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components of the Auslander-Reiten quiver of C?(A proj) are of the form ZA,..
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0. Introduction

The successful concepts of irreducible morphisms and almost split sequences were introduced by Auslander and Reiten
in the category of finitely generated modules over an Artin algebra, A mod. Moreover, they proved the existence of such
sequences (see [1]). These notions have been studied in a more general context. D. Happel gave the notion of Auslander-
Reiten triangles for the derived category of bounded complexes over A mod, D’(A mod) (see [6]). Later, Krause generalized
these ideas to compactly generated triangulated categories (see [8]).

On the other hand, the existence of irreducible morphisms is not trivial in general, but we know that the almost split
sequences provide a wealth of irreducible morphisms.

In the recent paper [7], the authors investigate irreducible morphisms in D’(A mod), in case A is a finite dimensional
algebra over a field. They obtain their results as a consequence of a careful study of the known Happel's functor which
provides an embedding of D’(A mod) into the stable category mod A of finite dimensional modules over the repetitive
algebra. This functor becomes an equivalence if and only if A has finite global dimension. In case A is selfinjective, they
construct, for any subset I C Z, triangulated subcategories €, of mod A containing D’ (A mod) such that if I C I’ then
C, C C,. Moreover, they give certain conditions on the subsets I under which the intersection of a subfamily of such
subcategories coincides with D?(A mod).

The Auslander-Reiten theory was also studied in certain subcategories of complexes (see [9,2]). Namely, in the last paper
and in order to study Auslander-Reiten triangles in the bounded derived category of finitely generated modules over an Artin
algebra, the authors introduced certain subcategories of complexes and proved that they have almost split sequences.

More exactly, for any interval I, they denote by C;(A proj) the full subcategory of C(A proj) whose objects are the
I-complexes. These categories are exact with enough projective and injective objects and they have finite global dimension.
For each interval I one can consider the left triangulated category C;(A proj)(see 1.1 below). In particular, if the cardinal of |
is two then C; (A proj) is equivalent to A mod and if the cardinal is one then C; (A proj) coincides with A proj, and C; (A proj)
is equivalent to the additive category consisting of only the zero object.
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We have that, in general, for each interval I = [a, b] with b — a > 2, C;(A proj) is equivalent to the full subcategory U,
of D’(A mod) whose objects are the complexes X such that H(X) = 0 for i outside the interval [a + 1, b]. Note that we can
recover D”(A mod) as the union set of all these categories U;. Moreover, if f is an irreducible map in the bounded derived
category then there is some interval I such that f is an irreducible morphism in U; and then f corresponds to an irreducible
morphism in C; (A proj). Similarly an Auslander-Reiten triangle in D’ (A mod) can be seen into some U; and it corresponds
to an almost split sequence in C; (A proj) (see [2]).

Conversely, given an irreducible map in C;(A proj), it represents a morphism in U, we shall see under which conditions
this map is irreducible in the whole category D®(A mod).

The above comments show that the study of morphisms in the category D?(A mod) can be replaced by the study of
morphisms between complexes of C; (A proj).

In our considerations the shape of irreducible maps between complexes play an important role. We recall that
an irreducible morphism in the category of finitely generated A-modules, where A is an Artin algebra, is either a
monomorphism or an epimorphism. This simple but useful fact was generalized in [4] for irreducible morphisms between
complexes.

The techniques introduced in [2], are strongly used along this paper which is organized as follows. After preliminaries we
prove some results about the shape of irreducible maps by using the above setting of I-complexes. In particular, in Section 2
we show that there are no irreducible morphisms from a complex to itself.

Section 3 is devoted to investigate irreducible morphisms in the category C~-?(A proj), which leads us to the knowledge
of irreducible maps in the bounded derived category. We establish the relationship between irreducible maps in C™-?(A proj)
and the ones in C; (A proj). We also investigate the behaviour of the middle term of almost split sequences and give necessary
conditions for the existence of irreducible maps between two modules in the category of complexes.

In Section 4 we show that irreducible maps in D?(A mod) ending in a perfect complex Y (that means Y € K®(A proj))
are completsly determined by irreducible morphisms in C;(A proj) ending in Y where I = [a, b] is an interval such that
YP=0=Y".

In Section 5, we focus our attention to the case A is a selfinjective Artin algebra showing, in particular, that an irreducible
map f in C (A proj) is such that either all the f/ (for all j € Z) are split monomorphism or all of them are split epimorphism in
A proj. Moreover, all the non-trivial components of the Auslander-Reiten quiver of C?(A proj) are of the form ZA. This fact
was first proved in [12] for A a finite dimensional algebra over a field and later with a different proof in Theorem 5.4 of [7].

Finally, Section 6 is devoted to the case of irreducible maps in C™?(A proj) involving a non-perfect complex. We apply
the results to the Gorenstein case.

1. Preliminaries

We start giving notations and basic facts which we will use in the subsequent sections.

Let k be a commutative Artinian ring, A an Artin k-algebra. We denote by A mod and A proj the category of finitely
generated left A-modules and the full subcategory of A mod consisting of the finitely generated projective A-modules. In
general, 4 will denote an additive k-category.

1.1. Complexes

We recall that a complex X = (X', d})icz over . is a family of morphisms di : X' — X1 i € Z, such that di'd}, = 0
foralli € Z.1f X and Y are complexes over », a morphism f of degree [ from X to Y is given by a family of morphisms
fi: X' — Y™ i e Zsuch thatdi''f' = (—1)!f*+d,. We denote by C(+) the category whose objects are the complexes over
4 and the morphisms between two complexes are the degree zero morphisms.

In the category of cochain complexes, C(+4), we consider the class & of composable morphisms X EN Y £ Z such that for

alln € Z, the sequence 0 — X" f—> yn £ 77 5 0is split exact. Sequences in & are called conflations and it is known that
(C(~A), &) is an exact category in the sense of [10] or equivalently [3] (see for instance Example 3.2 in [5]). Moreover, C(A)
is a Frobenius category with respect to &. The maps factoring through an injective-projective object are the null homotopic
maps. Then, the stable category of C(4) coincides with the homotopy category K(+4).

Take I = [a, b],I = (—o0, b]or I = [a, 0o) an interval in Z or I = Z, an I-complex is a complex X such that X! = 0 for
all i outside the interval I.

We denote by C;(+4) the full subcategory of C(4) whose objects are the I-complexes. If X is a complex and I is an interval
we denote by X; the complex such that X/ = X' if i lies in I and X{ = 0 in case i is not in I. Moreover, dy = dy ifiand i+ 1
are in I and zero otherwise. If f : X — Y is a morphism of complexes then f; : X; — Y; is the morphism of complexes such
thatf{ = f'ifilies in I and f' = 0 otherwise.

We will use some results of C;(+A) which can be found in [2].

(Ci(A4), &) is an exact category with & the class of composable morphisms in C; () which are in &.

Now, assume I = [m, n] is a finite interval. For M € A we consider the following complexes:

o Ji(M) = (J5, &) with]* = 0ifs #£i,s#i+1,J =]+ =M, d =idy.
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o S(M) = (X', d')icz with X' = 0 fori # m,X™ =M, d' = 0.
e T(M) = (Y, d)jcz withY' =0fori#n, Y"=M,d = 0.

The objects T(M), J;(N) fori = m, ..., n — 1 are §-projective in C;(+). The objects S(M), J;(N) fori = m,...,n — 1are
& -injective in C;(A) (see [2]).

We consider C="(4) the full subcategory of C(+4) whose objects are those X € C(+4) such that X’ = 0fori > n. Similarly,
C="(4) is the full subcategory of C(4A) whose objects are those X € C(+4) such that X! = 0 fori < m.

There is a functor F; : C="(A) — C;(+) given in objects, by F;(X) = X; and in morphisms, f : X — Y by F;(f) = f;.

We now consider ;, the full subcategory of C=" (A proj) whose objects are those complexes X with H/(X) = 0forj < m.
By £; we denote the full subcategory of K(A proj) whose objects are in M;.

In the following we denote by C;(A proj) the category with the same objects as C;(A proj) and the morphisms are the
morphisms of this category modulo those which factor through &;-injective complexes.

Proposition 1.2. IfI = [m, n] is a finite interval we have the following:

(a) The functor F; induces a full functor from M, to C;(A proj). Moreover, if X € M| has no &-projective direct summands, then
X; has no & -injective direct summands.

(b) If X € C;(A proj), there is aX e M; such that)A(, =X.

(c) For any W complex in C="(A proj), W, is a subcomplex of W, and if we denote by oy, : W; — W the inclusion, then for any
morphism f : W — Z in C="( A proj), we have foyy = ozf. _

(d) The functor F; induces an equivalence between the category «£; and the category C;(A proj). Moreover, if X, Y € C;(A proj)
have no &-injective direct summands and X = Y in C;(A proj) then X = Y in C;(A proj).

Proof. The first part of (a) follows from Lemma 5.3 of [2]. For the second part recall that a complex W of projective
A-modules has no &-projective direct summands if and only if Imd!,, C radW'! foralli € Z.Then if X has this last property
the complex X; also has this property. Therefore if X has no &-projective direct summands, then X; has no direct summands
of the form J;(P). Suppose X; has a direct summand of the form S(P), then X™ = P & Q with d"(P) = 0. But H™"(X) = 0,
then P C Imdy ™", so Imdy " is not contained in radX™, which cannot be if X has not &-projective direct summands. This
proves (a).
For X an I-complex, take
o> P75 p° L Kerd! — 0
a minimal projective resolution, then if i : Kerdy’ — X™ is the inclusion, take the complex

n . dm dn—l
— n X -1 X
Xivooosp 'l pt B xm X . x5 xn 0.,

It is easy to verify thatX e M; and )?, = X. This proves (b).
Statement (c) is clear.
Statement (d) follows from Corollary 5.7 of [2]. O

1.3. Factorization of morphisms

Let I be an interval in Z and let X be a complex.

