
Journal of Pure and Applied Algebra 215 (2011) 866–884

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Irreducible morphisms in the bounded derived category
Raymundo Bautista a,∗, María José Souto Salorio b

a Instituto de Matemáticas, UNAM, Unidad Morelia, A.P. 61-3, Xangari, C.P. 58089, Morelia, Michoacán, Mexico
b Facultade de Informatica, Campus de Elviña, Universidade da Coruña, CP 15071, A Coruña, Espagne

a r t i c l e i n f o

Article history:
Received 20 February 2009
Received in revised form 7 May 2010
Available online 15 July 2010
Communicated by I. Reiten

MSC: 16G70; 18G35; 16G10; 18E30

a b s t r a c t

We study irreducible morphisms in the bounded derived category of finitely generated
modules over anArtin algebraΛ, denotedDb(Λmod), bymeans of the underlying category
of complexes showing that, in fact, we can restrict to the study of certain subcategories of fi-
nite complexes.Weprove that as in the case ofmodules there are no irreduciblemorphisms
from X to X if X is an indecomposable complex. In caseΛ is a selfinjective Artin algebra we
show that for every irreducible morphism f in Cb(Λ proj) either f j is split monomorphism
for all j ∈ Z or split epimorphism, for all j ∈ Z.Moreover, we prove that all the non-trivial
components of the Auslander–Reiten quiver of Cb(Λ proj) are of the form ZA∞.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

The successful concepts of irreducible morphisms and almost split sequences were introduced by Auslander and Reiten
in the category of finitely generated modules over an Artin algebra, Λ mod. Moreover, they proved the existence of such
sequences (see [1]). These notions have been studied in a more general context. D. Happel gave the notion of Auslander–
Reiten triangles for the derived category of bounded complexes overΛ mod,Db(Λ mod) (see [6]). Later, Krause generalized
these ideas to compactly generated triangulated categories (see [8]).

On the other hand, the existence of irreducible morphisms is not trivial in general, but we know that the almost split
sequences provide a wealth of irreducible morphisms.

In the recent paper [7], the authors investigate irreducible morphisms in Db(Λ mod), in case Λ is a finite dimensional
algebra over a field. They obtain their results as a consequence of a careful study of the known Happel’s functor which
provides an embedding of Db(Λ mod) into the stable category mod Λ̂ of finite dimensional modules over the repetitive
algebra. This functor becomes an equivalence if and only if Λ has finite global dimension. In case Λ is selfinjective, they
construct, for any subset I ⊂ Z, triangulated subcategories C I of mod Λ̂ containing Db(Λ mod) such that if I ⊂ I ′ then
C I ⊂ C I ′ . Moreover, they give certain conditions on the subsets I under which the intersection of a subfamily of such
subcategories coincides with Db(Λ mod).

The Auslander–Reiten theorywas also studied in certain subcategories of complexes (see [9,2]). Namely, in the last paper
and in order to studyAuslander–Reiten triangles in the bounded derived category of finitely generatedmodules over anArtin
algebra, the authors introduced certain subcategories of complexes and proved that they have almost split sequences.

More exactly, for any interval I , they denote by CI(Λ proj) the full subcategory of C(Λ proj) whose objects are the
I-complexes. These categories are exact with enough projective and injective objects and they have finite global dimension.
For each interval I one can consider the left triangulated category CI(Λ proj)(see 1.1 below). In particular, if the cardinal of I
is two then CI(Λ proj) is equivalent toΛmod and if the cardinal is one then CI(Λ proj) coincideswithΛ proj, and CI(Λ proj)
is equivalent to the additive category consisting of only the zero object.
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We have that, in general, for each interval I = [a, b] with b − a ≥ 2, CI(Λ proj) is equivalent to the full subcategory UI
of Db(Λmod)whose objects are the complexes X such that H i(X) = 0 for i outside the interval [a + 1, b]. Note that we can
recover Db(Λmod) as the union set of all these categories UI .Moreover, if f is an irreducible map in the bounded derived
category then there is some interval I such that f is an irreducible morphism in UI and then f corresponds to an irreducible
morphism in CI(Λ proj). Similarly an Auslander–Reiten triangle in Db(Λmod) can be seen into some UI and it corresponds
to an almost split sequence in CI(Λ proj) (see [2]).

Conversely, given an irreducible map in CI(Λ proj), it represents a morphism in UI , we shall see under which conditions
this map is irreducible in the whole category Db(Λmod).

The above comments show that the study of morphisms in the category Db(Λmod) can be replaced by the study of
morphisms between complexes of CI(Λ proj).

In our considerations the shape of irreducible maps between complexes play an important role. We recall that
an irreducible morphism in the category of finitely generated Λ-modules, where Λ is an Artin algebra, is either a
monomorphism or an epimorphism. This simple but useful fact was generalized in [4] for irreducible morphisms between
complexes.

The techniques introduced in [2], are strongly used along this paper which is organized as follows. After preliminaries we
prove some results about the shape of irreducible maps by using the above setting of I-complexes. In particular, in Section 2
we show that there are no irreducible morphisms from a complex to itself.

Section 3 is devoted to investigate irreducible morphisms in the category C−,b(Λ proj), which leads us to the knowledge
of irreduciblemaps in the boundedderived category.We establish the relationship between irreduciblemaps inC−,b(Λ proj)
and the ones inCI(Λ proj).Wealso investigate the behaviour of themiddle termof almost split sequences and give necessary
conditions for the existence of irreducible maps between two modules in the category of complexes.

In Section 4 we show that irreducible maps in Db(Λmod) ending in a perfect complex Y (that means Y ∈ Kb(Λ proj))
are completely determined by irreducible morphisms in CI(Λ proj) ending in Y where I = [a, b] is an interval such that
Y a

= 0 = Y b.
In Section 5, we focus our attention to the caseΛ is a selfinjective Artin algebra showing, in particular, that an irreducible

map f in Cb(Λ proj) is such that either all the f j (for all j ∈ Z) are splitmonomorphism or all of them are split epimorphism in
Λ proj.Moreover, all the non-trivial components of the Auslander–Reiten quiver of Cb(Λ proj) are of the formZA∞. This fact
was first proved in [12] forΛ a finite dimensional algebra over a field and later with a different proof in Theorem 5.4 of [7].

Finally, Section 6 is devoted to the case of irreducible maps in C−,b(Λ proj) involving a non-perfect complex. We apply
the results to the Gorenstein case.

1. Preliminaries

We start giving notations and basic facts which we will use in the subsequent sections.
Let k be a commutative Artinian ring, Λ an Artin k-algebra. We denote by Λmod and Λ proj the category of finitely

generated left Λ-modules and the full subcategory of Λmod consisting of the finitely generated projective Λ-modules. In
general, A will denote an additive k-category.

1.1. Complexes

We recall that a complex X = (X i, diX )i∈Z over A is a family of morphisms diX : X i
→ X i+1, i ∈ Z, such that di+1

X diX = 0
for all i ∈ Z. If X and Y are complexes over A, a morphism f of degree l from X to Y is given by a family of morphisms
f i : X i

→ Y i+l, i ∈ Z such that di+l
Y f i = (−1)lf i+1diX . We denote by C(A) the category whose objects are the complexes over

A and the morphisms between two complexes are the degree zero morphisms.

In the category of cochain complexes, C(A),we consider the class E of composablemorphisms X
f

→ Y
g

→ Z such that for

all n ∈ Z, the sequence 0 → Xn f n
→ Y n gn

→ Zn
→ 0 is split exact. Sequences in E are called conflations and it is known that

(C(A), E) is an exact category in the sense of [10] or equivalently [3] (see for instance Example 3.2 in [5]). Moreover, C(A)
is a Frobenius category with respect to E . The maps factoring through an injective–projective object are the null homotopic
maps. Then, the stable category of C(A) coincides with the homotopy category K(A).

Take I = [a, b], I = (−∞, b] or I = [a,∞) an interval in Z or I = Z, an I-complex is a complex X such that X i
= 0 for

all i outside the interval I .
We denote by CI(A) the full subcategory of C(A)whose objects are the I-complexes. If X is a complex and I is an interval

we denote by XI the complex such that X i
I = X i if i lies in I and X i

I = 0 in case i is not in I . Moreover, diXI = diX if i and i + 1
are in I and zero otherwise. If f : X → Y is a morphism of complexes then fI : XI → YI is the morphism of complexes such
that f iI = f i if i lies in I and f i = 0 otherwise.

We will use some results of CI(A)which can be found in [2].
(CI(A), EI) is an exact category with EI the class of composable morphisms in CI(A)which are in E .
Now, assume I = [m, n] is a finite interval. ForM ∈ A we consider the following complexes:

• Ji(M) = (J s, ds)with J s = 0 if s ≠ i, s ≠ i + 1, J i = J i+1
= M , di = idM .
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• S(M) = (X i, di)i∈Z with X i
= 0 for i ≠ m, Xm

= M , di = 0.
• T (M) = (Y i, di)i∈Z with Y i

= 0 for i ≠ n, Y n
= M , di = 0.

The objects T (M), Ji(N) for i = m, . . . , n − 1 are EI-projective in CI(A). The objects S(M), Ji(N) for i = m, . . . , n − 1 are
EI-injective in CI(A) (see [2]).

We consider C≤n(A) the full subcategory of C(A)whose objects are those X ∈ C(A) such that X i
= 0 for i > n. Similarly,

C≥m(A) is the full subcategory of C(A)whose objects are those X ∈ C(A) such that X i
= 0 for i < m.

There is a functor FI : C≤n(A) → CI(A) given in objects, by FI(X) = XI and in morphisms, f : X → Y by FI(f ) = fI .
We now considerMI , the full subcategory of C≤n(Λ proj)whose objects are those complexes X withH j(X) = 0 for j ≤ m.

