderings, similar to those devised by Hartwig and Styan [Linear Algebra Appl. 82 (1986)
145] for the star and minus orderings, are established along with other auxiliary results, which
are of independent interest as well. Some inheritance-type properties of matrices are also
given. The class of EP matrices appears to be essential in several points of our considerations.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let Cm,n be the set of m × n complex matrices. The symbols K∗, R(K), and
r(K) will denote the conjugate transpose, range, and rank, respectively, of K ∈ Cm,n.
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Further, K+ will stand for the Moore–Penrose inverse of K, i.e., the unique matrix
satisfying the equations

KK+K = K, K+KK+ = K+, KK+ = (KK+)∗, K+K = (K+K)∗,
(1.1)

and In will be the identity matrix of order n. Moreover, CPI
m,n will denote the subset of

Cm,n comprising partial isometries, i.e., CPI
m,n = {K ∈ Cm,n: KK∗K = K}, and CU

n ,
CEP

n , CN
n , CH

n , and CHI
n will denote the subsets of Cn,n consisting of unitary, EP, nor-

mal, Hermitian, and Hermitian idempotent matrices (orthogonal projectors), respec-
tively, i.e., CU

n = {K ∈ Cn,n: KK∗ = In}, CEP
n = {K ∈ Cn,n:R(K) = R(K∗)}, CN

n =
{K ∈ Cn,n: KK∗ = K∗K}, CH

n = {K ∈ Cn,n: K = K∗}, and CHI
n = {K ∈ Cn,n: K =

K∗, K = K2}. It is clear that CHI
n ⊆ CH

n ⊆ CN
n ⊆ CEP

n .
Four matrix partial orderings defined in Cm,n are considered in this paper. The

first of them is the star ordering introduced by Drazin [8], which is determined by

A
∗
� B ⇔ A∗A = A∗B and AA∗ = BA∗. (1.2)

Modifying (1.2), Baksalary and Mitra [4, p. 76] proposed the left-star and right-star
orderings characterized as

A ∗� B ⇔ A∗A = A∗B and R(A) ⊆ R(B), (1.3)

A �∗ B ⇔ AA∗ = BA∗ and R(A∗) ⊆ R(B∗). (1.4)

The fourth partial ordering of interest is the minus (rank subtractivity) ordering de-
vised by Hartwig [10] and independently by Nambooripad [14]. It can be specified
as

A
−
� B ⇔ r(B − A) = r(B) − r(A). (1.5)

From (1.3) and (1.4) it is seen that

A �∗ B ⇔ A∗ ∗� B∗. (1.6)

Moreover, Theorem 2.1 in [4] asserts that the left-star and right-star orderings are
located between the star and minus orderings in the sense that

A
∗
� B ⇔ A ∗� B and A �∗ B, (1.7)

A ∗� B ⇒ A
−
� B and A �∗ B ⇒ A

−
� B. (1.8)

The purpose of the present paper is to consider relationships between orderings
defined in (1.2)–(1.5) with the emphasis laid on indicating classes of matrices for
which all or some of them are equivalent. Characterizations of the left-star and right-
star orderings, similar to those devised by Hartwig and Styan [12] for the star and mi-
nus orderings, are established along with other such general properties, which seems
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to be of interest exceeding the frames of the present paper. Some inheritance-type
properties of matrices are also given.

2. Preliminary results

The two lemmas below contain modified versions of the characterizations of the

orders A
∗
� B and A

−
� B developed by Hartwig and Styan [12] (see their Theorems

1 and 2, Corollary 1(b), and comments on page 154). The modifications consist in
replacing unitary matrices by semiunitary ones, obtained by removing the columns
corresponding to singular values equal to zero in cases where B is singular. In addi-
tion notice that the assumption r(A) < r(B) adopted in several results of this paper
is natural, for otherwise each of the orders considered holds merely when A = B.

Lemma 2.1. Let A, B ∈ Cm,n and let a = r(A) < r(B) = b. Then A
∗
� B if and

only if

A = U
(

D1 0
0 0

)
V∗ and B = U

(
D1 0
0 D2

)
V∗, (2.1)

for some U ∈ Cm,b, V ∈ Cn,b such that U∗U = Ib = V∗V and positive definite di-
agonal matrices D1, D2 of degree a, b − a, respectively.