(1) IfI = [a, b] with a < b we denote by I(—) = (—o0,a — 1], I(+) = [b + 1, o0).
We have the following one degree morphisms:

&7 X0 = X
dy i Xi = X
given by (d ) = 0ifi #a— Tand (d )" = di " (d)' = 0fori # b, (d})® = d}. Clearly dyd ™~ = 0.
(2) IfI = [a, 00) we denote by I(—) = {n € Z, n < a} and I(+) = @. We have the following one degree morphisms:
&7 X0 = X
given by (dyy ) = 0ifi# a— 1and (dy )* ' =d¢";
dy i X1 = X

is the zero morphism.
(3) If I = (—o0, b] we denote by I(+) = {n € Z, n > b} and I(—) = . We have the following one degree morphisms:

d;( . X) — X1(+)
given by (dy)' = 0fori # b, (d})? = db and
d;;_) :XI(,) — X[

the zero morphism.
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Conversely, if X; is an I(—)-compleX, X, is an I-compleX, X3 is an I(+)-complex and we have one degree morphisms,
u: Xy — X3, v: Xy — X3 with vu = 0, then we may construct a complex X such that X;_y = X, X; = X3, Xj() = X3 and
u=d v =d

=0y U =0y
In the following if I is a fixed interval we identify the complex X with the “complex”
O
X[(_) — X; > Xl(+).
Observe thatif f : X — Y is a morphism of complexes, then we have the following commutative diagram:

') dl
Xic) ——> Xi ——> X
f'(_)l f:l f1(+)l
) d,
Yo Yi Yier)-

Proposition 1.4 (See [4]). Let f : X — Y be a morphism of complexes and let I be an interval such that in C;(A), fi = vu with
u:X; — Zandv : Z — Y|, then we have the following factorization of f in C(+A):

(=) I
dy dx

Xi(— Xi Xi+)
idl ul f1(+)l
udi ™ v

Xi— Yiep
fl(—)l vl idl
) d,
Vi Y Yit)-

In the following we put it = (id, u, fi+)) and ¥ = (fi—), v, id).
Remark 1.5. If X and Y are in C;(+4) for some interval J of Z containing [, then &t and 0 are morphisms of J-complexes.

2. Irreducible morphisms in C(cA)

In the first part of this section we collect, for an easy reference, some results on irreducible morphisms with their full
proofs from [4]. In the second part we study irreducible morphisms from some indecomposable to itself in the category
C; (A proj). We will prove that there are no irreducible morphisms from some indecomposable to itself in this category if
I = [a, b] with b — a > 1. This result will be used to prove that there are no irreducible morphisms from some complex to
itself in the category C(A proj).

Throughout the paper we identify the category 4 with the full subcategory of C(4) whose objects are those X such that
X' =0ifi#0.

Definition 2.1. If C is an additive category, a morphism f : X — Y in this category is called irreducible if it is neither a
retraction nor a section and f = vuwithu : X — Z, v : Z — Y morphisms in €, implies that either u is a section or v is a
retraction.

Proposition 2.2. Let f : X — Y be an irreducible morphism in C;(+) with J an interval or | = Z and I an interval contained in
J, then f; - X; — Y, is a section or a retraction or an irreducible morphism in C;(+A).

Proof. Suppose f; is not a section, not a retraction, not an irreducible, then f; = vu with u no section and v no retraction,
then by 1.4 f = dil is a factorization in C;(-4), since u is not a section then il is not a section, here v is not a retraction, so v
is not a retraction, but this is impossible because f is irreducible. O

2.3

Letf : X — Y be an irreducible morphism in C(+) and let I be an interval in Z. As a consequence of Proposition 2.2,
we have that if fj : X; — Y; is neither a section nor a retraction then, for each interval I’ containing I, the morphism fy is
irreducible in Cp (A).

Proposition 2.4 (Girardo-Merklen). Let f : X — Y be an irreducible morphism in C(A) and I some interval of Z. If f; is not a
retraction, then fi is a section. If f; is not a section, then f;_y is a retraction.

Proof. Suppose f; is not a retraction, consider the factorization fj = vuwithu = id, v = f;, then f = il with i =
(id, id, fi+)), 0 = (fi~), fi, id), then D is not a retraction, so i is a section consequently fi, is a section. If f; is not a section,
then take u = fj, v = id, then &t = (id, fi, fi+)), ¥ = (i), id, id), therefore il is not a section, thus ¥ is a retraction, then fi_,
is also a retraction. O
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Corollary 2.5. Let f : X — Y be an irreducible morphism in C(+A).

(1) For eachi € Z, the morphism f' is either irreducible or split in A.
(2) If there exists an integer i such that f' is irreducible, then such integer is unique.

Proof. Consider I = {i}. By Proposition 2.2 we get (1). Now, assume there is some integer i, such that fiis an irreducible
morphism in +4, then f is not a retraction and fji11 ) is a section by Proposition 2.4. Moreover, f* is not a section and again
by Proposition 2.4, f_«,i—1j is a retraction. Consequently, for each j # i, f/ is not an irreducible morphism. O

Now we prove the following result. A slight weak version, but essentially the same, is due to Giraldo and Merklen in [4].

Proposition 2.6. Let f : X — Y be an irreducible morphism in C(4) and let I be an interval bounded below by the integer a. If
fi is a section which is not an isomorphism and f*! is an epimorphism then f%~' is an isomorphism and fi—yur is a section.

Proof. TakeI’ = I(—) UI. We know that fy is a section, or a retraction or an irreducible morphism in C (4). If fy is a section
we clearly have the conclusion. If fy is a retraction, then we get a contradiction to the fact that f; is not an isomorphism. Then
assume that f is an irreducible morphism.

The morphism f; is a section then there exists g; such that g;f; = id. Note that

fagadl;llflfa—l :fﬂgafad;l(71 :fad§(71 — d€,71fa_1.
Take A = g%d%'. We have, f%) = f9g%d} ' = d% ' because f~! is an epimorphism, and
)\fafl =gad§1(—lfa71 =gafad;1(—l — df(_l.
Therefore we have the following factorization of fy/:

da—Z da—l
X — X
xe-1 X x

a—2 a—1
dY dV

Ya—Z Ya—l 5 Yl

and either (---, f%2, f%1 id) is a section or (-- -, id, id, f;) is a retraction. In the first case, f*~! is a section so it is an
isomorphism. In the second case f; is a retraction, so it is an isomorphism and we get a contradiction. O

The following result can be proved with similar arguments as in the previous proposition.

Proposition 2.7. Let f : X — Y be an irreducible morphism in C(4A) and I be an interval bounded above by the integer b. If f; is
a retraction non-isomorphism and f°*1 is a monomorphism, then f**1 is an isomorphism and fiui) is a retraction.

Definition 2.8. Amorphismf : X — Y in C(~A) is called &-monomorphism if f'is a section foralli € Z.Similarly,g : Y — Z
is called &-epimorphism if g' is a retraction for all i € Z.

In an abelian category an irreducible morphism is either an epimorphism or a monomorphism, the following result due
to Giraldo and Merklen, is a generalization of this fact for complexes.

Proposition 2.9. Let f : X — Y be an irreducible morphism in C(+), then one of the following statements is true:

(i) There is an unique integer i such that f' is an irreducible morphism in the category .
(ii) The morphism f is an &-monomorphism.
(iii) The morphism f is an &-epimorphism.

Proof. By Corollary 2.5, we know that either there is an unique i with f* an irreducible morphism in + or f7 splits, for all j.
Then we may assume that (i) does not hold and each f' is either a section or a retraction. Note that, since f : X — Y is an
irreducible morphism, it is not an isomorphism, so assume there exists an ig such that f is a section but not an isomorphism.
We claim that f is an €-monomorphism. The case &-epimorphism is dual.

If some f' is a section but not an isomorphism, by Proposition 2.4, fii+1.00) is a section, then f* is a section for all s > i. If
some f/ is a retraction but not an isomorphism, again by Proposition 2.4, f(—o0,j—17 is a retraction, so f* is a retraction for all
t < j. Suppose f is not an €-monomorphism, take i, minimal such that f is a section which is not an isomorphism and jg
maximal such that f/0 is a retraction but not an isomorphism, soj, < i. Observe that f* is an isomorphism for all s € [jo, io],
so it is an epimorphism. Therefore fo~! is an epimorphism. Taking I = [iy, iy] in Proposition 2.6, we deduce that f_oo,ig] 1S
a section, therefore f70 is an isomorphism, a contradiction. Then all the f' are sections. O
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Proposition 2.10. Letf : X — Y be an irreducible morphism in C(+) such that f is an &-monomorphism, fi=! is an isomorphism
and f' is not an isomorphism, then f(_ i—1j is an isomorphism.

Proof. If fji_1 o is an irreducible morphism then it is not a section, so f(_«,i—2) is a retraction therefore an isomorphism,
clearly f(_,i—17 is also an isomorphism. If f;i_; ) is not an irreducible morphism, then it is a section, so fj; ) is a section,
which is not an isomorphism. Since fi=1 is an epimorphism, by Proposition 1.4 we have that f(_o,i—1] is a section, SO ffi—1,00)
and f(_oo,i—1] are sections, now f =1 is an isomorphism this implies that f is a section, which is a contradiction. O

Proposition 2.11. Letf : X — Y be anirreducible morphism in C(+) which is an &-epimorphism such that f' is an isomorphism
and f=1 is not an isomorphism, then fj; o) is an isomorphism.

Proof. Similar to the proof of the above proposition. O

In the last part of this section we consider the case A = A proj, with A an Artin algebra over the commutative Artinian
ring k.

As in [2] we take for each projective A-module P the complex J;(P) such that J;(P)* = P ifs = i, i+ 1 and zero otherwise,
dj,-(l’) =1idpifs =1iand Oin case s # i. Let S be a simple A-module and let

d—s d,s+1 d71
copsSpstli o pest2 0 p1 S, p0
be a minimal projective resolution of S. Let Ps be the complex:

_edS d,5+1 _ _ d—l
pSpsH L, ps2 L, p 1L P00

clearly Ps is an indecomposable complex. _
We have a morphism of complexes: u : Ps — J_1(P°) witht/ = 0ifj # —1andj # 0, u® = idpo, u™' =d~ ..
The second part of the following result is proved in Theorem 4.4 of [11].