By LI we denote the full subcategory of K(Λ proj)whose objects are in MI .
In the following we denote by CI(Λ proj) the category with the same objects as CI(Λ proj) and the morphisms are the

morphisms of this category modulo those which factor through EI-injective complexes.

Proposition 1.2. If I = [m, n] is a finite interval we have the following:
(a) The functor FI induces a full functor from MI to CI(Λ proj). Moreover, if X ∈ MI has no E-projective direct summands, then

XI has no EI-injective direct summands.
(b) If X ∈ CI(Λ proj), there is a X̂ ∈ MI such that X̂I = X.
(c) For any W complex in C≤n(Λ proj), WI is a subcomplex of W, and if we denote by σW : WI → W the inclusion, then for any

morphism f : W → Z in C≤n(Λ proj), we have f σW = σZ fI .
(d) The functor FI induces an equivalence between the category LI and the category CI(Λ proj). Moreover, if X, Y ∈ CI(Λ proj)

have no EI-injective direct summands and X ∼= Y in CI(Λ proj) then X ∼= Y in CI(Λ proj).

Proof. The first part of (a) follows from Lemma 5.3 of [2]. For the second part recall that a complex W of projective
Λ-modules has no E-projective direct summands if and only if ImdiW ⊂ radW i+1 for all i ∈ Z. Then if X has this last property
the complex XI also has this property. Therefore if X has no E-projective direct summands, then XI has no direct summands
of the form Ji(P). Suppose XI has a direct summand of the form S(P), then Xm

= P ⊕ Q with dm(P) = 0. But Hm(X) = 0,
then P ⊂ Imdm−1

X , so Imdm−1
X is not contained in radXm, which cannot be if X has not E-projective direct summands. This

proves (a).
For X an I-complex, take

· · · → P−1
→ P0 η

→ KerdmX → 0

a minimal projective resolution, then if i : KerdmX → Xm is the inclusion, take the complex

X̂ : · · · → P−1
→ P0 iη

→ Xm dmX
→ · · · → Xn−1 dn−1

X
→ Xn

→ 0 · · · .

It is easy to verify that X̂ ∈ MI and X̂I = X . This proves (b).
Statement (c) is clear.
Statement (d) follows from Corollary 5.7 of [2]. �

1.3. Factorization of morphisms

Let I be an interval in Z and let X be a complex.
(1) If I = [a, b] with a ≤ bwe denote by I(−) = (−∞, a − 1], I(+) = [b + 1,∞).

We have the following one degree morphisms:

dI(−)X : XI(−) → XI

dIX : XI → XI(+)

given by (dI(−)X )i = 0 if i ≠ a − 1 and (dI(−)X )a−1
= da−1

X ; (dIX )
i
= 0 for i ≠ b, (dIX )

b
= dbX . Clearly dIXd

I(−)
X = 0.

(2) If I = [a,∞)we denote by I(−) = {n ∈ Z, n < a} and I(+) = ∅. We have the following one degree morphisms:

dI(−)X : XI(−) → XI

given by (dI(−)X )i = 0 if i ≠ a − 1 and (dI(−)X )a−1
= da−1

X ;

dIX : XI → XI(+)

is the zero morphism.
(3) If I = (−∞, b] we denote by I(+) = {n ∈ Z, n > b} and I(−) = ∅. We have the following one degree morphisms:

dIX : XI → XI(+)

given by (dIX )
i
= 0 for i ≠ b, (dIX )

b
= dbX and

dI(−)X : XI(−) → XI

the zero morphism.
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Conversely, if X1 is an I(−)-complex, X2 is an I-complex, X3 is an I(+)-complex and we have one degree morphisms,
u : X1 → X2, v : X2 → X3 with vu = 0, then we may construct a complex X such that XI(−) = X1, XI = X2, XI(+) = X3 and
u = dI(−)X , v = dIX .

In the following if I is a fixed interval we identify the complex X with the ‘‘complex’’

XI(−)
dI(−)X
−→ XI

dIX
→ XI(+).

Observe that if f : X → Y is a morphism of complexes, then we have the following commutative diagram:

XI(−)
dI(−)X

−−−−→ XI
dIX

−−−−→ XI(+)

fI(−)

 fI

 fI(+)


YI(−)

dI(−)Y
−−−−→ YI

dIY
−−−−→ YI(+).

Proposition 1.4 (See [4]). Let f : X → Y be a morphism of complexes and let I be an interval such that in CI(A), fI = vu with
u : XI → Z and v : Z → YI , then we have the following factorization of f in C(A):

XI(−)
dI(−)X

−−−−→ XI
dIX

−−−−→ XI(+)

id

 u

 fI(+)


XI(−)

udI(−)X
−−−−→ Z

dIY v
−−−−→ YI(+)

fI(−)

 v

 id


YI(−)

dI(−)Y
−−−−→ YI

dIY
−−−−→ YI(+).

In the following we put û = (id, u, fI(+)) and v̂ = (fI(−), v, id).
Remark 1.5. If X and Y are in CJ(A) for some interval J of Z containing I , then û and v̂ are morphisms of J-complexes.

2. Irreducible morphisms in C(A)

In the first part of this section we collect, for an easy reference, some results on irreducible morphisms with their full
proofs from [4]. In the second part we study irreducible morphisms from some indecomposable to itself in the category
CI(Λ proj). We will prove that there are no irreducible morphisms from some indecomposable to itself in this category if
I = [a, b] with b − a > 1. This result will be used to prove that there are no irreducible morphisms from some complex to
itself in the category C(Λ proj).

Throughout the paper we identify the category A with the full subcategory of C(A)whose objects are those X such that
X i

= 0 if i ≠ 0.
Definition 2.1. If C is an additive category, a morphism f : X → Y in this category is called irreducible if it is neither a
retraction nor a section and f = vu with u : X → Z , v : Z → Y morphisms in C, implies that either u is a section or v is a
retraction.
Proposition 2.2. Let f : X → Y be an irreducible morphism in CJ(A) with J an interval or J = Z and I an interval contained in
J, then fI : XI → YI is a section or a retraction or an irreducible morphism in CI(A).
Proof. Suppose fI is not a section, not a retraction, not an irreducible, then fI = vu with u no section and v no retraction,
then by 1.4 f = v̂û is a factorization in CJ(A), since u is not a section then û is not a section, here v is not a retraction, so v̂
is not a retraction, but this is impossible because f is irreducible. �

2.3

Let f : X → Y be an irreducible morphism in C(A) and let I be an interval in Z. As a consequence of Proposition 2.2,
we have that if fI : XI → YI is neither a section nor a retraction then, for each interval I ′ containing I , the morphism fI ′ is
irreducible in CI ′(A).
Proposition 2.4 (Girardo–Merklen). Let f : X → Y be an irreducible morphism in C(A) and I some interval of Z. If fI is not a
retraction, then fI(+) is a section. If fI is not a section, then fI(−) is a retraction.
Proof. Suppose fI is not a retraction, consider the factorization fI = vu with u = id, v = fI , then f = v̂û with û =

(id, id, fI(+)), v̂ = (fI(−), fI , id), then v̂ is not a retraction, so û is a section consequently fI(+) is a section. If fI is not a section,
then take u = fI , v = id, then û = (id, fI , fI(+)), v̂ = (fI(−), id, id), therefore û is not a section, thus v̂ is a retraction, then fI(−)
is also a retraction. �
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Corollary 2.5. Let f : X → Y be an irreducible morphism in C(A).

(1) For each i ∈ Z, the morphism f i is either irreducible or split in A.
(2) If there exists an integer i such that f i is irreducible, then such integer is unique.

Proof. Consider I = {i}. By Proposition 2.2 we get (1). Now, assume there is some integer i, such that f i is an irreducible
morphism in A, then f i is not a retraction and f[i+1,∞) is a section by Proposition 2.4. Moreover, f i is not a section and again
by Proposition 2.4 , f(−∞,i−1] is a retraction. Consequently, for each j ≠ i, f j is not an irreducible morphism. �

Now we prove the following result. A slight weak version, but essentially the same, is due to Giraldo and Merklen in [4].

Proposition 2.6. Let f : X → Y be an irreducible morphism in C(A) and let I be an interval bounded below by the integer a. If
fI is a section which is not an isomorphism and f a−1 is an epimorphism then f a−1 is an isomorphism and fI(−)∪I is a section.

Proof. Take I ′ = I(−)∪ I.We know that fI ′ is a section, or a retraction or an irreducible morphism in CI ′(A). If fI ′ is a section
we clearly have the conclusion. If fI ′ is a retraction, thenwe get a contradiction to the fact that fI is not an isomorphism. Then
assume that fI ′ is an irreducible morphism.

The morphism fI is a section then there exists gI such that gI fI = id. Note that

f agada−1
Y f a−1

= f agaf ada−1
X = f ada−1

X = da−1
Y f a−1.

Take λ = gada−1
Y . We have, f aλ = f agada−1

Y = da−1
Y because f a−1 is an epimorphism, and

λf a−1
= gada−1

Y f a−1
= gaf ada−1

X = da−1
X .

Therefore we have the following factorization of fI ′ :

· · · −−−−→ Xa−2
da−2
X

−−−−→ Xa−1
da−1
X

−−−−→ XI

f a−2

 f a−1

 id


· · · −−−−→ Y a−2

da−2
Y

−−−−→ Y a−1 λ
−−−−→ XI

id

 id

 fI


· · · −−−−→ Y a−2

da−2
Y

−−−−→ Y a−1
da−1
Y

−−−−→ YI

and either (· · · , f a−2, f a−1, id) is a section or (· · · , id, id, fI) is a retraction. In the first case, f a−1 is a section so it is an
isomorphism. In the second case fI is a retraction, so it is an isomorphism and we get a contradiction. �

The following result can be proved with similar arguments as in the previous proposition.