Lemma 2.2. Let A, B ∈ Cm,n and let a = r(A) < r(B) = b. Then A
−
� B if and

only if

A = U
(

D1 0
0 0

)
V∗ and B = U

(
D1 + RD2S RD2

D2S D2

)
V∗, (2.2)

for some U ∈ Cm,b, V ∈ Cn,b such that U∗U = Ib = V∗V, positive definite dia-
gonal matrices D1, D2 of degree a, b − a, respectively, and arbitrary R ∈ Ca,b−a,

S ∈ Cb−a,a .

It appears that similar characterizations can be obtained for the left-star and right-
star partial orderings. They constitute the first original result of this paper. A proof is
given for the left-star version only, as the right-star counterpart follows analogously
due to the symmetry of definitions (1.3) and (1.4) documented in (1.6). This rule is
adopted throughout the entire paper.

Theorem 2.1. Let A, B ∈ Cm,n and let a = r(A) < r(B) = b. Then A ∗� B if and
only if

A = U
(

D1 0
0 0

)
V∗ and B = U

(
D1 0

D2S D2

)
V∗, (2.3)
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while A �∗ B if and only if

A = U
(

D1 0
0 0

)
V∗ and B = U

(
D1 RD2
0 D2

)
V∗ (2.4)

for some U ∈ Cm,b, V ∈ Cn,b such that U∗U = Ib = V∗V, positive definite diag-
onal matrices D1, D2 of degree a, b − a, respectively, and arbitrary R ∈ Ca,b−a,

S ∈ Cb−a,a .

Proof. If A ∗� B, then on account of the first part of (1.8) and Lemma 2.2 it is clear
that A and B must be of the forms given in (2.2). Consequently,

A∗A = V
(

D2
1 0

0 0

)
V∗ and A∗B = V

(
D2

1 + D1RD2S D1RD2
0 0

)
V∗.

It is clear, therefore, that A∗A = A∗B entails D1RD2 = 0, and hence R = 0. On
account of (1.3), this establishes the “only if part”. The “if part” follows by noting
that matrices (2.3) obviously satisfy the first condition on the right-hand side in (1.3)
and, in view of the equality

A = BV
(

Ia 0
−S 0

)
V∗,

the second condition as well. �

In what follows, we will refer to some properties of the b × b matrix

W = V∗U =
(

W11 W12
W21 W22

)
, (2.5)

where U and V are the matrices occurring in the representations (2.1)–(2.4) (with
m = n). Notice that if U and V are partitioned as U = (U1 : U2) and V = (V1 :
V2), where U1, V1 ∈ Cn,a and U2, V2 ∈ Cn,b−a , then Wij = V∗

i Uj , i, j = 1, 2, and
thus W11 ∈ Ca,a , W12 ∈ Ca,b−a , W21 ∈ Cb−a,a , and W22 ∈ Cb−a,b−a . According
to Lemmas 2.1, 2.2 and Theorem 2.1, the representation of a predecessor matrix
A is identical in all partial orderings considered in the present paper. This moti-
vates collecting in one place specific properties of the matrix W defined in (2.5)
corresponding to A being EP, normal, or Hermitian matrix.

Theorem 2.2. For any A ∈ Cn,n of the form as in (2.1)–(2.4) and W ∈ Cb,b of the
form (2.5):

A ∈ CEP
n ⇔ W11 ∈ CU

a , W12 = 0, W21 = 0, (2.6)

A ∈ CN
n ⇔ W11 ∈ CU

a , W12 = 0, W21 = 0, W11D2
1 = D2

1W11, (2.7)

A ∈ CH
n ⇔ W11 ∈ CU

a , W12 = 0, W21 = 0, W11D1 = D1W∗
11. (2.8)

Moreover, the last condition in (2.7) may be replaced by W11D1 = D1W11.
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Proof. Since

A+ = V
(

D−1
1 0
0 0

)
U∗,

it follows that the equality AA+ = A+A, which is equivalent to A ∈ CEP
n , holds if

and only if

U
(

Ia 0
0 0

)
U∗ = V

(
Ia 0
0 0

)
V∗. (2.9)