Proposition 2.12. The morphism u : Ps — J_1(P°) is a minimal right almost split morphism in C(A proj). In particular, u is an
irreducible morphism.

Proof. Given a complex Y we have a morphism of complexes n : Y — Y(_« 0] given by W =idy ifj <0and ) = 0in
case j > 0. Now we shall prove that u is a minimal right almost split morphism. Clearly u is not a retraction and if A\u = u
for an endomorphism A of J_; (P%), then A is the identity. Let h : Y — J_;(P°) be a morphism which is not a retraction in
C(A proj), take now I = [a, 0] a finite interval with a < —1. From [2] we know that

u : (Ps)p — J-1(P°)

is a minimal right almost split morphism in C; (A proj). Since h is not a retraction , then h; cannot be a retraction, therefore
there exists a morphism vy : Y; — (Ps);, such that ujv; = h;. Here (Y(_s,01); = Y; and Ps lies in .£;. Then by Lemma 5.3 of
[2] there is a morphism w : Y(_s, 0] — Ps such that w; = vy.Take v = wn : Y — Ps. Then since n; = idy, we have vy = v;.
Therefore (uv); = h;, but h"* = 0 and (uv)" = 0 for n outside I, souv = h. O

. . i d© . . S . . .
By duality one can prove that if S S 195 ' - ... isaminimal injective co-resolution of the simple S, then there is a

0
minimal left almost split morphism h : Jo(I°) — Is in the category C(A inj). Herels = --- 0 — I° LN I'....The morphism h
is given by h® = idjo, h' = d’ and W = 0 forj # 0 andj # 1. We know that the Nakajama functor v induces an equivalence
of categories v : C(A proj) — C(A inj). Then there is a morphism v’ : Jo(P%) — Qs such that v(v") = h with v(Qs) =I5 .
Therefore, taking v = v’[1], we obtain the following result:

Proposition 2.13. There is a morphism v : J_1(P®) — Qs[1] which is a minimal left almost split morphism in C(A proj), in
particular v is an irreducible morphism.

We finish this section by showing that there are no loops of irreducible morphisms in the category of complexes. First,
we see the following useful Lemma.

Lemma 2.14. Letf : M — N be a morphism in A, and let I be either any interval of Z containing [—1, 0] or I = Z.

(1) Iff is an irreducible morphism in C;(A) then f is irreducible in A.

(2) In case A = A proj we have:
(a) Iff isirreducible in C; () then f is an irreducible monomorphism in .
(b) IfM = N then f is not an irreducible morphism in C;(+A).



872 R. Bautista, M.J. Souto Salorio / Journal of Pure and Applied Algebra 215 (2011) 866-884

Proof. By Proposition 2.2 with ] = I and I = [0, 0], if f is irreducible in C; () then f is irreducible or it is a retraction or a
section in +. But if f is a retraction or a section in », then f is also a retraction or a section in C; ().

(2) () In case f is not a monomorphism we can take a projective cover of Kerf with n # 0: Q A Kerf. We have
a factorization of complexes f = wvu through the complex ---0 - Q — M — 0 whereu = (---,0,id, 0, ---) and
v=(--,0,f,0,---).Butvisnotaretraction because f is irreducible in A. Moreover, if u is a section we get a contradiction.

(2)(b)IfM = N and f is an irreducible in C; () then using the above, we infer that f is an irreducible monomorphism.
But M is a module having finite length and then f is an isomorphism in contradiction to the fact that f is irreducible. O

Proposition 2.15. Let X be an indecomposable complex in C; (A proj) with I = [a, b] a finite interval and b — a > 2, then there
are no irreducible morphisms f : X — X in C;(A proj).

Proof. Note that, since all the A-modules X have finite length over k, then in case all the f* are either sections or retractions,
we get that all the f! are isomorphisms and f is an isomorphism. Therefore, if f is irreducible, there is an i € Z with f’ an
irreducible morphism. Then since f' is not a section, by Proposition 2.4 we have that fia,i—1] is a retraction, but then fiq ;_1) is
an isomorphism. Similarly, since f* is not a retraction, then again by Proposition 2.4, fti+1,p) is an isomorphism.

On the other hand, f irreducible implies that f is nilpotent in the local algebra Endc, 4 proj (X) and there is a natural n
such that f* = 0. Hence, for all j # i the isomorphisms f/ are zero. Thus we can assume f = (---, 0, f%, 0, - - -) with f
irreducible in A proj. If i > a, then by Lemma 2.14, f’ is a monomorphism and therefore an isomorphism, in contradiction
to the fact that f is irreducible. Therefore i = a and f = u[—a], for some irreducible morphism u : M — M in A proj. Then
X = M|[—a], with X indecomposable consequently, M is indecomposable. Therefore the morphism u is in the radical. So
there is a non-zero morphism v : M — M such that vu = 0. Now b — a > 2, we obtain a non-trivial factorization of f,

... 0 M 0 0---
ol ] l
.0 ° .M ' s M 0---
R
0 —2 om0 0 0---

This contradicts our assumption that f is irreducible. O

Now we will prove that there are no irreducible morphisms X — X in the category C(A proj), for this we need the
following results.

We recall that a morphism g : Z — W in a Krull-Schmidt category is called radical if for any section o : Z; — Z and any
retraction t : W — W; the composition tgo is not an isomorphism. Radical morphisms in + are the morphisms which are
in the radical of 4.

Lemma 2.16. Let A be a Krull-Schmidt category, then any morphism f : X — Y is isomorphic to a morphism of the form:

0 f

with f; an isomorphism and f, a radical morphism.

f=<fl 0>1X1@X2—>Y1€9Y2

Proof. Suppose f is not a radical morphism, then there is a section o : X; — X and a retraction t : Y — Y; such that tfo
is an isomorphism. Then we have for some decomposition of X and Y:

f= (g ﬁ) X1 DX, > YD Ys.

Take now the isomorphism:
-1
¢: (]’“ —h fz) X1 @ X — X1 @ Xa,
0 1x,
then f is isomorphic to the morphism
Io= (3 —ffi ' +f4) ’

So we may assume f, = 0. Taking now the isomorphism:

ly, 0
: _ 1Y Y- Y Ys,
14 (—f3f1 1 ]Yz) 1@, —=>Y18Y,



R. Bautista, M.J. Souto Salorio / Journal of Pure and Applied Algebra 215 (2011) 866-884 873

we see that f is isomorphic to

=6 7)

We may repeat our procedure for f;, the process must finish because each object of our category is decomposable into a
finite number of indecomposables in a unique way up to isomorphisms. O

Proposition 2.17. A morphism

fi 0
= X X Y Y
f (O b 16X > Y18,

with fi an isomorphism and f, a radical morphism is irreducible if and only if f, is irreducible.

Proof. Suppose f is irreducible. Then f, is neither a section nor a retraction. Take f, = vu,u : X, > Z,v : Z - Y, a
factorization. Then we obtain the following factorization of f = VU, U : X1 ® X, — X1 D Z,V : X1 & Z — Y1 @ Y, with

1y, 0Y. _(fi 0O
o= ) v=(59)

Then, since f is irreducible, either U is a section or V is a retraction, but this implies that either u is a section or v is a
retraction, so f; is irreducible.

Suppose now that f, is irreducible, so f; is neither a section, nor a retraction, therefore f is neither a section nor a retraction.
Suppose we have a factorization of f = VU, withU : X1 & X, — Z,V : Z = Y1 ® Y,. Thenif U = (uq, uy), V = (vq, v3)".
We have

fi = vy, vu; =0, vty =0, vl = fo.

Here f, is irreducible, then either u, is a section or v, is a retraction. Suppose u, is a section, then there is a morphism
t : Z — X; such that tu, = 1x,.

Take A = (f; 'v1,t)T : Z — X; ® Xy, then

A= (1 filow) _ Ly 0 )
tuy tu tuy 1y,
Therefore AU is an isomorphism, consequently U is a section.

If v is a retraction we proceed in a similar way for proving that V is a retraction. This proves our result. O

Proposition 2.18. Let f : X — Y be an irreducible morphism in the radical of a Krull-Schmidt category #, thenifp:Y — Z is
a non-zero retraction the morphism pf : X — Z is irreducible, similarly if s : W — X is a non-zero section thenfs : W — Y is
an irreducible morphism.

Proof. Here p : Y — Z is a retraction, thus there is a morphismi : Z — Y with pi = id;. Since ip is an idempotent and
idempotents split in 4, then there is a retractionp’ : Y — Z' andi : Z’ — Y such that p'i’ = idy, ip + i'p’ = idy and
pi’ = 0, p'i = 0. We claim that if f is an irreducible morphism in the radical of 4, then pf is also irreducible. Since f is in the
radical of A, pf is neither a section nor a retraction. Suppose pf = vu withu : X — W and v : W — Z. This factorization
of pf gives a factorization of f = gh, with

h= (p‘,‘f) X>Wez,
g=(>vi):WaZ - VY.