Proposition 2.7. Let f : X → Y be an irreducible morphism in C(A) and I be an interval bounded above by the integer b. If fI is
a retraction non-isomorphism and f b+1 is a monomorphism, then f b+1 is an isomorphism and fI∪I(+) is a retraction.

Definition 2.8. Amorphism f : X → Y in C(A) is called E-monomorphism if f i is a section for all i ∈ Z. Similarly, g : Y → Z
is called E-epimorphism if g i is a retraction for all i ∈ Z.

In an abelian category an irreducible morphism is either an epimorphism or a monomorphism, the following result due
to Giraldo and Merklen, is a generalization of this fact for complexes.

Proposition 2.9. Let f : X → Y be an irreducible morphism in C(A), then one of the following statements is true:

(i) There is an unique integer i such that f i is an irreducible morphism in the category A.
(ii) The morphism f is an E-monomorphism.
(iii) The morphism f is an E-epimorphism.

Proof. By Corollary 2.5, we know that either there is an unique i with f i an irreducible morphism in A or f j splits, for all j.
Then we may assume that (i) does not hold and each f i is either a section or a retraction. Note that, since f : X → Y is an
irreduciblemorphism, it is not an isomorphism, so assume there exists an i0 such that f i0 is a section but not an isomorphism.
We claim that f is an E-monomorphism. The case E-epimorphism is dual.

If some f i is a section but not an isomorphism, by Proposition 2.4, f[i+1,∞) is a section, then f s is a section for all s ≥ i. If
some f j is a retraction but not an isomorphism, again by Proposition 2.4, f(−∞,j−1] is a retraction, so f t is a retraction for all
t ≤ j. Suppose f is not an E-monomorphism, take i0 minimal such that f i0 is a section which is not an isomorphism and j0
maximal such that f j0 is a retraction but not an isomorphism, so j0 < i0. Observe that f s is an isomorphism for all s ∈ [j0, i0],
so it is an epimorphism. Therefore f i0−1 is an epimorphism. Taking I = [i0, i0] in Proposition 2.6, we deduce that f(−∞,i0] is
a section, therefore f j0 is an isomorphism, a contradiction. Then all the f i are sections. �
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Proposition 2.10. Let f : X → Y be an irreduciblemorphism in C(A) such that f is an E-monomorphism, f i−1 is an isomorphism
and f i is not an isomorphism, then f(−∞,i−1] is an isomorphism.

Proof. If f[i−1,∞) is an irreducible morphism then it is not a section, so f(−∞,i−2] is a retraction therefore an isomorphism,
clearly f(−∞,i−1] is also an isomorphism. If f[i−1,∞) is not an irreducible morphism, then it is a section, so f[i,∞) is a section,
which is not an isomorphism. Since f i−1 is an epimorphism, by Proposition 1.4 we have that f(−∞,i−1] is a section, so f[i−1,∞)

and f(−∞,i−1] are sections, now f i−1 is an isomorphism this implies that f is a section, which is a contradiction. �

Proposition 2.11. Let f : X → Y be an irreducible morphism in C(A)which is an E-epimorphism such that f i is an isomorphism
and f i−1 is not an isomorphism, then f[i,∞) is an isomorphism.

Proof. Similar to the proof of the above proposition. �

In the last part of this section we consider the case A = Λ proj, withΛ an Artin algebra over the commutative Artinian
ring k.

As in [2] we take for each projectiveΛ-module P the complex Ji(P) such that Ji(P)s = P if s = i, i+1 and zero otherwise,
dsJi(P) = idP if s = i and 0 in case s ≠ i. Let S be a simpleΛ-module and let

· · · P−s d−s
→ P−s+1 d−s+1

→ P−s+2
→ · · · → P−1 d−1

→ P0 ηs
→ S

be a minimal projective resolution of S. Let PS be the complex:

· · · P−s d−s
→ P−s+1 d−s+1

→ P−s+2
→ · · · → P−1 d−1

→ P0
→ 0 · · · ,

clearly PS is an indecomposable complex.
We have a morphism of complexes: u : PS → J−1(P0)with uj

= 0 if j ≠ −1 and j ≠ 0, u0
= idP0 , u

−1
= d−1.

The second part of the following result is proved in Theorem 4.4 of [11].

Proposition 2.12. The morphism u : PS → J−1(P0) is a minimal right almost split morphism in C(Λ proj). In particular, u is an
irreducible morphism.

Proof. Given a complex Y we have a morphism of complexes η : Y → Y(−∞,0] given by ηj = idY j if j ≤ 0 and ηj = 0 in
case j > 0. Now we shall prove that u is a minimal right almost split morphism. Clearly u is not a retraction and if λu = u
for an endomorphism λ of J−1(P0), then λ is the identity. Let h : Y → J−1(P0) be a morphism which is not a retraction in
C(Λ proj), take now I = [a, 0] a finite interval with a < −1. From [2] we know that

uI : (PS)I → J−1(P0)

is a minimal right almost split morphism in CI(Λ proj). Since h is not a retraction , then hI cannot be a retraction, therefore
there exists a morphism v1 : YI → (PS)I , such that uIv1 = hI . Here (Y(−∞,0])I = YI and PS lies in LI . Then by Lemma 5.3 of
[2] there is a morphismw : Y(−∞,0] → PS such thatwI = v1. Take v = wη : Y → PS . Then since ηI = idYI we have vI = v1.
Therefore (uv)I = hI , but hn

= 0 and (uv)n = 0 for n outside I , so uv = h. �

By duality one can prove that if S
i

→ I0
d0
→ I1 → · · · is a minimal injective co-resolution of the simple S, then there is a

minimal left almost split morphism h : J0(I0) → IS in the category C(Λ inj). Here IS = · · · 0 → I0
d0
→ I1 · · ·. Themorphism h

is given by h0
= idI0 , h

1
= d0 and hj

= 0 for j ≠ 0 and j ≠ 1. We know that the Nakajama functor ν induces an equivalence
of categories ν : C(Λ proj) → C(Λ inj). Then there is a morphism v′

: J0(P0) → QS such that ν(v′) = h with ν(QS) = IS .
Therefore, taking v = v′

[1], we obtain the following result:

Proposition 2.13. There is a morphism v : J−1(P0) → QS[1] which is a minimal left almost split morphism in C(Λ proj), in
particular v is an irreducible morphism.

We finish this section by showing that there are no loops of irreducible morphisms in the category of complexes. First,
we see the following useful Lemma.

Lemma 2.14. Let f : M → N be a morphism in A, and let I be either any interval of Z containing [−1, 0] or I = Z.

(1) If f is an irreducible morphism in CI(A) then f is irreducible in A.
(2) In case A = Λ proj we have:

(a) If f is irreducible in CI(A) then f is an irreducible monomorphism in A.

(b) If M = N then f is not an irreducible morphism in CI(A).
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Proof. By Proposition 2.2 with J = I and I = [0, 0], if f is irreducible in CI(A) then f is irreducible or it is a retraction or a
section in A. But if f is a retraction or a section in A, then f is also a retraction or a section in CI(A).

(2) (a) In case f is not a monomorphism we can take a projective cover of Kerf with η ≠ 0: Q
η

→ Kerf . We have
a factorization of complexes f = vu through the complex · · · 0 → Q → M → 0 where u = (· · · , 0, id, 0, · · ·) and
v = (· · · , 0, f , 0, · · ·). But v is not a retraction because f is irreducible inA. Moreover, if u is a sectionwe get a contradiction.

(2) (b) If M = N and f is an irreducible in CI(A) then using the above, we infer that f is an irreducible monomorphism.
ButM is a module having finite length and then f is an isomorphism in contradiction to the fact that f is irreducible. �

Proposition 2.15. Let X be an indecomposable complex in CI(Λ proj)with I = [a, b] a finite interval and b − a ≥ 2, then there
are no irreducible morphisms f : X → X in CI(Λ proj).

Proof. Note that, since all theΛ-modules X i have finite length over k, then in case all the f i are either sections or retractions,
we get that all the f i are isomorphisms and f is an isomorphism. Therefore, if f is irreducible, there is an i ∈ Z with f i an
irreducible morphism. Then since f i is not a section, by Proposition 2.4 we have that f[a,i−1] is a retraction, but then f[a,i−1] is
an isomorphism. Similarly, since f i is not a retraction, then again by Proposition 2.4, f[i+1,b] is an isomorphism.

On the other hand, f irreducible implies that f is nilpotent in the local algebra EndCI (Λ proj)(X) and there is a natural n
such that f n = 0. Hence, for all j ≠ i the isomorphisms f j are zero. Thus we can assume f = (· · · , 0, f i, 0, · · ·) with f i
irreducible in Λ proj. If i > a, then by Lemma 2.14, f i is a monomorphism and therefore an isomorphism, in contradiction
to the fact that f is irreducible. Therefore i = a and f = u[−a], for some irreducible morphism u : M → M inΛ proj. Then
X = M[−a], with X indecomposable consequently, M is indecomposable. Therefore the morphism u is in the radical. So
there is a non-zero morphism v : M → M such that vu = 0. Now b − a ≥ 2, we obtain a non-trivial factorization of f ,

· · · 0 −−−−→ M
0

−−−−→ 0 −−−−→ 0 · · ·

0

 u

  
· · · 0

0
−−−−→ M

v
−−−−→ M −−−−→ 0 · · ·

0

 idM

 0

 
· · · 0

0
−−−−→ M

0
−−−−→ 0 −−−−→ 0 · · ·

This contradicts our assumption that f is irreducible. �

Now we will prove that there are no irreducible morphisms X → X in the category C(Λ proj), for this we need the
following results.

We recall that a morphism g : Z → W in a Krull–Schmidt category is called radical if for any section σ : Z1 → Z and any
retraction τ : W → W1 the composition τgσ is not an isomorphism. Radical morphisms in A are the morphisms which are
in the radical of A.