Premultiplying both sides of (2.9) by V∗, postmultiplying them by U, and adopt-
ing notation (2.5) shows that (2.9) immediately entails W12 = 0 and W21 = 0. The
additional condition in (2.6) is a simple consequence of the fact that with the use
of notation related to (2.5) A is expressible as A = U1D1V∗

1. Consequently, since
PU1 = U1U∗

1 and PV1 = V1V∗
1 are the orthogonal projectors onto R(U1) = R(A)

and R(V1) = R(A∗), respectively, it follows that

A ∈ CEP
n ⇔ U1U∗

1 = V1V∗
1. (2.10)

Premultiplying the equality in (2.10) by V∗
1 and postmultiplying it by V1 shows that

W11W∗
11 = Ia, (2.11)

i.e., W11 ∈ CU
a . Conversely, premultiplying and postmultiplying (2.11) by V1 and

V∗
1, respectively, yields

PV1 PU1 PV1 = PV1 . (2.12)

Hence it is seen that the product PV1 PU1 of two orthogonal projectors is idempotent,
for which it is necessary and sufficient that

PV1 PU1 = PU1 PV1; (2.13)

cf., e.g., Theorem 1 in [1] and a much more general result in [2]. Consequently, from
(2.12) and (2.13) it follows that

R(A∗) = R(PV1) = R(PV1 PU1 PV1) ⊆ R(PV1 PU1) = R(PU1 PV1) ⊆ R(A).

Combining the inclusion R(A∗) ⊆ R(A) with r(A∗) = r(A) leads to the equality of
these two subspaces, thus proving that A ∈ CEP

n .
Further, since CN

n ⊆ CEP
n , the problem in establishing (2.7) is what should be add-

ed to the right-hand side of (2.6) to obtain a set of necessary and sufficient conditions
for the normality of A, i.e., for

U
(

D2
1 0

0 0

)
U∗ = V

(
D2

1 0
0 0

)
V∗. (2.14)

Premultiplying and postmultiplying (2.14) by V∗ and U, respectively, leads imme-
diately to W11D2

1 = D2
1W11. The converse follows by noting that, on account of the

condition on the right-hand side of (2.10), the equality U1D2
1U∗

1 = V1D2
1V∗

1, consti-
tuting the reduced version of (2.14), is equivalent to V∗

1U1D2
1 = D2

1V∗
1U1, i.e., to the

last condition in (2.7).
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Similarly it follows that if A ∈ CH
n , i.e., if

U
(

D1 0
0 0

)
V∗ = V

(
D1 0
0 0

)
U∗, (2.15)

then premultiplying and postmultiplying by V∗ and V, respectively, entails W11D1 =
D1W∗

11. Adding this equality to the conditions in (2.6) yields the right-hand side
of (2.8). The converse implication is obtained similarly as above by noting that
U1D1V∗

1 = V1D1U∗
1, which represents a reduced version of (2.15), is equivalent to

V∗
1U1D1 = D1U∗

1V1.
Replacing the condition W11D2

1 = D2
1W11 by W11D1 = D1W11 is possible on

account of the fact that, for any K = (kij ) ∈ Cn,n and any diagonal matrix D ∈ Cn,n

with the diagonal elements di > 0, the square of D in KD2 = D2K may be replaced
by D itself. In fact, it can easily be verified that KD2 = D2K corresponds to

(di + dj )(di − dj )kij = 0, i, j = 1, . . . , n,

which in view of di + dj > 0 is equivalent to (di − dj )kij = 0; i, j = 1, . . . , n,
i.e., to KD = DK. �

In this section, the usefulness of Theorem 2.2 is shown in the context of a specific
characterization of normal matrices. It is easily seen that if A ∈ Cn,n is nonsingular,
then it is normal if and only if A∗A−1 = A−1A∗. A natural generalization of this
condition to the form

A∗A+ = A+A∗, (2.16)

although remains necessary, is no longer sufficient. For example, if

A =
(

0 0
1 0

)
,

then A∗ = A+, and therefore (2.16) holds trivially, but AA∗ /= A∗A. It appears, how-
ever, that (2.16) forces A to be normal within the set of EP matrices.

Corollary 2.1. A matrix A ∈ Cn,n is normal if and only if it is an EP matrix satis-
fying A∗A+ = A+A∗.