Then either h is a section or g is a retraction, in the first case there is a morphism
A=A WaZ - X

with idy = Ah = Aqu+ A,p'f. Since f is in the radical of 4, then A,p'f is also in the radical of #, this implies that idy — A,p'f
is an isomorphism, consequently in this case u is a section. If g is a retraction then there is a morphism

M=<“‘>:Weaz/—>y

such that idy = ivuq + i’ uy. So p = pivie; = vy, and then id; = pi = vu4i, therefore v is a retraction. This implies that
pf is irreducible. The second part of the proposition is proved in a similar way. O

Theorem 2.19. Let X be a complex in C(A proj), then there are no irreducible morphisms f : X — X.
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Proof. As in the proof of Proposition 2.15 , there is an i with f¥ irreducible in A proj and f/ is an isomorphism, for all j # i.
Take now a finite interval I containing the interval [i — 1, i]. By Proposition 2.2, f; is irreducible in C; (A proj), then by 2.16
and 2.17,

0 f

with f; an isomorphism and f, a radical irreducible morphism in C;(A proj), X; = W; @ W, = Y; @ Y,. Here C;(A proj) is
a Krull-Schmidt category, so W, = Y, and then we obtain a radical irreducible morphism W, — W,, but composition of
radical irreducible morphisms with sections or retractions are irreducible, therefore we obtain an irreducible morphisms
W, — W, in C;(A proj) for W; an indecomposable direct summand of W5, such that (W;)" # 0, but this is not possible by
Proposition 2.15. O

0
fl:<] >3W1@W2—>Y1@Y2»

3. Irreducibles in C~*" (A proj)

In this section we study irreducible morphisms in C~?(A proj), the full subcategory of C(A proj), whose objects are the
complexes bounded above with bounded cohomology. As a consequence of the fact that any complex is quasi-isomorphic
to another one without direct summands homotopic to zero, we have that the results in this section apply to the homotopy
category K~-? (A proj) and hence to the bounded derived category D?(A mod) if we assume this additional condition.

We start noting that we have analogous versions of the results in the previous section for C*(A proj).

The next results show the relationship between irreducible maps in the categories C™?(A proj), K~?(A proj) and
C; (A proj).

First we consider irreducible morphisms f : X — Y, where either X or Y have some &-projective direct summand.

Remark 3.1. There are no irreducible morphism between &-projective complexes in the category C~-?(A proj).

Proof. Suppose f : X — Y is an irreducible morphism between projective complexes in C~?(A proj). Since X is &-injective
and Y is &-projective, then f is neither an €-monomorphism nor an &-epimorphism. Therefore by 2.2, there is an integer i,
such that f' is an irreducible morphism in A proj. Take ] = [—i — 1, i+ 1], then fj is an irreducible morphism in C; (A proj).
This last category is a Krull-Schmidt category, then by 2.16 there is a radical irreducible morphismu : X; — Y in C; (A proj).
Here X' # 0 and Y' # 0, there is an indecomposable direct summand of X; of the form J,(P) with u € [i — 1, i] and there is
an indecomposable direct summand of Y; of the form J,(Q ). Then by 2.18 there is an irreducible morphism j,(P) — J,(Q) in
C; (A proj). By Proposition 8.5 of [2] we have a minimal right almost split morphism (Ps[—v — 1]); — J,(Q) in G;(A proj),
with S = Q/radQ. But this implies that J,(P) is a direct summand of (Ps[—v — 1]); which is not possible. O

In the next Proposition we use the notation of 2.13.

Proposition 3.2. Suppose f : J_1(P°) — Z is an irreducible morphism in C~?(A proj). Then Qs is a finite complex and
Z = Qq[1].

Proof. First observe thatif g : J_;(P®) — W is any irreducible morphism in C~?(A proj) or in C(A proj), then 8[—1,0] Is an
irreducible morphism in C;_1,0;(A proj). Indeed, since J_; (P°) is an &-injective complex, then g is not an &-monomorphism.
Therefore by 2.2 either g is an &-epimorphism or there is ani € [—1, 0] such that g’ is an irreducible morphism in A proj.
In both cases gj_1,g) is an irreducible morphism in C;_1g;(A proj). From 2.13 we know that there is v : J_;(P°) — Qs[1],
a minimal left almost split morphism in C(A proj). Therefore there is a morphism A : Qs[1] — Z such that Av = f.
Now if L is any interval containing [0, 1], then (Is); is indecomposable. Therefore if [a, b] contains the interval [—1, 0], then
V(Qs[1Dap; = Us)[iapy = Us)ia+1.6+17[1], 50 (Qs[1])(q,p) is indecomposable. Since Z € C—%(A proj), there is an integer
I'such that Z = 0 forj > I Choose now L = [s,t] withs < —1andt > I Therefore A,,v; = f.. Now f; and v; are
irreducible morphisms in C; (A proj), consequently A; is a retraction, so Z; is a direct summand of (Qs[1]),, this implies that
Z; = (Qs[1]);. Then Qs[1]* = 0and Z* = Oforalls < —2and t > L So Qs is finite and Z = Qs[1]. From this we obtain our
result. O

In the following if u : X — Y is a morphism in C;(A proj), we denote by u its image in the category C;(A proj).
Proposition 3.3. Suppose X and Y are complexes in C;(A proj), without & -injective direct summands. Then:

(a) u: X — Y isasection (respectively, retraction) if and only if u is a section (respectively, retraction).
(b) u : X — Y is an irreducible morphism if and only if u is irreducible.

Proof. Clearly if u is a section, then also u is a section. Conversely suppose u is a section, then there is a morphismv : Y — X
such that vu = idy + A with A a morphism which factorizes through some & -injective. Since X has no &-injective
direct summands, it follows that A is a radical morphism and so vu is an isomorphism, consequently u is a section. The
corresponding statement for a retraction is proved in a similar way.

Now assume u : X — Y is an irreducible morphism, then by (a), u is neither a section nor a retraction. Suppose u = gf

is a factorization of u in C;(A proj), where f : X — Z,g : Z — Y. Thenu = gf + rswiths: X — W,r: W — Y,and W is
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an &-injective complex. But thenu = (g, r)(f,s)", (f,$)" : X - Z® W and (g, r) : Z@® W — Y. Therefore either (f, s)"
is a section, which implies by (a), that f is a section or (g, r) is a retraction which again by (a) implies that g is a retraction.
Now suppose u is an irreducible morphism, as before, by (a), this implies u is neither a section nor a retraction. Then
if u = gf is a factorization of u, we have u = gf. So either f is a section, which by (a) implies that f is a section or g is a
retraction which by (a) implies that g is a retraction. This proves our result. O B

Proposition 3.4. Iff : X — Y is a morphism in C~**(A proj) with X and Y having no &-projective direct summands then:

(a) f is a section (respectively, retraction) if and only if its image in K—? (A proj) is a section (respectively, retraction);
(b) f is irreducible if and only if its image in K=" (A proj) is irreducible.

Proof. Similar to the proof of 3.3.

Theorem 3.5. Let f : X — Y be a radical irreducible morphism between non-&-projective complexes in C™* (A proj).
Then, there is a finite interval I such that for all interval I containing Iy we have the following.

(1) The morphism f; is irreducible in C; (A proj).
(2) IfZ € {X, Y} and Z has no &-projective direct summands, then Z is indecomposable if and only if Z; is indecomposable.

Proof. We recall that Ly, 1 is the full subcategory of K~ (A proj) whose objects are the complexes W with W/ = 0 for
j > band H/(W) = 0 forj < a. Take Iy = [a, b] a finite interval such that X, Y € £Ly,. Then for all interval I containing I, we
have X, Y € L.

We have an equivalence of categories:

F : £5 — C(A proj).

Now take X = Xo @ T and Y = Yy @ T’ with Xp, Yo without &-projective direct summands and T, T’, &-projective
complexes. Then by (a) of 1.2, (Xo); and (Yp); have no &-injective direct summands. Clearly T; and (T’); are &-injective
complexes.

(1) Consider the morphism fy = pfi where i is the inclusion of Xj in X and p is the projection of Y onto Yy. By 2.18, f; is an
irreducible morphism in C~?(A proj). Then by 3.4, f, is an irreducible morphism in K—?(A proj), so in the full subcategory
L;. Using the equivalence F;, we see that (fy); is an irreducible morphism in C;(A proj). Thus, by 3.3 (fy); is an irreducible
morphism in C; (A proj).

Then

fi = (Zl ”2> X ®T = Yo ®T
3 Ug
with uy = (fo); a radical irreducible morphism, u; and us3 radical morphisms, so f; is neither a section nor a retraction.
Therefore, by 2.2, f; is an irreducible morphism.
(2) The functor F; induces an epimorphism of rings

1 : Ez = Endc(a proj) (Z) — Endca proj) (Z1) = Ez,.
Since Z is not &-projective, the kernel of 7 is contained in radEz, therefore
Ez/radE; = E /radE;;,
so Ez is a local ring if and only if E, is also local, this proves our claim. O
As a consequence of the above we get the following result and its dual.

Proposition 3.6. Let f : X — Y be an irreducible morphism in the category C~®(A proj), with X and Y without &-projective
direct summands. Assume that f is an &-monomorphism and I is a finite interval with f; irreducible, then f;_y is an isomorphism.

Proof. By the above result 3.5, we know that there is a finite interval I, with f; irreducible. Then f; is not a section,
consequently f;_) is a retraction. But f is an £&-monomorphism, therefore f;_, is an isomorphism. O

Corollary 3.7. If(x) 0 —> X EN E 5 Y — 0isan almost split sequence in C™?(A proj), then Y is a finite complex.

Proof. Here X is not an &§-projective complex. If E has an &-projective direct summand we obtain an irreducible morphism
from some indecomposable &-projective complex to Y, then by 3.2, Y is a finite complex and we have proved the proposition
in this case. So we may assume X and Y have no &-projective direct summands. Since the sequence (x) is a sequence of
complexes of projective A-modules, then it is a conflation, so f is an §-monomorphism. By 3.5 there is a finite interval |
such that f; is irreducible, then by the above proposition f;_, is an isomorphism. But the exact sequence (x) restricted to the
interval I(—) is exact, therefore Y;_y = 0. Since Y is a bounded above complex, then it is a finite complex. O

It is well known that in A mod, there are no irreducible morphisms from an indecomposable object into itself, the
following shows that the same holds in C™-? (A proj) and therefore also in K™ (A proj) and in D?(A mod). In case D” (A mod)
has Auslander-Reiten triangles this has been proved in [13].
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Proposition 3.8. If X is an indecomposable complex in C™?( A proj), then there are no irreducible morphisms X — X.