Lemma 2.16. Let A be a Krull–Schmidt category, then any morphism f : X → Y is isomorphic to a morphism of the form:

f =


f1 0
0 f2


: X1 ⊕ X2 → Y1 ⊕ Y2

with f1 an isomorphism and f2 a radical morphism.

Proof. Suppose f is not a radical morphism, then there is a section σ : X1 → X and a retraction τ : Y → Y1 such that τ f σ
is an isomorphism. Then we have for some decomposition of X and Y :

f =


f1 f2
f3 f4


: X1 ⊕ X2 → Y1 ⊕ Y2.

Take now the isomorphism:

φ :


1X1 −f −1

1 f2
0 1X2


: X1 ⊕ X2 → X1 ⊕ X2,

then f is isomorphic to the morphism

f φ =


f1 0
f3 −f3f −1

1 f2 + f4


.

So we may assume f2 = 0. Taking now the isomorphism:

ψ :


1Y1 0

−f3f −1
1 1Y2


: Y1 ⊕ Y2 → Y1 ⊕ Y2,
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we see that f is isomorphic to

ψ f =


f1 0
0 f ′

4


.

Wemay repeat our procedure for f ′

4 , the process must finish because each object of our category is decomposable into a
finite number of indecomposables in a unique way up to isomorphisms. �

Proposition 2.17. A morphism

f =


f1 0
0 f2


: X1 ⊕ X2 → Y1 ⊕ Y2

with f1 an isomorphism and f2 a radical morphism is irreducible if and only if f2 is irreducible.

Proof. Suppose f is irreducible. Then f2 is neither a section nor a retraction. Take f2 = vu, u : X2 → Z , v : Z → Y2 a
factorization. Then we obtain the following factorization of f = VU , U : X1 ⊕ X2 → X1 ⊕ Z , V : X1 ⊕ Z → Y1 ⊕ Y2 with

U =


1X1 0
0 u


; V =


f1 0
0 v


.

Then, since f is irreducible, either U is a section or V is a retraction, but this implies that either u is a section or v is a
retraction, so f2 is irreducible.

Supposenow that f2 is irreducible, so f2 is neither a section, nor a retraction, therefore f is neither a sectionnor a retraction.
Suppose we have a factorization of f = VU , with U : X1 ⊕ X2 → Z , V : Z → Y1 ⊕ Y2. Then if U = (u1, u2), V = (v1, v2)

T .
We have

f1 = v1u1, v2u1 = 0, v1u2 = 0, v2u2 = f2.

Here f2 is irreducible, then either u2 is a section or v2 is a retraction. Suppose u2 is a section, then there is a morphism
t : Z → X2 such that tu2 = 1X2 .

Take λ = (f −1
1 v1, t)T : Z → X1 ⊕ X2, then

λU =


1X1 f −1

1 v1u2
tu1 tu2


=


1X1 0
tu1 1X2


.

Therefore λU is an isomorphism, consequently U is a section.
If v2 is a retraction we proceed in a similar way for proving that V is a retraction. This proves our result. �

Proposition 2.18. Let f : X → Y be an irreducible morphism in the radical of a Krull–Schmidt category A, then if p : Y → Z is
a non-zero retraction the morphism pf : X → Z is irreducible, similarly if s : W → X is a non-zero section then fs : W → Y is
an irreducible morphism.

Proof. Here p : Y → Z is a retraction, thus there is a morphism i : Z → Y with pi = idZ . Since ip is an idempotent and
idempotents split in A, then there is a retraction p′

: Y → Z ′ and i′ : Z ′
→ Y such that p′i′ = idZ ′ , ip + i′p′

= idY and
pi′ = 0, p′i = 0. We claim that if f is an irreducible morphism in the radical of A, then pf is also irreducible. Since f is in the
radical of A, pf is neither a section nor a retraction. Suppose pf = vu with u : X → W and v : W → Z . This factorization
of pf gives a factorization of f = gh, with

h =


u
p′f


: X → W ⊕ Z ′,

g = (iv, i′) : W ⊕ Z ′
→ Y .

Then either h is a section or g is a retraction, in the first case there is a morphism

λ = (λ1, λ2) : W ⊕ Z ′
→ X

with idX = λh = λ1u+λ2p′f . Since f is in the radical of A, then λ2p′f is also in the radical of A, this implies that idX −λ2p′f
is an isomorphism, consequently in this case u is a section. If g is a retraction then there is a morphism

µ =


µ1
µ2


: W ⊕ Z ′

→ Y

such that idY = ivµ1 + i′µ2. So p = pivµ1 = vµ1, and then idZ = pi = vµ1i, therefore v is a retraction. This implies that
pf is irreducible. The second part of the proposition is proved in a similar way. �

Theorem 2.19. Let X be a complex in C(Λ proj), then there are no irreducible morphisms f : X → X.



874 R. Bautista, M.J. Souto Salorio / Journal of Pure and Applied Algebra 215 (2011) 866–884

Proof. As in the proof of Proposition 2.15 , there is an i with f i irreducible in Λ proj and f j is an isomorphism, for all j ≠ i.
Take now a finite interval I containing the interval [i − 1, i]. By Proposition 2.2, fI is irreducible in CI(Λ proj), then by 2.16
and 2.17,

fI =


f1 0
0 f2


: W1 ⊕ W2 → Y1 ⊕ Y2,

with f1 an isomorphism and f2 a radical irreducible morphism in CI(Λ proj), XI = W1 ⊕ W2 = Y1 ⊕ Y2. Here CI(Λ proj) is
a Krull–Schmidt category, so W2 ∼= Y2 and then we obtain a radical irreducible morphism W2 → W2, but composition of
radical irreducible morphisms with sections or retractions are irreducible, therefore we obtain an irreducible morphisms
W ′

2 → W ′

2 in CI(Λ proj) for W ′

2 an indecomposable direct summand of W2, such that (W ′

2)
i
≠ 0, but this is not possible by

Proposition 2.15. �

3. Irreducibles in C−,b(Λ proj)

In this section we study irreducible morphisms in C−,b(Λ proj), the full subcategory of C(Λ proj),whose objects are the
complexes bounded above with bounded cohomology. As a consequence of the fact that any complex is quasi-isomorphic
to another one without direct summands homotopic to zero, we have that the results in this section apply to the homotopy
category K−,b(Λ proj) and hence to the bounded derived category Db(Λmod) if we assume this additional condition.

We start noting that we have analogous versions of the results in the previous section for C−,b(Λ proj).
The next results show the relationship between irreducible maps in the categories C−,b(Λ proj), K−,b(Λ proj) and

CI(Λ proj).
First we consider irreducible morphisms f : X → Y , where either X or Y have some E-projective direct summand.

Remark 3.1. There are no irreducible morphism between E-projective complexes in the category C−,b(Λ proj).

Proof. Suppose f : X → Y is an irreducible morphism between projective complexes in C−,b(Λ proj). Since X is E-injective
and Y is E-projective, then f is neither an E-monomorphism nor an E-epimorphism. Therefore by 2.2, there is an integer i,
such that f i is an irreducible morphism inΛ proj. Take J = [−i − 1, i + 1], then fJ is an irreducible morphism in CJ(Λ proj).
This last category is a Krull–Schmidt category, then by 2.16 there is a radical irreduciblemorphism u : XJ → YJ in CJ(Λ proj).
Here X i

≠ 0 and Y i
≠ 0, there is an indecomposable direct summand of XJ of the form Ju(P)with u ∈ [i − 1, i] and there is

an indecomposable direct summand of YJ of the form Jv(Q ). Then by 2.18 there is an irreducible morphism Ju(P) → Jv(Q ) in
CJ(Λ proj). By Proposition 8.5 of [2] we have a minimal right almost split morphism (PS[−v − 1])J → Jv(Q ) in CJ(Λ proj),
with S = Q/radQ . But this implies that Ju(P) is a direct summand of (PS[−v − 1])J which is not possible. �

In the next Proposition we use the notation of 2.13.

Proposition 3.2. Suppose f : J−1(P0) → Z is an irreducible morphism in C−,b(Λ proj). Then QS is a finite complex and
Z ∼= QS[1].

Proof. First observe that if g : J−1(P0) → W is any irreducible morphism in C−,b(Λ proj) or in C(Λ proj), then g[−1,0] is an
irreducible morphism in C[−1,0](Λ proj). Indeed, since J−1(P0) is an E-injective complex, then g is not an E-monomorphism.
Therefore by 2.2 either g is an E-epimorphism or there is an i ∈ [−1, 0] such that g i is an irreducible morphism in Λ proj.
In both cases g[−1,0] is an irreducible morphism in C[−1,0](Λ proj). From 2.13 we know that there is v : J−1(P0) → QS[1],
a minimal left almost split morphism in C(Λ proj). Therefore there is a morphism λ : QS[1] → Z such that λv = f .
Now if L is any interval containing [0, 1], then (IS)L is indecomposable. Therefore if [a, b] contains the interval [−1, 0], then
ν(QS[1])[a,b] = (IS)[1][a,b] = (IS)[a+1,b+1][1], so (QS[1])[a,b] is indecomposable. Since Z ∈ C−,b(Λ proj), there is an integer
l such that Z j

= 0 for j > l. Choose now L = [s, t] with s < −1 and t > l. Therefore λLvL = fL. Now fL and vL are
irreducible morphisms in CL(Λ proj), consequently λL is a retraction, so ZL is a direct summand of (QS[1])L, this implies that
ZL ∼= (QS[1])L. Then QS[1]t = 0 and Z s

= 0 for all s ≤ −2 and t ≥ l. So QS is finite and Z ∼= QS[1]. From this we obtain our
result. �

In the following if u : X → Y is a morphism in CI(Λ proj), we denote by u its image in the category CI(Λ proj).