Proof. As pointed out above, for a nonsingular A ∈ Cn,n the result is trivial. More-
over, there is no loss in generality when a singular matrix A is assumed to have a
representation as in (2.1)–(2.4). Then, after taking the conjugate transposes on both
sides, premultiplying by U∗, and postmultiplying by V, (2.16) takes the form(

D−1
1 0
0 0

) (
W11 W12
W21 W22

) (
D1 0
0 0

)

=
(

D1 0
0 0

) (
W11 W12
W21 W22

) (
D−1

1 0
0 0

)
.
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It can straightforwardly be verified that this equality is equivalent to W11D2
1 = D2

1W11.
Consequently, comparing characterizations (2.6) and (2.7) concludes the proof. �

An analogue of Theorem 2.2 concerning matrices B involved in Lemmas 1.1,
1.2 and Theorem 2.1 refers to the entire matrix W = V∗U instead of submatrices
occurring in its partitioned form (2.5).

Theorem 2.3. Let B ∈ Cn,n of rank r(B) = b be of the form B = UNV∗, with U∗U =
Ib = V∗V and N ∈ Cb,b representing any of the matrices whose forms are seen in
(2.1)–(2.4), and let W = V∗U. Then:

B ∈ CEP
n ⇔ W ∈ CU

b , (2.17)

B ∈ CN
n ⇔ W ∈ CU

b , WNN∗ = N∗NW, (2.18)

B ∈ CH
n ⇔ W ∈ CU

b , WN = N∗W∗. (2.19)

Proof. In each of the cases (2.1)–(2.4) the matrix N in B = UNV∗ is nonsingular.
Thus it follows that the orthogonal projectors onto R(B) and R(B∗) are expressible
as UU∗ and VV∗. Premultiplying and postmultiplying UU∗ = VV∗ by V∗ and V
leads to WW∗ = Ib, thus establishing the “⇒ part” of (2.17). Applying the same
procedure to the equalities

UNN∗U∗ = VN∗NV∗ and UNV∗ = VN∗U∗, (2.20)

which correspond to B ∈ CN
n and B ∈ CH

n , respectively, and adding W ∈ CU
b from

(2.17) proves the “⇒ parts” of (2.18) and (2.19). The converse implications follow
by arguments similar to those used in the proof of Theorem 2.2. Premultiplying and
postmultiplying WW∗ = Ib by V and V∗, respectively, yields PVPUPV = PV, where
PU = UU∗ and PV = VV∗. Hence PVPU = PUPV, and thus

R(B∗) = R(PV) = R(PVPUPV) ⊆ R(PUPV) ⊆ R(PU) = R(B),

which combined with r(B∗) = r(B) shows that B ∈ CEP
n . The “⇐ parts” of (2.18)

and (2.19) are simple consequences of the fact that, on account of UU∗ = VV∗, the
equalities in (2.20) are equivalent to WNN∗ = N∗NW and WN = N∗W∗. �

3. Equivalence of partial orderings and inheritance-type properties

A natural problem which arises in the context of definitions (1.2)–(1.5), relation-
ships (1.7) and (1.8), and characterizations (2.1)–(2.4) is to describe situations where
all the four orderings considered in the present paper, or some of them, become
equivalent. The number of known results concerning this problem seems to be rather
limited. Hartwig and Styan [13, Theorem 2.3] pointed out that the minus and star
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orderings are equivalent within the set of matrices representing orthogonal projec-
tors. In view of (1.7) and (1.8), this means that

A
−
� B ⇔ A ∗� B ⇔ A �∗ B ⇔ A

∗
� B (3.1)

for any A, B ∈ CHI
n . It appears that the same conclusion is valid for substantially

wider classes of matrices.

Theorem 3.1. Let A ∈ Cm,n and B ∈ CPI
m,n of ranks a = r(A) < r(B) = b be mi-

nus-ordered as A
−
� B. If their representations of the forms given in (2.2) are such

that all the diagonal elements (D1)i (i = 1, . . . , a) of D1 are not greater than one
or all the diagonal elements (D2)j (j = 1, . . . , b − a) of D2 are not less than one,

then A
∗
� B.

Proof. Referring to conditions (1.1), it can straightforwardly be verified that the
Moore–Penrose inverse of a matrix B of the form as in (2.2) admits a representation

B+ = V
(

D−1
1 −D−1

1 R
−SD−1

1 D−1
2 + SD−1

1 R

)
U∗.