Proof. By 3.1 we may assume f : X — X is an irreducible morphism and X is not &-projective. Then by 3.5 there is a
finite interval Iy of Z such that for all interval I of Z containing Iy, f; is an irreducible morphism in C;(A proj) and X; is
indecomposable. If Iy = [a, b], take I = [a — 1, b + 1], then we obtain an irreducible morphism f; : X; — X; in C;(A proj),
but this is not possible by Proposition 2.15. O

Now we look for the middle term of an almost split sequence and we prove the following:
Proposition 3.9. Let0 — X i> Eit®---DE, % Y — 0 be an almost split sequence in C? (A proj), with E; indecomposable

objects which are not &-projective, and X an infinite complex. Then there is at most one E; such that the irreducible morphism
fi = mif : X — E;is an §-monomorphism.

Proof. If there are two f;, f; which are &-monomorphisms, then also the irreducible morphism f;; = (f;, )T : X — E ® E;
is an &-monomorphism, but then there is a finite interval I such that (f;);, (f); and (f;;); are irreducible morphisms,
5o (f)i—), (Pi— and (fij)i) are isomorphisms, consequently X;—) = (E)i— = Ei—y = Edi—) ® Ei), a
contradiction. O

Now, we give necessary conditions for the existence of irreducible morphisms between two modules in the category of
complexes. The result is a generalization of Proposition 6.2 in [7].
In the following if M is a A-module and

P33 5p25p PP
is @ minimal projective resolution of M we denote by Py, the complex:
o> p3F5sp2sp Pl 050

Proposition 3.10. Let X, Y be finitely generated A-modules. Suppose that the irreducible morphism u : X — Y induces an
irreducible morphism f : Px — Py in C™P(A proj), then pdY > 3 implies pdY < pdX.

Proof. Take the interval I = [—1, 0]. By Proposition 2.2 we have that f; is an irreducible morphism in C;(A proj) and by
Proposition 2.4, f;—) is a retraction, from here follows our result. O

Proposition 3.11. Let f : X — Y be an irreducible map in C™?(A proj) such that f' is an irreducible morphism in A proj. If
f(=0,i—1] is not an isomorphism then

X(—00,i=1] = Y(—o0,i—1] ® Py[—i + 1],
with U a non-zero submodule of Kerf'.

Proof. Here f! is irreducible, so it is not a section, then by Proposition 2.4, f; is aretraction with ] = (—o0, i — 1], therefore
Xy =Y, ®Z.Putl = [i+ 1, 00), the morphism f : X — Y is described by the following diagram:

o d
Y, &2 ) Xi X X
wl
d Cd
Y, sy — Y

Since fiy = 0, then U = Imu C Kerf?, we have i = popq with pq : 271 — U an epimorphism and pt; : U — X' the
inclusion.
Take a minimal projective resolution of U:

o> P p2 L pt Ly
and the complex :
Py[—i+1]: - > P35 p2 5Pl 505 ...,

Here Z'~ is projective and 7 is an epimorphism, then there is a morphism p'~! : Z'~! — P""T such that np'~! = .
We have u,np='d,? = pd, 2 = 0. Therefore np'~'d;, > = 0, so there is a p'~2 : Z=2 — P'~2 such that

i—14i—2 _ ji=2 i-2
p'dy T =dp,

Following this procedure we obtain a morphism of complexes p : Z — Py[—i + 1] such that the following diagram
commutes:

z L x

L

Py[—i+ 1] —215 X1,
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Then we have the following factorization of f:

A, . d
Y] ®Z (A, ) xi X X
ul idl idl
3 A, . di
Y, ® Pyl—i+ 1] (A, p2m) X X X
Wl
) o d
Y, y yi Y Y,

1
0

section. Now n : Py — U is a minimal projective cover, so n is an essential epimorphism and 7 o'
therefore p'~! is an epimorphism, which shows that p'~! is an isomorphism and we have

Py[-i+1]1=Z &L,

an isomorphism of complexes with L'=! = 0, so L is an acyclic complex in C™?(A proj), this implies that L is a null homotopic
complex, then since Py is a minimal projective resolution, L = 0. This proves that p is an isomorphism and our result is
proved. O

withu = ( p)' Here f' is not a retraction, then u is a section, therefore p is a section, in particular p'~' : Z=! — pPi=1isa

=1 — ;4 is an epimorphism,

Let S be a simple module, and let Ps be the complex associated to a minimal projective resolution of S. Similarly, let Is be
the complex associated to a minimal injective co-resolution of S. We may assume Is = v(Qs), with Qs a complex of projective
modules not necessarily in C?(A proj). We can take PY = Q7. Consider the following complex Bs given by B, = P. forj < 0
and B, = Q™" forj > 0. The differential of By is given by dy, = dp, forj < —1, dy! = dd.dp! dy = d’QJ? forj > 0. We have
amorphism o : Ps — Bs given by o/ = id,; forj < 0,0° = df_ and o/ = 0 forj > 0.

N
Now define a morphism p : B; — Qs[1] as follows p/ = 0forj < —1,p ! = —d,:; and p/ = (—1)jide+1 forj > 0.
)

It is easy to verify that o and p are morphisms of complexes. We recall from 2.12 and 2.13 that we have a minimal right
almost split morphism u : Ps — j_l(PSO), and a minimal left almost split morphism v : J_4 (Pg) — Qs[1] given by v/ = 0 for
j<-1v " =idg,1° = —dy and v/ = 0forj > 0.

We obtain the following conflation in C(A proj):

T
© 0P ™ Bs@ ) (PY) 3 Qs[1] > o.

The above sequence in general is not an almost split sequence, however its restriction to all intervals L containing a

certain fixed interval Ly give almost split sequences in the corresponding category of L-complexes.

Proposition 3.12. The above sequence (s) has the following properties:

(a) If h : Ps — Ps is a morphism of complexes which is not an isomorphism, then there is a morphism g : Bs EB]_l(PS) — Ps
such thatg(o, u)T = h.

(b) If Lis a finite interval containing [—2, 0], then the restriction of (s) to L is an almost split sequence in C (A proj).

(c) The sequence (s) is an almost split sequence in C~®(A proj) if and only if Qs is a finite complex, this is, if and only if S has
finite injective dimension.

Proof. (a) By the properties of projective resolutions, h is an isomorphism if and only if h induces a non-zero endomorphism
of S. Therefore, h is not an isomorphism if and only if h is null homotopic, this is h = hyh; forsome hy : Ps — T,hy : T — Ps,
for some &-injective T. Since (s) is an &-sequence h; factorizes through (o, u)7, this implies (a).

(b) Here L contains [—1, 0], so Ps € ;. Moreover Ps gives a minimal projective resolution of S, then Ps does not
have &-projective direct summands. Therefore as in the proof of (2) of 3.5 we conclude that (Ps); is indecomposable.
Now (Is[1]) = (Is)i—1[1], where if L = [a, b], L[-1] = [a + 1,b + 1]. The interval L[—1] contains the interval
[0, 1], so by duality (Is);;—1; is indecomposable. Therefore (Is[1]), is indecomposable. The functor v induces an equivalence
v : C(A proj) — C(Ainj), then Qs[1]; is an indecomposable complex. Suppose L = [a, b], thena < —2 and b > 0. Here
the differentials of Is are radical morphisms, the same is true for Qs[1]. Consequently (Qs[1]); is not of the form J;(P). Since
Qs[1]* = 0, (Qs[1]); is not of the form S(P). We infer that Qs[1] is not an &;-injective complex. By Proposition 6.12 of
[2] there is an almost split sequence in C; (A proj) ending in (Qs[1]); and starting from Z;, where Z is an indecomposable
complex in C~?(A proj) which is quasi-isomorphic to 7=?v((Qs[1]).[—1]) = tfb(ls)L[_u. The interval L[—1] contains the
interval [0, 1], then there is a quasi-isomorphism from S to =*(Is)[—1]. We have also a quasi-isomorphism from Ps to S, so
we have a quasi-isomorphism from Ps to 7=?v((Qs[1]).[—1]). Then we may assume Z = Ps.

Now we are going to prove that the restriction of (s) to L is an almost split sequence. First observe that if the restriction
of (s) to L splits then oy is a section, but ¥ is not a section. Therefore the restriction of (s) to L gives a non-zero element z
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of Extc, (4 proj) ((Qs[11)1, (Ps)1). Now we know that there is an almost split sequence starting from (Ps); and ending in (Qs);.
Then Theorem 9.3 of [3] implies that the socle of Extc, (4 proj) ((Qs[11)1, (Ps);) as Endc; 4 proj) (Ps)1)-module is simple and any
non-trivial element of this socle is an almost split sequence. So for proving our claim we only need to prove that z lies in
the socle of Extc, (4 proj) ((Qs[1])1, (Ps)1) as Endc, (4 proj) ((Ps)1)-module. Take any morphism u : (Ps);, — (Ps); which is not an
isomorphism. By 1.2 there is a morphism v : Ps — Ps such that v; = u. By (a) of 3.3 and (a) of 3.4 v is not an isomorphism,
then by (a) there is a morphism g : Bs 69],1(P§)) — Ps such that v = g(o, u)”. Therefore v = g;((o, u)");, and then vz = 0.
This proves that z is in the socle and consequently (s) restricted to L is an almost split sequence.

(c) If (s) is an almost split sequence in C™?(A proj), then by 3.7 Qs[1] is finite. Conversely if Qs is finite, then (s) is a
sequence in C~?(A proj), whose restriction to any interval L which contains [—2, 0] is an almost split sequence in C; (A proj).
This implies that (s) is an almost split sequence in C~*(A proj). O

4. Irreducible morphisms ending in a perfect complex

In this section we consider irreducible morphisms ending in a perfect complex in D® (A mod). We recall that a perfect
complex Y is a complex isomorphic toone Y’ € K”(A proj), where this last category is the homotopy category of C?(A proj),
the category of bounded complexes.

We first consider the close relation between Auslander—Reiten triangles in K~ (A proj) and almost split sequences in
C—2(A proj).

We recall that in the category K~-? (A proj) a triangle

XS ESyY S X[]
is called an Auslander-Reiten triangle if:

(AR1) X and Y are indecomposable

(AR2) w # 0

(AR3) If f : W — Y is not a retraction, then there exists f' : W — E such that vf’ = f.