Proposition 3.3. Suppose X and Y are complexes in CI(Λ proj), without EI-injective direct summands. Then:

(a) u : X → Y is a section (respectively, retraction) if and only if u is a section (respectively, retraction).
(b) u : X → Y is an irreducible morphism if and only if u is irreducible.

Proof. Clearly if u is a section, then also u is a section. Conversely suppose u is a section, then there is amorphism v : Y → X
such that vu = idX + λ with λ a morphism which factorizes through some EI-injective. Since X has no EI-injective
direct summands, it follows that λ is a radical morphism and so vu is an isomorphism, consequently u is a section. The
corresponding statement for a retraction is proved in a similar way.

Now assume u : X → Y is an irreducible morphism, then by (a), u is neither a section nor a retraction. Suppose u = gf
is a factorization of u in CI(Λ proj), where f : X → Z , g : Z → Y . Then u = gf + rs with s : X → W , r : W → Y , and W is
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an EI-injective complex. But then u = (g, r)(f , s)T , (f , s)T : X → Z ⊕ W and (g, r) : Z ⊕ W → Y . Therefore either (f , s)T
is a section, which implies by (a), that f is a section or (g, r) is a retraction which again by (a) implies that g is a retraction.

Now suppose u is an irreducible morphism, as before, by (a), this implies u is neither a section nor a retraction. Then
if u = gf is a factorization of u, we have u = gf . So either f is a section, which by (a) implies that f is a section or g is a
retraction which by (a) implies that g is a retraction. This proves our result. �

Proposition 3.4. If f : X → Y is a morphism in C−,b(Λ proj) with X and Y having no E-projective direct summands then:

(a) f is a section (respectively, retraction) if and only if its image in K−,b(Λ proj) is a section (respectively, retraction);
(b) f is irreducible if and only if its image in K−,b(Λ proj) is irreducible.

Proof. Similar to the proof of 3.3.

Theorem 3.5. Let f : X → Y be a radical irreducible morphism between non-E-projective complexes in C−,b(Λ proj).
Then, there is a finite interval I0 such that for all interval I containing I0 we have the following.

(1) The morphism fI is irreducible in CI(Λ proj).
(2) If Z ∈ {X, Y } and Z has no E-projective direct summands, then Z is indecomposable if and only if ZI is indecomposable.

Proof. We recall that L[a,b] is the full subcategory of K−,b(Λ proj) whose objects are the complexes W with W j
= 0 for

j > b and H j(W ) = 0 for j ≤ a. Take I0 = [a, b] a finite interval such that X, Y ∈ LI0 . Then for all interval I containing I0 we
have X, Y ∈ LI .

We have an equivalence of categories:

FI : LI → CI(Λ proj).

Now take X = X0 ⊕ T and Y = Y0 ⊕ T ′ with X0, Y0 without E-projective direct summands and T , T ′, E-projective
complexes. Then by (a) of 1.2, (X0)I and (Y0)I have no EI-injective direct summands. Clearly TI and (T ′)I are EI-injective
complexes.

(1) Consider the morphism f0 = pfiwhere i is the inclusion of X0 in X and p is the projection of Y onto Y0. By 2.18, f0 is an
irreducible morphism in C−,b(Λ proj). Then by 3.4, f0 is an irreducible morphism in K−,b(Λ proj), so in the full subcategory
LI . Using the equivalence FI , we see that (f0)I is an irreducible morphism in CI(Λ proj). Thus, by 3.3 (f0)I is an irreducible
morphism in CI(Λ proj).

Then

fI =


u1 u2
u3 u4


: X0 ⊕ T → Y0 ⊕ T ′

with u1 = (f0)I a radical irreducible morphism, u2 and u3 radical morphisms, so fI is neither a section nor a retraction.
Therefore, by 2.2, fI is an irreducible morphism.

(2) The functor FI induces an epimorphism of rings

η : EZ = EndC(Λ proj)(Z) → EndC(Λ proj)(ZI) = EZI .

Since Z is not E-projective, the kernel of η is contained in radEZ , therefore

EZ/radEZ ∼= EZI /radEZI
so EZ is a local ring if and only if EZI is also local, this proves our claim. �

As a consequence of the above we get the following result and its dual.

Proposition 3.6. Let f : X → Y be an irreducible morphism in the category C−,b(Λ proj), with X and Y without E-projective
direct summands. Assume that f is an E-monomorphism and I is a finite interval with fI irreducible, then fI(−) is an isomorphism.

Proof. By the above result 3.5, we know that there is a finite interval I , with fI irreducible. Then fI is not a section,
consequently fI(−) is a retraction. But f is an E-monomorphism, therefore fI(−) is an isomorphism. �

Corollary 3.7. If (x) 0 → X
f

→ E
g

→ Y → 0 is an almost split sequence in C−,b(Λ proj), then Y is a finite complex.

Proof. Here X is not an E-projective complex. If E has an E-projective direct summand we obtain an irreducible morphism
from some indecomposable E-projective complex to Y , then by 3.2, Y is a finite complex andwe have proved the proposition
in this case. So we may assume X and Y have no E-projective direct summands. Since the sequence (x) is a sequence of
complexes of projective Λ-modules, then it is a conflation, so f is an E-monomorphism. By 3.5 there is a finite interval I
such that fI is irreducible, then by the above proposition fI(−) is an isomorphism. But the exact sequence (x) restricted to the
interval I(−) is exact, therefore YI(−) = 0. Since Y is a bounded above complex, then it is a finite complex. �

It is well known that in Λmod, there are no irreducible morphisms from an indecomposable object into itself, the
following shows that the sameholds inC−,b(Λ proj) and therefore also inK−,b(Λ proj) and inDb(Λmod). In caseDb(Λmod)
has Auslander–Reiten triangles this has been proved in [13].
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Proposition 3.8. If X is an indecomposable complex in C−,b(Λ proj), then there are no irreducible morphisms X → X.

Proof. By 3.1 we may assume f : X → X is an irreducible morphism and X is not E-projective. Then by 3.5 there is a
finite interval I0 of Z such that for all interval I of Z containing I0, fI is an irreducible morphism in CI(Λ proj) and XI is
indecomposable. If I0 = [a, b], take I = [a − 1, b + 1], then we obtain an irreducible morphism fI : XI → XI in CI(Λ proj),
but this is not possible by Proposition 2.15. �

Now we look for the middle term of an almost split sequence and we prove the following:

Proposition 3.9. Let 0 → X
f

→ E1 ⊕ · · · ⊕ En
g

→ Y → 0 be an almost split sequence in C−,b(Λ proj), with Ei indecomposable
objects which are not E-projective, and X an infinite complex. Then there is at most one Ei such that the irreducible morphism
fi = πif : X → Ei is an E-monomorphism.

Proof. If there are two fi, fj which are E-monomorphisms, then also the irreducible morphism fi,j = (fi, fj)T : X → Ei ⊕ Ej
is an E-monomorphism, but then there is a finite interval I such that (fi)I , (fj)I and (fi,j)I are irreducible morphisms,
so (fi)I(−), (fj)I(−) and (fi,j)I(−) are isomorphisms, consequently XI(−) ∼= (Ei)I(−) ∼= (Ej)I(−) ∼= (Ei)I(−) ⊕ (Ej)I(−), a
contradiction. �

Now, we give necessary conditions for the existence of irreducible morphisms between two modules in the category of
complexes. The result is a generalization of Proposition 6.2 in [7].

In the following ifM is aΛ-module and

· · · → P−3
→ P−2

→ P−1
→ P0

→ M

is a minimal projective resolution ofM we denote by PM the complex:

· · · → P−3
→ P−2

→ P−1
→ P0

→ 0 → 0 · · · .

Proposition 3.10. Let X, Y be finitely generated Λ-modules. Suppose that the irreducible morphism u : X → Y induces an
irreducible morphism f : PX → PY in C−,b(Λ proj), then pdY ≥ 3 implies pdY ≤ pdX.

Proof. Take the interval I = [−1, 0]. By Proposition 2.2 we have that fI is an irreducible morphism in CI(Λ proj) and by
Proposition 2.4, fI(−) is a retraction, from here follows our result. �

Proposition 3.11. Let f : X → Y be an irreducible map in C−,b(Λ proj) such that f i is an irreducible morphism in Λ proj. If
f(−∞,i−1] is not an isomorphism then

X(−∞,i−1] ∼= Y(−∞,i−1] ⊕ PU [−i + 1],

with U a non-zero submodule of Kerf i.

Proof. Here f i is irreducible, so it is not a section, then by Proposition 2.4, fJ is a retraction with J = (−∞, i − 1], therefore
XJ = YJ ⊕ Z . Put I = [i + 1,∞), the morphism f : X → Y is described by the following diagram:

YJ ⊕ Z
(λ,µ)

−−−−→ X i
diX

−−−−→ XI

(1,0)

 f i
 fI


YJ

d J
Y

−−−−→ Y i
diY

−−−−→ YI .

Since f iµ = 0, then U = Imµ ⊂ Kerf i, we have µ = µ2µ1 with µ1 : Z i−1
→ U an epimorphism and µ2 : U → X i the

inclusion.
Take a minimal projective resolution of U:

· · · → P i−3
→ P i−2

→ P i−1 η
→ U → 0

and the complex :

PU [−i + 1] : · · · → P i−3
→ P i−2

→ P i−1
→ 0 → · · · .

Here Z i−1 is projective and η is an epimorphism, then there is a morphism ρ i−1
: Z i−1

→ P i−1 such that ηρ i−1
= µ1.

We have µ2ηρ
i−1di−2

Z = µdi−2
Z = 0. Therefore ηρ i−1di−2

Z = 0, so there is a ρ i−2
: Z i−2

→ P i−2 such that

ρ i−1di−2
Z = di−2

PU
ρ i−2.