Consequently, since the set of partial isometries may alternatively be specified as
CPI

m,n = {K ∈ Cm,n: K+ = K∗}, it follows that B ∈ CPI
m,n if and only if

D−1
1 = D1 + S∗D2R∗, −D−1

1 R = S∗D2, (3.2)

−SD−1
1 = D2R∗, D−1

2 + SD−1
1 R = D2. (3.3)

Combining the two equalities in (3.2) leads to D−1
1 = D1 − D−1

1 RR∗, and hence to

RR∗ = D2
1 − Ia. (3.4)

Since RR∗ is nonnegative definite and the condition (D1)i � 1, i = 1, . . . , a, means
that D2

1 − Ia is nonpositive definite, it follows from (3.4) that RR∗ = 0. Hence R = 0
and, consequently, S = 0. Similarly, combining the two equalities in (3.3) leads to
D−1

2 − D2R∗R = D2, and hence to R∗R = D−2
2 − Ib−a . Analogous argumentation

as above shows that if (D2)j � 1, j = 1, . . . , b − a, then R∗R = 0, and hence R =
0 and S = 0. In view of Lemma 2.1, this establishes the required order A

∗
� B. �

In view of (1.7), (1.8), and the fact that D1 in a representation of A ∈ CPI
m,n in

(2.2) must be the identity matrix of order a, Theorem 3.1 leads immediately to the
following version of Lemma 2 in [9].

Corollary 3.1. The equivalences (3.1) hold for any A, B ∈ CPI
m,n.
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The next two results concerning the problem of equivalence of partial orderings
deal with square matrices. They reveal a special role of the property that predecessors
in the orders considered are EP matrices.

Theorem 3.2. Let A ∈ CEP
n and B ∈ CN

n . Then

A ∗� B ⇔ A
∗
� B and A �∗ B ⇔ A

∗
� B (3.5)

in each case where the submatrices W12 and W21 of the matrix W in (2.5), gener-
ated by U and V occurring in the representations (2.3) and (2.4), respectively, are
null matrices.

Proof. In view of (1.7), (1.6), and (2.6), the proof of (3.5) reduces to establishing

that if B ∈ CN
n , then A ∗� B entails A

∗
� B whenever W12 = 0 and W21 = 0. Ac-

cording to Theorem 2.1, the order A ∗� B means that A and B have representations
such as in (2.3). Consequently, on account of (2.6) and (2.18), if A ∈ CEP

n , then the
normality of B implies

(
W11 0

0 W22

) (
D2

1 D1S∗D2

D2SD1 D2SS∗D2 + D2
2

)

=
(

D2
1 + S∗D2

2S S∗D2
2

D2
2S D2

2

)(
W11 0

0 W22

)
,

and hence, in particular,

W22D2SS∗D2 + W22D2
2 = D2

2W22. (3.6)

Since W12 = 0 and W21 = 0, the first condition on the right hand side of (2.18)
ensures that W22 ∈ CU

b−a , and thus postmultiplying (3.6) by W∗
22 leads to

tr(D2
2)= tr(W22D2SS∗D2W∗

22) + tr(W22D2
2W∗

22)

= tr(D2SS∗D2) + tr(D2
2), (3.7)

where tr(·) denotes the trace of a matrix argument. But (3.7) actually means that the
Frobenius norm of D2S is equal to zero, which on account of the nonsingularity of
D2 yields S = 0. After substituting S = 0 to (2.3) the representations of A and B take

the forms as in (2.1), thus showing that A
∗
� B. �

Theorem 3.3. The equivalences (3.1) hold for any A ∈ CEP
n and any idempotent

B ∈ Cn,n.

Proof. In view of (1.7) and (1.8), the proof reduces to showing that A
−
� B implies

A
∗
� B. On account of the equalities W12 = 0 and W21 = 0, which according to
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(2.6) are consequences of the assumption that A is an EP matrix, it follows that B of
the form as in (2.2) is idempotent if and only if

(D1 + RD2S)W11(D1 + RD2S) + RD2W22D2S = D1 + RD2S, (3.8)

(D1 + RD2S)W11RD2 + RD2W22D2 = RD2, (3.9)

D2SW11(D1 + RD2S) + D2W22D2S = D2S, (3.10)

D2SW11RD2 + D2W22D2 = D2. (3.11)

Combining (3.11) first with (3.9), and then with (3.10) leads to the equalities

D1W11RD2 = 0 and D2SW11D1 = 0.