Observe that (AR3) is equivalent to

(AR3) If f : W — Y is not a retraction, then wf = 0. Moreover by Lemma 4.2 of [H] it follows that ifg : X[1] — W is
not a section then gw = 0.

Proposition 4.1 (See Theorem 2.7 of [11]). If
X—E—Y3X[1]
is an Auslander-Reiten triangle in K~-® (A proj), then it is isomorphic to a triangle of the form:
XL FE Y% x-1
where
f g
0->X>F>Y—>0

is a conflation and an almost split sequence in C~? (A proj). The equivalence class of this last sequence in the &-extension group
corresponds to —w under the natural isomorphism v : Extg (Y, X) — Homg (Y, X[1]).

Proof. Suppose (a) X - E —> Y = X[1] is an Auslander-Reiten triangle, take x = v~ !(—w) and the corresponding
conflation:

x 0>XL5F5y o,

Suppose s : W — Y is not a retraction. Consider the extension given by Ext(s, id)(x) = y. Then {/(y) = —ws = 0. Therefore
y = 0, this implies that there is a morphism t : W — F with gt = s. Similarly, ifu : X — W is not a section, take
Ext(id, u)(x) = z, then ¥ (z) = —uw = 0, so0z = 0. This implies that there is a morphism v : F — W with vf = u.
Therefore (x) is an almost split sequence and clearly

xLFSy X
is a triangle isomorphic to (a). O
Proposition 4.2. Suppose

x 0>zLESY o0

is an almost split sequence in C~* (A proj) and I = [a, b] is an interval such that Y is an I-complex, with Y® = 0, Y? = 0, then
Z and E are in £; and
» 0-z5E& Yo

is an almost split sequence in C; (A proj).
The complex E has an indecomposable direct summand J;(P) if and only if Z = Ps[—]— 1], with S = P/radP. In this case, with
the notation of Proposition 3.12, (x) is isomorphic to a shift of (s) and E; = (Bs[—1 — 1]); & J;(P).
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Proof. We know from [5] that Z is quasi-isomorphic to v(Y)[—1]. Moreover v(Y)[—1]* = v(Y* ) = 0,50 H*(Z) =
H(v(Y)[—1]) = 0.Forj > b, v(Y)[—1} = v(Y/~') = 0, then Z € C=b(A proj), s0 Z € L.
Since (x) is an exact sequence we deduce that E is in C=(A proj). From the exact sequence

H%(Z) — HY(E) — H(Y)

we obtain that H*(E) = 0,s0E € L.

By (c) of 1.2 there is an inclusion of complexes o : E; — E such that g = gog, we know from (d) of 1.2 that F; induces
an equivalence of categories .£; — C;(A proj). Therefore, if g; : E;, — Y is a retraction theng : E — Y is a retraction in
K~ (A proj), which is not the case, thus g : E;, — Y is not a retraction, so we have the non-splittable exact sequence:

v 0-zLE&y o

We are going to prove that (y) is an almost split sequence in the category C; (A proj).

First observe that g; is an irreducible morphism, indeed we know from 2.2 that g; is a section or a retraction or an
irreducible. We already saw that g; is not a retraction. Now since all the g’ are epimorphisms, if g; is a section then it is
an isomorphism so a retraction which is not the case, therefore g; is an irreducible morphism.

For proving that (y) is an almost split sequence it is enough to prove thatif h : W — Y is not a retraction in C; (A proj)
then thereisa v : W — E; with gjv = h. Now h is not a retraction in C™*?(A proj), so there is a morphism v’ : W — E with
gv' = h.But W € C;(A proj), thus there isa v : W — E; such that v’ = ogv. Therefore gjv = gogv = gv’ = h. This proves
that (y) is an almost split sequence.

Suppose E has a direct summand of the form J;(P) with P indecomposable projective A-module. Then there is an
irreducible morphismZ — J;(P), by 2.12 there is a minimal right almost split morphism Ps[—i—1] — J_1(P)[—i—1] = J;(P)
withS = P/radP. This implies that Z is a direct summand of Ps[—i— 1] which is indecomposable, so Z = Ps[—i—1]. Therefore
(x) is isomorphic to a shift of the sequence (s) of 3.12. Conversely if Z = Ps[j] for some j, then (x) is isomorphic to a shift of
the sequence (s) of 3.12, therefore J_;_; (P) is a direct summand of E. O

Corollary 4.3. Let u : X — Y be a morphism of complexes whose homotopy class is an irreducible morphism in K=-*(A proj)
with X, Y indecomposable complexes. Suppose I = [a, b] is an interval such that Y® = 0 = Y’ and Y € C;(A proj) then X € .£;
and u; : X; — Y; is an irreducible morphism in C; (A proj).

Proof. By [5] we know that there is an Auslander—Reiten triangle in the category K~? (A proj) ending in Y. Then by 4.1 there
exists an almost split sequence in the category C™?(A proj):

0>zLESy .

We know from (b) of 3.4 that u is an irreducible morphism in the category C~?(A proj). Then there is a sections : X — E
such that gs = u. Therefore there is an isomorphism h : X @ E' — E suchthatg’ = gh = (u,u’) : X ® E’ — Y.Then we
have the almost split sequence:

® 0>Z5XOE Sy —o.

By 4.2 the restriction of (x) to I is an almost split sequence, so g; is an irreducible morphism in C; (A proj). Therefore u;
is also an irreducible morphism in C; (A proj). Finally by the first part of 4.2, X @ E’ is in £; and consequently X € £;. O

For the statement of the following proposition we recall from 1.2 that if X € C®(A proj), and I = [a, b], then X; is a
subcomplex of X. By oy : X; — X we denote the inclusion.

Proposition4.4. Let v : W — Y be an irreducible morphism in C;(A proj), where W and Y have no & -injective direct
summands, Y is an indecomposable, and let I = [a, b], with Y® = 0 = Y. Then there is an irreducible morphismu : X — Y in
C—P(A proj) such that X; = W and uox = v, whereoyx : W = X; — X.

Proof. As in the proof of 4.3 there is an almost split sequence in C~-* (A proj):

0-z5E5y o,

such that its restriction to I is an almost split sequence in C; (A proj). Since v is an irreducible morphism in C; (A proj), there
is a sections : W — E; such that g;s = v. Now by (b) of 1.2 there is a complex X in the category M; such that X, = W
and by (a) of 1.2 there is a morphism of complexes t : X — E such that t; = s. Observe that we may assume that X has not
&-projective direct summands, indeed X = Xy & T where T is &-projective and Xj has not &-projective direct summands.
Then W = (Xp); @ Tj, here T; is an & -injective complex, but W has no & -injective direct summands, so T; = 0, and we can
take X, instead of X.

The morphism s is a section, so there is a morphisms’ : E;, — W withs’s = id, and the functor F; induces an equivalence
between the category £; (the homotopy category of .M;) and the category C; (A proj). Then there is a morphismt’' : E — X
with t; = s’ such that t't = idx + A where A is a morphism which factorizes through some &-projective. Since X has no
&-projective summands, then we have that A is in the radical of the endomorphism ring of W, so t't is an isomorphism and
consequently t is a section. Then u = gt : X — Y is an irreducible morphism in C~?(A proj).

We have uoy = gtox = gort; = gors = g;s = v. This proves our result. O
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Corollary 4.5. Let v : W — Y be an irreducible morphism in the category C;(A proj) with the conditions of 4.4. Then v is an
irreducible morphism in K~* (A proj) if and only if dy, is a monomorphism.

Proof. By Proposition 4.4, there is an irreducible morphism u : X — Y in C™?(A proj), with X, = W and uox = v.If v is
irreducible in K=?(A proj) then oy is a section, this implies d;’] = 0 or equivalently, Kerdy = Kerdy,, = 0.
Note that if Kerd, = 0 thenX = W and v = u is irreducible. O

Proposition 4.6. Let Y be an indecomposable complex in C™-*(A proj), which is not &-projective. If Y is perfect then there is an
almost split sequence in C™?(A proj) ending in Y. If Y is isomorphic in D? (A mod) to a finite complex of injectives, then there is
an almost split sequence in C™? (A proj) starting from Y.

Proof. Here Y is not &-projective so it is indecomposable in the category K—?(A proj). Then if Y is perfect we know from
[5] that there exists an Auslander-Reiten triangle in K—?(A proj) ending in Y, therefore by 4.1 there is an almost split
sequence in C~?(A proj) ending in Y. Now if Y is isomorphic in D’(A mod), to a finite complex of injective A-modules
W, we may assume W is an indecomposable complex of finitely generated injective A-modules, then W = v(Z) with
Z an indecomposable finite complex of finitely generated projective A-modules. We know that Y is not homotopically
trivial, so Z is not an &-projective complex, therefore there is an almost split sequence ending in Z[1] and starting from L,
an indecomposable complex in C™?(A proj) which is quasi-isomorphic to v(Z) = W. Here Y and L are indecomposable
complexes in C™(A proj), they are isomorphic in D’(A mod), so L and Y are isomorphic complexes and we obtain an
almost split sequence in D’(A mod) starting from Y. O

5. The selfinjective case

In this section we assume that A is a selfinjective Artin k-algebra, k a commutative Artinian ring. We are going to study
irreducible morphisms in C?(A proj).

In the following if U is a A-module and U — P° — P! — ... is a minimal injective co-resolution, denote by Iy the
complex:
Iy: - —>0>P 5P - ...,

We have the following dual of Proposition 3.11.

Proposition 5.1. Let A be a selfinjective algebra and let f : X — Y be an irreducible morphism in C™?(A proj) such that f' is
an irreducible morphism in A proj. If fi11,00) is not an isomorphism we have

Yit1.000 = Xjit1,00) © Iy[—i = 1],
with U a non-zero submodule of Cokerf'.

Before to state the main result of this section we need to notice the following property of the irreducible morphisms in
the category A proj.
Proposition 5.2. Let A be a selfinjective algebra and f : P — Q an irreducible morphism in A proj, then the cokernel of f has
no projective submodules and the kernel of f has no projective submodules.