Following this procedure we obtain a morphism of complexes ρ : Z → PU [−i + 1] such that the following diagram
commutes:

Z
µ

−−−−→ X i

ρ

 id


PU [−i + 1]

µ2η
−−−−→ X i.
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Then we have the following factorization of f :

YJ ⊕ Z
(λ,µ)

−−−−→ X i
diX

−−−−→ XI

u

 id

 id


YJ ⊕ PU [−i + 1]

(λ,µ2η)
−−−−→ X i

diX
−−−−→ XI

(1,0)

 f i
 fI


YJ

d J
Y

−−−−→ Y i
diY

−−−−→ YI

with u =


1 0
0 ρ


. Here f i is not a retraction, then u is a section, therefore ρ is a section, in particular ρ i−1

: Z i−1
→ P i−1 is a

section. Now η : PU → U is aminimal projective cover, so η is an essential epimorphism and ηρ i−1
= µ1 is an epimorphism,

therefore ρ i−1 is an epimorphism, which shows that ρ i−1 is an isomorphism and we have

PU [−i + 1] ∼= Z ⊕ L,

an isomorphism of complexeswith Li−1
= 0, so L is an acyclic complex in C−,b(Λ proj), this implies that L is a null homotopic

complex, then since PU is a minimal projective resolution, L = 0. This proves that ρ is an isomorphism and our result is
proved. �

Let S be a simple module, and let PS be the complex associated to a minimal projective resolution of S. Similarly, let IS be
the complex associated to aminimal injective co-resolution of S.Wemay assume IS = ν(QS), withQS a complex of projective
modules not necessarily in C−,b(Λ proj). We can take P0

S = Q 0
S . Consider the following complex BS given by Bj

S = P j
S for j < 0

and Bj
S = Q j+1

S for j ≥ 0. The differential of BS is given by djBS = djPS for j < −1, d−1
BS

= d0QS
d−1
PS

, djBS = dj+1
QS

for j ≥ 0. We have
a morphism σ : PS → BS given by σ j

= idP jS
for j < 0, σ 0

= d0QS
and σ j

= 0 for j > 0.

Now define a morphism ρ : BS → QS[1] as follows ρ j
= 0 for j < −1, ρ−1

= −d−1
PS

and ρ j
= (−1)jidQ j+1

S
for j ≥ 0.

It is easy to verify that σ and ρ are morphisms of complexes. We recall from 2.12 and 2.13 that we have a minimal right
almost split morphism u : PS → J−1(P0

S ), and a minimal left almost split morphism v : J−1(P0
S ) → QS[1] given by vj = 0 for

j < −1, v−1
= idQ 0

S
, v0 = −d0QS

and vj = 0 for j > 0.
We obtain the following conflation in C(Λ proj):

(s) 0 → PS
(σ ,u)T
→ BS ⊕ J−1(P0

S )
(ρ,v)
→ QS[1] → 0.

The above sequence in general is not an almost split sequence, however its restriction to all intervals L containing a
certain fixed interval L0 give almost split sequences in the corresponding category of L-complexes.

Proposition 3.12. The above sequence (s) has the following properties:

(a) If h : PS → PS is a morphism of complexes which is not an isomorphism, then there is a morphism g : BS ⊕ J−1(P0
S ) → PS

such that g(σ , u)T = h.
(b) If L is a finite interval containing [−2, 0], then the restriction of (s) to L is an almost split sequence in CL(Λ proj).
(c) The sequence (s) is an almost split sequence in C−,b(Λ proj) if and only if QS is a finite complex, this is, if and only if S has

finite injective dimension.

Proof. (a) By the properties of projective resolutions, h is an isomorphism if and only if h induces a non-zero endomorphism
of S. Therefore, h is not an isomorphism if and only if h is null homotopic, this is h = h2h1 for some h1 : PS → T , h2 : T → PS ,
for some E-injective T . Since (s) is an E-sequence h1 factorizes through (σ , u)T , this implies (a).

(b) Here L contains [−1, 0], so PS ∈ LI . Moreover PS gives a minimal projective resolution of S, then PS does not
have E-projective direct summands. Therefore as in the proof of (2) of 3.5 we conclude that (PS)L is indecomposable.
Now (IS[1])L = (IS)L[−1][1], where if L = [a, b], L[−1] = [a + 1, b + 1]. The interval L[−1] contains the interval
[0, 1], so by duality (IS)L[−1] is indecomposable. Therefore (IS[1])L is indecomposable. The functor ν induces an equivalence
ν : C(Λ proj) → C(Λ inj), then QS[1]L is an indecomposable complex. Suppose L = [a, b], then a ≤ −2 and b ≥ 0. Here
the differentials of IS are radical morphisms, the same is true for QS[1]. Consequently (QS[1])L is not of the form Ji(P). Since
QS[1]a = 0, (QS[1])L is not of the form S(P). We infer that QS[1] is not an EI-injective complex. By Proposition 6.12 of
[2] there is an almost split sequence in CL(Λ proj) ending in (QS[1])L and starting from ZL, where Z is an indecomposable
complex in C−,b(Λ proj) which is quasi-isomorphic to τ≤bν((QS[1])L[−1]) = τ≤b(IS)L[−1]. The interval L[−1] contains the
interval [0, 1], then there is a quasi-isomorphism from S to τ≤b(IS)[−1]. We have also a quasi-isomorphism from PS to S, so
we have a quasi-isomorphism from PS to τ≤bν((QS[1])L[−1]). Then we may assume Z = PS .

Now we are going to prove that the restriction of (s) to L is an almost split sequence. First observe that if the restriction
of (s) to L splits then σI is a section, but σ 0 is not a section. Therefore the restriction of (s) to L gives a non-zero element z
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of ExtCI (Λ proj)((QS[1])L, (PS)L). Now we know that there is an almost split sequence starting from (PS)I and ending in (QS)I .
Then Theorem 9.3 of [3] implies that the socle of ExtCI (Λ proj)((QS[1])L, (PS)L) as EndCI (Λ proj)((PS)L)-module is simple and any
non-trivial element of this socle is an almost split sequence. So for proving our claim we only need to prove that z lies in
the socle of ExtCI (Λ proj)((QS[1])L, (PS)L) as EndCL(Λ proj)((PS)L)-module. Take anymorphism u : (PS)L → (PS)L which is not an
isomorphism. By 1.2 there is a morphism v : PS → PS such that vL = u. By (a) of 3.3 and (a) of 3.4 v is not an isomorphism,
then by (a) there is a morphism g : BS ⊕ J−1(P0

S ) → PS such that v = g(σ , u)T . Therefore v = gI((σ , u)T )I , and then vz = 0.
This proves that z is in the socle and consequently (s) restricted to L is an almost split sequence.

(c) If (s) is an almost split sequence in C−,b(Λ proj), then by 3.7 QS[1] is finite. Conversely if QS is finite, then (s) is a
sequence inC−,b(Λ proj), whose restriction to any interval Lwhich contains [−2, 0] is an almost split sequence inCL(Λ proj).
This implies that (s) is an almost split sequence in C−,b(Λ proj). �

4. Irreducible morphisms ending in a perfect complex

In this section we consider irreducible morphisms ending in a perfect complex in Db(Λmod).We recall that a perfect
complex Y is a complex isomorphic to one Y ′

∈ Kb(Λ proj),where this last category is the homotopy category of Cb(Λ proj),
the category of bounded complexes.

We first consider the close relation between Auslander–Reiten triangles in K−,b(Λ proj) and almost split sequences in
C−,b(Λ proj).

We recall that in the category K−,b(Λ proj) a triangle

X
u

→ E
v

→ Y
w
→ X[1]

is called an Auslander–Reiten triangle if:
(AR1) X and Y are indecomposable
(AR2) w ≠ 0
(AR3) If f : W → Y is not a retraction, then there exists f ′

: W → E such that vf ′
= f .

Observe that (AR3) is equivalent to
(AR3′) If f : W → Y is not a retraction, then wf = 0. Moreover by Lemma 4.2 of [H] it follows that if g : X[1] → W is

not a section then gw = 0.
Proposition 4.1 (See Theorem 2.7 of [11]). If

X → E → Y
w
→ X[1]

is an Auslander–Reiten triangle in K−,b(Λ proj), then it is isomorphic to a triangle of the form:

X
f

→ F
g

→ Y
w
→ X[−1]

where

0 → X
f

→ F
g

→ Y → 0
is a conflation and an almost split sequence in C−,b(Λ proj). The equivalence class of this last sequence in the E-extension group
corresponds to −w under the natural isomorphism ψ : ExtE (Y , X) → HomK (Y , X[1]).

Proof. Suppose (a) X → E → Y
w
→ X[1] is an Auslander–Reiten triangle, take x = ψ−1(−w) and the corresponding

conflation:

(x) 0 → X
f

→ F
g

→ Y → 0.
Suppose s : W → Y is not a retraction. Consider the extension given by Ext(s, id)(x) = y. Thenψ(y) = −ws = 0. Therefore
y = 0, this implies that there is a morphism t : W → F with gt = s. Similarly, if u : X → W is not a section, take
Ext(id, u)(x) = z, then ψ(z) = −uw = 0, so z = 0. This implies that there is a morphism v : F → W with vf = u.
Therefore (x) is an almost split sequence and clearly

X
f

→ F
g

→ Y
w
→ X[1]

is a triangle isomorphic to (a). �

Proposition 4.2. Suppose

(x) 0 → Z
f

→ E
g

→ Y → 0
is an almost split sequence in C−,b(Λ proj) and I = [a, b] is an interval such that Y is an I-complex, with Y a

= 0, Y b
= 0, then

Z and E are in LI and

(y) 0 → ZI
fI

→ EI
gI
→ Y → 0

is an almost split sequence in CI(Λ proj).
The complex E has an indecomposable direct summand Jl(P) if and only if Z ∼= PS[−l−1], with S = P/radP. In this case, with

the notation of Proposition 3.12, (x) is isomorphic to a shift of (s) and EI = (BS[−l − 1])I ⊕ Jl(P).
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Proof. We know from [5] that Z is quasi-isomorphic to ν(Y )[−1]. Moreover ν(Y )[−1]a = ν(Y a−1) = 0, so Ha(Z) ∼=

Ha(ν(Y )[−1]) = 0. For j > b, ν(Y )[−1]j = ν(Y j−1) = 0, then Z ∈ C≤b(Λ proj), so Z ∈ LI .
Since (x) is an exact sequence we deduce that E is in C≤b(Λ proj). From the exact sequence

Ha(Z) → Ha(E) → Ha(Y )

we obtain that Ha(E) = 0, so E ∈ LI .
By (c) of 1.2 there is an inclusion of complexes σE : EI → E such that gI = gσE , we know from (d) of 1.2 that FI induces

an equivalence of categories LI → CI(Λ proj). Therefore, if gI : EI → Y is a retraction then g : E → Y is a retraction in
K−,b(Λ proj), which is not the case, thus gI : EI → Y is not a retraction, so we have the non-splittable exact sequence:

(y) 0 → ZI
fI

→ EI
gI
→ Y → 0.