Hence, on account of the nonsingularity if D1, D2, and W11, the last being ascer-
tained by (2.6), it follows that R = 0 and S = 0. In view of Lemmas 2.1 and 2.2, this

means that A
∗
� B, as desired. �

Theorem 3.3 generalizes the statement of Hartwig and Styan [12, Section 3F],
where both A and B are assumed to be Hermitian. Notice also that substituting R = 0
or S = 0 to (3.8) yields D1W11D1 = D1, which is a necessary and sufficient condition
for A of the form given in (2.1)–(2.4) to be idempotent. Actually, the idempotency
of a matrix A being a minus-predecessor of an idempotent matrix B holds without
any restriction on A (cf. Proposition 1.8(a) in [6]). We call implications of such a type
“inheritance properties”. To be more precise, if matrices A and B, with B having a
property π(B) are the predecessor and successor, respectively, according to a given
partial ordering, then we say that A inherits the property π(·) under this ordering
whenever π(B) implies π(A). Several results of this type are known in the literature
(cf. Theorem 2.1 in [5] and references to [3,6–8,10–13] in its proof). Theorems 3.4
and 3.5 below are additions to this collection. They assert that an EP matrix A cannot
be a star-predecessor of a normal or Hermitian matrix B unless it is itself normal or
Hermitian, respectively.

Theorem 3.4. Within the set CEP
n , if A ∗� B or A �∗ B and B is normal, then A

must also be normal.

Proof. From Theorem 3.2 it is clear that the star order A
∗
� B can be considered

instead of weaker (here seemingly only) orders A ∗� B and A �∗ B. In view of
(2.6) and (2.7), the proof reduces to establishing the equality W11D2

1 = D2
1W11 when

it is known that W11 ∈ CU
a , W12 = 0, W21 = 0, and B is normal. On account of

(2.18) and Lemma 2.1 the last condition leads to(
W11 0

0 W22

) (
D2

1 0
0 D2

2

)
=

(
D2

1 0
0 D2

2

)(
W11 0

0 W22

)
,

and hence the required equality is seen immediately. �
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Theorem 3.5. Within the set CEP
n , if A ∗� B or A �∗ B and B is Hermitian, then

A must also be Hermitian.

Proof. From the equality(
W11 0

0 W22

) (
D1 0
0 D2

)
=

(
D1 0
0 D2

)(
W∗

11 0
0 W∗

22

)
,

which is a version of the condition WN = N∗W∗ from (2.19), corresponding to N of
the form revealed in Lemma 2.1, it is seen that W11D1 = D1W∗

11. In view of (3.4),
combining this condition with those in (2.6) shows that A ∈ CH

n . �

Our last result is concerned with the class of orthogonal projectors which, in ad-
dition to the specification given in Section 1, can also be characterized as CHI

n =
{K ∈ Cn,n: K = KK∗} or as CHI

n = {K ∈ Cn,n: K = K∗K}. It is known that if a given
matrix is a star-predecessor of an orthogonal projector, then it must be an orthogonal
projector as well (cf. Theorem 3 in [8], Lemma 2 in [11], and a generalization of this
statement given in Theorem 1 in [3]). The theorem below, although not in full ac-
cordance with the concept of inheritance specified above, describes another situation
where the condition B ∈ CHI

n implies that A ∈ CHI
n .

Theorem 3.6. Within the set CEP
n , if A2 = AB or A2 = BA and B is an orthogonal

projector, then A must also be an orthogonal projector.

Proof. If A ∈ CEP
n and A2 = AB for some B ∈ CHI

n , then

A = A+A2 = A+AB = A+ABB∗ = A+A2B∗ = AB∗,
and hence

AA∗ = AB∗A∗ = A(AB)∗ = A(A2)∗. (3.12)

Postmultiplying (3.12) by (A+)∗ yields A = AA∗, which means that A ∈ CHI
n . In the

case where A2 = BA, this conclusion follows similarly by utilizing the representa-
tion B = B∗B to show that A∗A = (A∗)2A, which after premultiplying by (A+)∗
yields A = A∗A. �
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