Proof. By 2.16 and 2.17 there are decompositions of P = P; @& Z and of Q = Q; & W such that with respect to these
decompositions

- )

with g : P — Qq an irreducible morphism in the radical and s an isomorphism. Clearly Kerf = Kerg and Cokerf = Cokerg,
so we may assume that f is aradical irreducible morphism. Let L be a projective submodule of Cokerf. Here A is a selfinjective
algebra, then L is an injective module and then a direct summand of Cokerf. We have a retraction v : Cokerf — L, and then
an epimorphism# : Q — Lwith nf = 0.Since Lis projective, then 7 is a retraction. But f is irreducible then nf is irreducible,
a contradiction. Similarly one can prove that Kerf has not projective submodules. O

Lemma 5.3. Letf : X — Y be an irreducible morphism in C~?(A proj), with X and Y complexes in Cia.b1(A proj). We have the
following:
(1) Iff: X' — Y is an irreducible morphism in A proj, then fi—oo,i—17 and fii4+1,00) are isomorphisms.
(2) IfX® £ 0and Y* = 0, then f is an &-epimorphism. [fX® = 0 and Y? # O, then f is an &-monomorphism.
(3) IfXP £ 0 and Y? = O, then f is an &-epimorphism. IfX® = 0 and Y # 0, then f is an &-monomorphism.
Proof. (1)Iffi11,00) is not an isomorphism then Y{i;1,o0) has Iy[—i— 1] as a direct summand, with U a non-trivial submodule
of Cokerf'. By Proposition 5.2, U is not an injective A-module. Since A is selfinjective, Iy is not a perfect complex, which
implies that Y is not perfect, a contradiction, therefore f;1 o) is an isomorphism. In a similar way we can prove that f(_,i—1
is an isomorphism.

(2) X% £ 0, Y? = 0.If for somes, f* is an irreducible morphism in A proj, then since f* = 0, s > a, then by (1), fi—o0,s—1
is an isomorphism which implies that f* = 0 is an isomorphism which is not the case. Then by the version of Proposition 2.9
for C™?(A proj), we have that f is either an &-epimorphism or an §-monomorphism. But f¢ is not a section, therefore f is
an &-epimorphism. The other cases are proved in a similar way. O
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We have already seen that given a perfect complex Y in C~?(A proj), there is an almost split sequence in C~?(A proj),
ending in Y and starting from a complex Z of projective A-modules quasi-isomorphic to v(Y)[—1]. In our case v(Y)[—1]
is a finite complex of projective A-modules. Therefore we may assume Z = v(Y)[—1], this implies that the almost split
sequence ending in Y and starting from v(Y)[—1] is in C?(A proj). Moreover, since we have an equivalence of categories
v : CP(A proj) — CP(A proj), the complex Y = v(Z)[—1] for Z some finite complex of projective A-modules. Consequently,
there is an almost split sequence in C”(A proj), also starting from Y.

However, observe that in general (by 2.12) there are no minimal right almost split morphisms in C?(A proj) ending in
indecomposable &-projective complexes. Similarly, (by 2.13) in general there are no minimal left almost split morphisms
C?(A proj) starting from indecomposable &-injective complexes.

Now we are ready to give the following property of almost split sequences in C? (A proj), for A a selfinjective Artin algebra.

In the following for M € A-mod we denote by |[M| the length of M as a k-module. If X is a finite complex of finitely
generated A-modules we put |X| =) ",_, |X!|. For X a complex suppX = {i € Z|X' # 0}. Clearly if X is an indecomposable
finite complex, then suppX = [a, b] for some a and b.

Theorem 5.4. Let A be a selfinjective Artin algebra and let X be an indecomposable complex in C°( A proj) with suppX = [a, b].
If

T
E1®---®E, = Y—>0

is an almost split sequence in C~*(A proj) with all the E; indecomposable complexes, then n < 2. For some i, u; is an
&-monomorphism and v; is an &-epimorphism. Moreover, each irreducible morphism between indecomposable objects in the
category C°(A proj) is either an &-monomorphism or an &-epimorphism.

Proof. Claim 1 Suppose

T
@ 0>z vev S woo

is an almost split sequence in C™?(A proj), with suppW = [c, d], then suppZ = [c + 1, d 4+ 1]. Moreover, if U # 0, then
V¢ = 0 and u is an &-monomorphism with u®*! an isomorphism. The morphism s : Z — V is an &-epimorphism.
In fact we may assume Z = v(W)[—1] so suppZ = [c + 1, d + 1]. Since W' = 0, the exactness of (z) implies that

(udH,sdH)T :Zd+1 N Ud+l @ Vd+1

is an isomorphism. Therefore [Z¢+1| = |V&*+1| 4+ |Udt!).
Suppose now that U¢ # 0and V¢ # 0.Since Z¢ = 0, (2) of 5.3, implies that u and s are &-monomorphisms. Consequently,
u*t1 and st are sections, which implies that |Z4t1| < |U%t!|and |2¢4!| < |V4+1|.Then |24+ | = |VIH! | |U%H!| > 2|z9+),

a contradiction, proving that V¢ = 0.

Here V¢ = 0 and W°¢ # 0, then by (2) of 5.3, t is an &-monomorphism. Since W' = 0, then V¢*! = 0. We have that
741 £ 0, then (3) of 5.3 implies that s is an &-epimorphism.

Finally, from |Z¢*1| = |V¢*!| we deduce that ud+! : Z¢*1 — v+ is an isomorphism.

Claim 2 Suppose u : Z — U is an irreducible morphism between indecomposable complexes in C? (A proj), such that Z is
not &-projective and u is an &-monomorphism. Then suppZ = [a, b], implies suppU = [a — 1, b]. Moreover the morphism
ub : Z — UP is an isomorphism.

Indeed there is an almost split sequence starting from Z of the form (z). Using the above notation we have [a, b] =
[c+1,d+ 1].If U° = 0, then u is an &-epimorphism which is not the case, so U¢ # 0, thus by Claim 1, we have that
u*! = ub is an isomorphism.

Now, take an almost split sequence (a) starting from X. Suppose suppX = [a, b], then suppY = [a — 1, b — 1]. We are
going to prove thatn < 2.

Thereis someiwith}:"ia’1 # 0,wemayassumei = 1.ByClaim 1, (E,®- - -®E,;)*" ! = 0.Here (v,, ..., v,) : E2®- - -®E, —
Y is an irreducible morphism and Y¢~! # 0, then by (2) of 5.3, (v3, . .., v,) is an &-monomorphism. Therefore

S+ + [ < Y

Suppose n > 3, then as before v, and v3 are €&-monomorphisms. By 4.2, E; and E3 are indecomposable which are not
&-projective complexes. Claim 2, shows that [ES™'| = |Y*~"| and [E5~'| = |Y>~|, this implies that 2|Y*~"| = |EZ7"| +
|E§”1 | < |Y®~1|,acontradiction. Consequently,n < 2.Thenin case n = 2, u; and v; are §-monomorphisms and u;, and v, are
&-epimorphisms.

Now, if f : Z — W is an irreducible morphism between indecomposable perfect complexes, they are part of an almost
split sequence (a). The above implies that f is an &-monomorphism or an &-epimorphism. This completes the proof. O

Theorem 5.5. If A is a selfinjective Artin algebra, then the non-trivial components of the Auslander-Reiten quiver of C°( A proj)
are of the form ZA.
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Proof. Let X be an indecomposable complex which is not &-projective in C?(A proj), then by Proposition 4.6 there are
almost split sequences in C?(A proj), ending in and starting from X, so this last category has almost split sequences and we
can consider its Auslander-Reiten quiver. Let € be a non-trivial component of the Auslander-Reiten quiver of C?( A proj). By
Theorem 5.4 given any indecomposable Y € @, there is an irreducible &-monomorphism Y — Y’ with Y’ indecomposable,
we have |Y| < |Y’|. Therefore we may find a sequence of irreducible &-monomorphisms:

Yg—)Y]—>Y2—>Y3—)--~

such that there are not any irreducible &-monomorphism ending in Y.
Clearly, we have an almost split sequence

TYO —> ‘L'Y] —> Yo,

where 7(—) = v(—)[—1].

Note that for all i > 0 we have irreducible morphisms 7Y;;; — Y;and Y; — Y;;; where the last one is an
&-monomorphism and then again by Theorem 5.4 the first morphism is an &-epimorphism. Therefore, we have that
|Yi—1| < |Yi| < |tYit1] so Yi_q is not isomorphic to tY;;; and we get the almost split sequence:

‘L'Y,‘—)‘L'Y,‘.H (&) Y,‘_l—>Yi.
Moreover, we have a sequence of irreducible &-monomorphisms:
Yo > Y1 > 1Y > Y3 —> - -

such that there are not any irreducible &-monomorphism ending in tYp.
Applying repeatedly this procedure, we have, for all s € Z and i > 0 the almost split sequence:

(X(S, l)) 'L'SY,' — ‘L'SY,'+1 D Ts_]Yl',1 —> 'Cs_lyi

with 7°Y; — 7°Yi;; an irreducible morphism which is an €-monomorphism and 7°Y; — 757'Y;_; an irreducible morphism
which is an &-epimorphism. For i = 0 we have the almost split sequence:

(x(s,0)) Y9 — Y] — T57Y,,

foralls € Z.

Then if Z is an indecomposable in the component € we have that Z = 7°Y;, for some s and i. In order to prove that
C = ZA«, it is enough to prove that t°Y; = t'Y; implies i = jand s = t. Suppose i and j are both greater than 0. Then the
sequences (x(s, i)) and (x(t, j)) are isomorphic, and since the irreducible morphism t'Y; — rt*‘Yj_l is an §-epimorphism,
then 571Y;_; = ¢! Y;_1. Following in this way we can find some I such thati — I = 0 or j — | = 0. But then the almost split
sequence starting from t5"'Y;_; has an indecomposable middle term, soi — | = 0 and j — | = 0. Consequently,i = | = jand
then t = s, because the complexes Y; are not r-periodic. O

Proposition 5.6. Iff : X — Y is an irreducible morphism in the category C®(A proj), then f is either an &-epimorphism or an
&-monomorphism.