We are going to prove that (y) is an almost split sequence in the category CI(Λ proj).
First observe that gI is an irreducible morphism, indeed we know from 2.2 that gI is a section or a retraction or an

irreducible. We already saw that gI is not a retraction. Now since all the g i are epimorphisms, if gI is a section then it is
an isomorphism so a retraction which is not the case, therefore gI is an irreducible morphism.

For proving that (y) is an almost split sequence it is enough to prove that if h : W → Y is not a retraction in CI(Λ proj)
then there is a v : W → EI with gIv = h. Now h is not a retraction in C−,b(Λ proj), so there is a morphism v′

: W → E with
gv′

= h. But W ∈ CI(Λ proj), thus there is a v : W → EI such that v′
= σEv. Therefore gIv = gσEv = gv′

= h. This proves
that (y) is an almost split sequence.

Suppose E has a direct summand of the form Ji(P) with P indecomposable projective Λ-module. Then there is an
irreduciblemorphism Z → Ji(P), by 2.12 there is aminimal right almost splitmorphism PS[−i−1] → J−1(P)[−i−1] = Ji(P)
with S = P/radP . This implies that Z is a direct summandof PS[−i−1]which is indecomposable, so Z ∼= PS[−i−1]. Therefore
(x) is isomorphic to a shift of the sequence (s) of 3.12. Conversely if Z ∼= PS[j] for some j, then (x) is isomorphic to a shift of
the sequence (s) of 3.12, therefore J−j−1(P) is a direct summand of E. �

Corollary 4.3. Let u : X → Y be a morphism of complexes whose homotopy class is an irreducible morphism in K−,b(Λ proj)
with X, Y indecomposable complexes. Suppose I = [a, b] is an interval such that Y a

= 0 = Y b and Y ∈ CI(Λ proj) then X ∈ LI
and uI : XI → YI is an irreducible morphism in CI(Λ proj).

Proof. By [5] we know that there is an Auslander–Reiten triangle in the categoryK−,b(Λ proj) ending in Y . Then by 4.1 there
exists an almost split sequence in the category C−,b(Λ proj):

0 → Z
f

→ E
g

→ Y → 0.

We know from (b) of 3.4 that u is an irreducible morphism in the category C−,b(Λ proj). Then there is a section s : X → E
such that gs = u. Therefore there is an isomorphism h : X ⊕ E ′

→ E such that g ′
= gh = (u, u′) : X ⊕ E ′

→ Y . Then we
have the almost split sequence:

(x) 0 → Z
f ′
→ X ⊕ E ′ g ′

→ Y → 0.

By 4.2 the restriction of (x) to I is an almost split sequence, so g ′

I is an irreducible morphism in CI(Λ proj). Therefore uI
is also an irreducible morphism in CI(Λ proj). Finally by the first part of 4.2, X ⊕ E ′ is in LI and consequently X ∈ LI . �

For the statement of the following proposition we recall from 1.2 that if X ∈ C−,b(Λ proj), and I = [a, b], then XI is a
subcomplex of X . By σX : XI → X we denote the inclusion.

Proposition 4.4. Let v : W → Y be an irreducible morphism in CI(Λ proj), where W and Y have no EI-injective direct
summands, Y is an indecomposable, and let I = [a, b], with Y a

= 0 = Y b. Then there is an irreducible morphism u : X → Y in
C−,b(Λ proj) such that XI = W and uσX = v, where σX : W = XI → X.

Proof. As in the proof of 4.3 there is an almost split sequence in C−,b(Λ proj):

0 → Z
f

→ E
g

→ Y → 0,

such that its restriction to I is an almost split sequence in CI(Λ proj). Since v is an irreducible morphism in CI(Λ proj), there
is a section s : W → EI such that gIs = v. Now by (b) of 1.2 there is a complex X in the category MI such that XI = W
and by (a) of 1.2 there is a morphism of complexes t : X → E such that tI = s. Observe that we may assume that X has not
E-projective direct summands, indeed X = X0 ⊕ T where T is E-projective and X0 has not E-projective direct summands.
ThenW = (X0)I ⊕ TI , here TI is an EI-injective complex, butW has no EI-injective direct summands, so TI = 0, and we can
take X0 instead of X .

Themorphism s is a section, so there is amorphism s′ : EI → W with s′s = idW and the functor FI induces an equivalence
between the category LI (the homotopy category of MI ) and the category CI(Λ proj). Then there is a morphism t ′ : E → X
with t ′I = s′ such that t ′t = idX + λ where λ is a morphism which factorizes through some E-projective. Since X has no
E-projective summands, then we have that λ is in the radical of the endomorphism ring ofW , so t ′t is an isomorphism and
consequently t is a section. Then u = gt : X → Y is an irreducible morphism in C−,b(Λ proj).

We have uσX = gtσX = gσE tI = gσEs = gIs = v. This proves our result. �
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Corollary 4.5. Let v : W → Y be an irreducible morphism in the category CI(Λ proj) with the conditions of 4.4. Then v is an
irreducible morphism in K−,b(Λ proj) if and only if daW is a monomorphism.

Proof. By Proposition 4.4, there is an irreducible morphism u : X → Y in C−,b(Λ proj), with XI = W and uσX = v. If v is
irreducible in K−,b(Λ proj) then σX is a section, this implies da−1

X = 0 or equivalently, KerdaX = KerdaW = 0.
Note that if KerdaX = 0 then X = W and v = u is irreducible. �

Proposition 4.6. Let Y be an indecomposable complex in C−,b(Λ proj), which is not E-projective. If Y is perfect then there is an
almost split sequence in C−,b(Λ proj) ending in Y . If Y is isomorphic in Db(Λmod) to a finite complex of injectives, then there is
an almost split sequence in C−,b(Λ proj) starting from Y .
Proof. Here Y is not E-projective so it is indecomposable in the category K−,b(Λ proj). Then if Y is perfect we know from
[5] that there exists an Auslander–Reiten triangle in K−,b(Λ proj) ending in Y , therefore by 4.1 there is an almost split
sequence in C−,b(Λ proj) ending in Y . Now if Y is isomorphic in Db(Λmod), to a finite complex of injective Λ-modules
W , we may assume W is an indecomposable complex of finitely generated injective Λ-modules, then W ∼= ν(Z) with
Z an indecomposable finite complex of finitely generated projective Λ-modules. We know that Y is not homotopically
trivial, so Z is not an E-projective complex, therefore there is an almost split sequence ending in Z[1] and starting from L,
an indecomposable complex in C−,b(Λ proj) which is quasi-isomorphic to ν(Z) ∼= W . Here Y and L are indecomposable
complexes in C−,b(Λ proj), they are isomorphic in Db(Λmod), so L and Y are isomorphic complexes and we obtain an
almost split sequence in Db(Λmod) starting from Y . �

5. The selfinjective case

In this section we assume thatΛ is a selfinjective Artin k-algebra, k a commutative Artinian ring. We are going to study
irreducible morphisms in Cb(Λ proj).

In the following if U is a Λ-module and U → P0
→ P1

→ · · · is a minimal injective co-resolution, denote by IU the
complex:

IU : · · · → 0 → P0
→ P1

→ · · · .

We have the following dual of Proposition 3.11.
Proposition 5.1. Let Λ be a selfinjective algebra and let f : X → Y be an irreducible morphism in C−,b(Λ proj) such that f i is
an irreducible morphism inΛ proj. If f[i+1,∞) is not an isomorphism we have

Y[i+1,∞)
∼= X[i+1,∞) ⊕ IU [−i − 1],

with U a non-zero submodule of Cokerf i.
Before to state the main result of this section we need to notice the following property of the irreducible morphisms in

the categoryΛ proj.
Proposition 5.2. Let Λ be a selfinjective algebra and f : P → Q an irreducible morphism in Λ proj, then the cokernel of f has
no projective submodules and the kernel of f has no projective submodules.
Proof. By 2.16 and 2.17 there are decompositions of P = P1 ⊕ Z and of Q = Q1 ⊕ W such that with respect to these
decompositions

f =


g 0
0 s


with g : P1 → Q1 an irreducible morphism in the radical and s an isomorphism. Clearly Kerf = Kerg and Cokerf = Cokerg ,
sowemay assume that f is a radical irreduciblemorphism. Let L be a projective submodule of Cokerf . HereΛ is a selfinjective
algebra, then L is an injective module and then a direct summand of Cokerf . We have a retraction v : Cokerf → L, and then
an epimorphism η : Q → Lwith ηf = 0. Since L is projective, then η is a retraction. But f is irreducible then ηf is irreducible,
a contradiction. Similarly one can prove that Kerf has not projective submodules. �

Lemma 5.3. Let f : X → Y be an irreducible morphism in C−,b(Λ proj),with X and Y complexes in C[a,b](Λ proj). We have the
following:
(1) If f i : X i

→ Y i is an irreducible morphism inΛ proj, then f(−∞,i−1] and f[i+1,∞) are isomorphisms.
(2) If Xa

≠ 0 and Y a
= 0, then f is an E-epimorphism. If Xa

= 0 and Y a
≠ 0, then f is an E-monomorphism.