Proof. By Lemma 2.16 and Proposition 2.17 we may assume f is a radical morphism. Thenif X and Y are indecomposable our
result follows from 5.4. If both X and Y are decomposable we should have irreducible morphisms X; — Y1, X — Y5, X —
Y; and X, — Y5, for pairwise non-isomorphic indecomposable objects X1, X5, Y1 and Y,. But this is impossible in ZA... If X
is decomposable and Y indecomposable f is a minimal right almost split morphism, so it is an é-epimorphism. In case X is
indecomposable and Y decomposable f is a minimal left almost split morphism, so it is an §-monomorphism. O

6. Irreducible morphisms involving non-perfect complexes

This last part is devoted to the study of irreducible morphisms between indecomposable complexes f : X — Y in the
category K—? (A proj), where either X or Y is a non-perfect complex.

We first consider the case in which Y is a non-perfect complex, as we see later this implies that X is also a non-perfect
complex.

In case A is Gorenstein all Auslander-Reiten triangles in K=?(A proj) consist of perfect complexes, so in this case if
f : X — Y is an irreducible morphism in K~?(A proj) involving non-perfect complexes both X and Y are non-perfect
complexes. This situation is considered in Proposition 5.5 of [7] for finite dimensional Gorenstein algebras over a field. It
is proved that in this case X = vY[—1]. For the general case of an Artin algebra we obtain a generalization of the above
mentioned result.

Finally we consider the case in which Y is a perfect complex and X is non-perfect. This situation occurs when there is an
Auslander-Reiten triangle ending in Y and vY is a non-perfect complex.

In order to prove our results in this section, we use the following Lemma. We also need to recall that for every complex
X € C(A proj) there exist H an & -injective complex and Xy, a complex without §-injective direct summands, such that
X >~ Xo & H in C;(A proj).
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Lemma 6.1. Letf : X — Y be an irreducible morphism in K=" (A proj). If Y is a non-perfect complex then X is also a non-perfect
complex.

Proof. We may assume f : X — Y is an irreducible morphism in the category C™?(A proj). By Theorem 3.5 there is an
interval I such that f; is an irreducible morphism and then f; is not a section. So by Proposition 2.4, f;_, is a retraction. This
implies that for allj € I(—), the map f’ is not zero and so X/ # 0. So X is not a perfect complex. O

For the proof of next proposition we recall that a complex X € C(A mod) is called g-projective if Homg4 moday(X, C) = 0
for any acyclic complex C € C(A mod). Moreover if s; : X; — Y;ands;, : X, — Y, are quasi-isomorphisms with X, X,
g-projective then given a morphismf : Y; — Y, in C(A mod) there is a unique morphism up to homotopy h : X; — X, such
that fs; = syh in K(A mod). Observe that if Y; = Y, then there is an isomorphism u : X; — X; in the homotopy category
such that s,u = s; in K(A mod). If X is a complex in C=™(A proj) for some m, then X is a g-projective complex.

Proposition 6.2. Let W € C="(A mod) and let q : Z — W be a quasi-isomorphism with Z a complex in C=" (A proj) without
&-projective direct summands.

Suppose L = [a, n] is an interval of Z. If q; : Z — W, is a quasi-isomorphism with Z' € C="(A proj) then there is an
isomorphism of complexes:

(Z)o = (Z))o.

Proof. There is a morphism of complexes Wy _, —d> Wi [1], givenbyd = 0ifj #£a—1,d" ! = dﬁv_l : WL"(__; =wel -
W9 = W;[1]* 1. Observe that W = Con(d[—1]). Therefore in K(A mod) we have the triangle:

(a) WL(_)[—l] d[—_>1] W)_ _u) w —U> WL(_)

and we have the exact sequence of complexes:
(X) 0—>W]_—u>W—U>WL(_)—>O.

Let g, : R — W, be a quasi-isomorphism with R € C=%~1( A proj).
There exists a morphism of complexes h : Rl—1] — Z’ such that g;h = d[—1]q,[—1] in the homotopy category. Consider
now the triangle:

(b) R[—1] 2 7' — Con(h) — R.

The triple (q2[—1], g1, A) is a morphism from the triangle (b) to the triangle (a). Since g, and q; are quasi-isomorphisms
then A : Con(h) — W is also a quasi-isomorphism. We have also a quasi-isomorphism q : Z — W, therefore there is an
isomorphism in the homotopy category v : Con(h) — Z such that qu = A. Since Z has no &-projective direct summands,
then Con(h) = Z & T as complexes, with T an §-projective complex.

We have the exact sequence

0 — Z'— Con(h) - R— 0.
Since R, = 0, we obtain
ZLpT = COl'l(h)L = (Z/)]_.
Note that T; is & -injective and then the result holds. O
Recall that if X, Y belong to C™**(A proj) we can take Iy y = [m, I] a finite interval such that X, Y Liy y» with Yl =0.
Proposition 6.3. Let X, Y be indecomposable complexes which are not &-projective, and let f : X — Y be an irreducible
morphism in C~-?(A proj).
Suppose Y is a non-perfect complex and q : Z — vY[—1] is a quasi-isomorphism with Z a complex in C=" (A proj) without
&-projective direct summands, then for | = Ix y:

(1) For all interval L containing I, X; is a direct summand of Z;.
(2) If Z, is indecomposable for all interval L containing I then X = Z. In particular Z € C~(A proj).
(3) IfZ € CP(A proj), then X = Z.

Proof. (1)Since Y is indecomposable which is not &-projective in the category C?(A proj), then by (2) of 3.5 for all interval
L = [a, n] containing I, the complex Y; is indecomposable. Moreover, the Nakayama functor v induces an equivalence
v : C (A proj) — Cy(Ainj)and v(Y), = v(Yy) is indecomposable.

Consider the intervals Iy = [a — 2, n], Iy = (—o0, n]. By Theorem 3.5, f; is an irreducible morphism for all interval
L containing I, in particular, f;,, fi, are irreducible morphisms between indecomposable complexes. Take the almost split
sequence in C, (A proj) (see [2]):

(@ 0— AL (Y,)>E>Y, -0
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We have the inclusion o : Y — Y;,, this morphism is not a retraction, so there is a morphism A : Y; — Y, such that
vA = o.But this implies that the restriction of the above sequence to L splits.

Here Y" = 0, then A, (Y,) coincides with Z,/] ,where Z’ is a complex without &-projective direct summands in C="( A proj)
which is quasi-isomorphic to vY;, [—1] = (VY [—1]){q—1,n) (see Proposition 6.12 in [2]).

By Proposition 6.2, if Z is a complex without &-projective direct summands in C="(A proj) quasi-isomorphic to vY[—1]
then

(Z[afl,n])o = (Z(a_1,n])0-

Note that for any complex C, C; = (Cjg—1,n))1. Moreover Cig—1,5; = (Cla—1,n))0 ® T, with T an &1 5-injective. Clearly T,
is an &;-injective, so

() (Co = [((Ca—1.1D0)1]o-
Using the isomorphism (x), we obtain the following isomorphisms of complexes:

(Z1)o = [(Za—1.0D0)ilo = [((Zy_1.mo)ido = (Z)o-

Here fi, : X;, — Yy, is an irreducible morphism, then there exists a complex isomorphism E = E’ @ X, . But the sequence
(a) restricted to L splits, then (Z,/1 )L @Y, = E] & X, Note that X, is not & -injective because by Lemma 6.1 X is a non-perfect
complex. Using Proposition 2.15 we know that X; is not isomorphic to Y; and then, by Krull-Schmidt Theorem, we conclude
that X is a direct summand of (Z,’1 )1 = Z/, and thenX; is adirect summand of (Z])o = (Z;)o and we obtain our first statement.

(2)If Z; is indecomposable for all interval L containing I, then X; = Z;, for all interval L containing I. In particular, for all
i € Z, H(X) £ H'(Z) and hence Z € C~"(A proj).

(3) Suppose Z € cba proj). Take L = [t, n] an interval containing I such that H:(X) = 0 and H'(Z) = 0 for i outside
of [t + 1,n] and Z € C="(A proj). Then X and Z are in £;, by (2) of Theorem 3.5, Z; is indecomposable, so by (1) we have
X, = Z;. Then, from (d) of 1.2 we deduce that X = Z. O

As a consequence of the above we obtain the following result in case of Gorenstein Artin algebras. This was proved in
Proposition 5.5 of [7] for finite dimensional algebras over a field.

Corollary 6.4. If A is a Gorenstein Artin algebra, and there is an irreducible morphism in C~?(A proj), f : X — Y with X, Y
indecomposable, Y a non-perfect complex, then X is quasi-isomorphic to vY[—1].

Proof. In case A is Gorenstein, if Y € C™?(A proj) then v(Y) = D(A) ®, Y is a complex quasi-isomorphic to a complex
Z € C"(A proj), then we apply Proposition 6.3. O

Proposition 6.5. Iff : X — Y is an irreducible morphism between indecomposable complexes in K~°(A proj) with Y a perfect
complex and X a non-perfect complex then H'(vX) # 0 for infinitely many integersj € Z, or v(X) = v(Y) in D”(A mod).

Proof. Since Y is a perfect complex, there is an Auslander-Reiten triangle in K~?(A proj):
W —E—Y—> W[1],

so X is a direct summand of E and then there is an irreducible morphismu : W — X.

Now, suppose the integers j € Z such that H(vX) # 0 form a finite set. Take Z € C="(A proj) an indecomposable
complex quasi-isomorphic to vX for some n. Then by our hypothesis Z € C™*?(A proj). Therefore by (3) of Proposition 6.3,
W =~ Z[—1], so W =~ vX[—1] in the bounded derived category. But W >~ vY[—1] in D’(A mod) (see [5]), then v(X) = v(Y)
inD’(Amod). O
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