(3) If Xb
≠ 0 and Y b

= 0, then f is an E-epimorphism. If Xb
= 0 and Y b

≠ 0, then f is an E-monomorphism.
Proof. (1) If f[i+1,∞) is not an isomorphism then Y[i+1,∞) has IU [−i−1] as a direct summand, withU a non-trivial submodule
of Cokerf i. By Proposition 5.2, U is not an injective Λ-module. Since Λ is selfinjective, IU is not a perfect complex, which
implies that Y is not perfect, a contradiction, therefore f[i+1,∞) is an isomorphism. In a similarwaywe can prove that f(−∞,i−1]
is an isomorphism.

(2) Xa
≠ 0, Y a

= 0. If for some s, f s is an irreducible morphism inΛ proj, then since f a = 0, s > a, then by (1), f(−∞,s−1]
is an isomorphismwhich implies that f a = 0 is an isomorphismwhich is not the case. Then by the version of Proposition 2.9
for C−,b(Λ proj), we have that f is either an E-epimorphism or an E-monomorphism. But f a is not a section, therefore f is
an E-epimorphism. The other cases are proved in a similar way. �
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We have already seen that given a perfect complex Y in C−,b(Λ proj), there is an almost split sequence in C−,b(Λ proj),
ending in Y and starting from a complex Z of projective Λ-modules quasi-isomorphic to ν(Y )[−1]. In our case ν(Y )[−1]
is a finite complex of projective Λ-modules. Therefore we may assume Z = ν(Y )[−1], this implies that the almost split
sequence ending in Y and starting from ν(Y )[−1] is in Cb(Λ proj). Moreover, since we have an equivalence of categories
ν : Cb(Λ proj) → Cb(Λ proj), the complex Y ∼= ν(Z)[−1] for Z some finite complex of projectiveΛ-modules. Consequently,
there is an almost split sequence in Cb(Λ proj), also starting from Y .

However, observe that in general (by 2.12) there are no minimal right almost split morphisms in Cb(Λ proj) ending in
indecomposable E-projective complexes. Similarly, (by 2.13) in general there are no minimal left almost split morphisms
Cb(Λ proj) starting from indecomposable E-injective complexes.

Nowweare ready to give the followingproperty of almost split sequences inCb(Λ proj), forΛ a selfinjectiveArtin algebra.
In the following for M ∈ Λ-mod we denote by |M| the length of M as a k-module. If X is a finite complex of finitely

generatedΛ-modules we put |X | =
∑

i∈Z |X i
|. For X a complex suppX = {i ∈ Z|X i

≠ 0}. Clearly if X is an indecomposable
finite complex, then suppX = [a, b] for some a and b.

Theorem 5.4. LetΛ be a selfinjective Artin algebra and let X be an indecomposable complex in Cb(Λ proj)with suppX = [a, b].
If

(a) 0 → X
u=(u1,...,un)

→ E1 ⊕ · · · ⊕ En
v=(v1,...,vn)

T

→ Y → 0

is an almost split sequence in C−,b(Λ proj) with all the Ei indecomposable complexes, then n ≤ 2. For some i, ui is an
E-monomorphism and vi is an E-epimorphism. Moreover, each irreducible morphism between indecomposable objects in the
category Cb(Λ proj) is either an E-monomorphism or an E-epimorphism.

Proof. Claim 1 Suppose

(z) 0 → Z
(u,s)T
→ U ⊕ V

(v,t)
→ W → 0

is an almost split sequence in C−,b(Λ proj), with suppW = [c, d], then suppZ = [c + 1, d + 1]. Moreover, if U c
≠ 0, then

V c
= 0 and u is an E-monomorphism with ud+1 an isomorphism. The morphism s : Z → V is an E-epimorphism.
In fact we may assume Z = ν(W )[−1] so suppZ = [c + 1, d + 1]. Since W d+1

= 0, the exactness of (z) implies that

(ud+1, sd+1)T : Zd+1
→ Ud+1

⊕ V d+1

is an isomorphism. Therefore |Zd+1
| = |V d+1

| + |Ud+1
|.

Suppose now thatU c
≠ 0 and V c

≠ 0. Since Z c
= 0, (2) of 5.3, implies that u and s are E-monomorphisms. Consequently,

ud+1 and sd+1 are sections,which implies that |Zd+1
| ≤ |Ud+1

| and |Zd+1
| ≤ |V d+1

|. Then |Zd+1
| = |V d+1

|+|Ud+1
| ≥ 2|Zd+1

|,
a contradiction, proving that V c

= 0.
Here V c

= 0 and W c
≠ 0, then by (2) of 5.3, t is an E-monomorphism. Since W d+1

= 0, then V d+1
= 0. We have that

Zd+1
≠ 0, then (3) of 5.3 implies that s is an E-epimorphism.

Finally, from |Zd+1
| = |V d+1

| we deduce that ud+1
: Zd+1

→ V d+1 is an isomorphism.
Claim 2 Suppose u : Z → U is an irreduciblemorphism between indecomposable complexes in Cb(Λ proj), such that Z is

not E-projective and u is an E-monomorphism. Then suppZ = [a, b], implies suppU = [a − 1, b]. Moreover the morphism
ub

: Zb
→ Ub is an isomorphism.

Indeed there is an almost split sequence starting from Z of the form (z). Using the above notation we have [a, b] =

[c + 1, d + 1]. If U c
= 0, then u is an E-epimorphism which is not the case, so U c

≠ 0, thus by Claim 1, we have that
ud+1

= ub is an isomorphism.
Now, take an almost split sequence (a) starting from X . Suppose suppX = [a, b], then suppY = [a − 1, b − 1]. We are

going to prove that n ≤ 2.
There is some iwith Ea−1

i ≠ 0,wemay assume i = 1. ByClaim1, (E2⊕· · ·⊕En)a−1
= 0.Here (v2, . . . , vn) : E2⊕· · ·⊕En →

Y is an irreducible morphism and Y a−1
≠ 0, then by (2) of 5.3, (v2, . . . , vn) is an E-monomorphism. Therefore

|Eb−1
2 | + · · · + |Eb−1

n | ≤ |Y b−1
|.

Suppose n ≥ 3, then as before v2 and v3 are E-monomorphisms. By 4.2, E2 and E3 are indecomposable which are not
E-projective complexes. Claim 2, shows that |Eb−1

2 | = |Y b−1
| and |Eb−1

3 | = |Y b−1
|, this implies that 2|Y b−1

| = |Eb−1
2 | +

|Eb−1
3 | ≤ |Y b−1

|, a contradiction. Consequently, n ≤ 2. Then in case n = 2, u1 and v1 are E-monomorphisms and u2 and v2 are
E-epimorphisms.

Now, if f : Z → W is an irreducible morphism between indecomposable perfect complexes, they are part of an almost
split sequence (a). The above implies that f is an E-monomorphism or an E-epimorphism. This completes the proof. �

Theorem 5.5. IfΛ is a selfinjective Artin algebra, then the non-trivial components of the Auslander–Reiten quiver of Cb(Λ proj)
are of the form ZA∞.
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Proof. Let X be an indecomposable complex which is not E-projective in Cb(Λ proj), then by Proposition 4.6 there are
almost split sequences in Cb(Λ proj), ending in and starting from X , so this last category has almost split sequences and we
can consider its Auslander–Reiten quiver. LetC be a non-trivial component of the Auslander–Reiten quiver of Cb(Λ proj). By
Theorem 5.4 given any indecomposable Y ∈ C, there is an irreducible E-monomorphism Y → Y ′ with Y ′ indecomposable,
we have |Y | < |Y ′

|. Therefore we may find a sequence of irreducible E-monomorphisms:

Y0 → Y1 → Y2 → Y3 → · · ·

such that there are not any irreducible E-monomorphism ending in Y0.
Clearly, we have an almost split sequence

τY0 → τY1 → Y0,

where τ(−) = ν(−)[−1].
Note that for all i > 0 we have irreducible morphisms τYi+1 → Yi and Yi → Yi+1 where the last one is an

E-monomorphism and then again by Theorem 5.4 the first morphism is an E-epimorphism. Therefore, we have that
|Yi−1| < |Yi| < |τYi+1| so Yi−1 is not isomorphic to τYi+1 and we get the almost split sequence:

τYi−→τYi+1 ⊕ Yi−1−→Yi.

Moreover, we have a sequence of irreducible E-monomorphisms:

τY0 → τY1 → τY2 → τY3 → · · ·

such that there are not any irreducible E-monomorphism ending in τY0.
Applying repeatedly this procedure, we have, for all s ∈ Z and i > 0 the almost split sequence:

(x(s, i)) τ sYi −→ τ sYi+1 ⊕ τ s−1Yi−1 −→ τ s−1Yi,

with τ sYi → τ sYi+1 an irreducible morphism which is an E-monomorphism and τ sYi → τ s−1Yi−1 an irreducible morphism
which is an E-epimorphism. For i = 0 we have the almost split sequence:

(x(s, 0)) τ sY0 −→ τ sY1 −→ τ s−1Y0,

for all s ∈ Z.
Then if Z is an indecomposable in the component C we have that Z = τ sYi, for some s and i. In order to prove that

C = ZA∞, it is enough to prove that τ sYi ∼= τ tYj implies i = j and s = t . Suppose i and j are both greater than 0. Then the
sequences (x(s, i)) and (x(t, j)) are isomorphic, and since the irreducible morphism τ tYj → τ t−1Yj−1 is an E-epimorphism,
then τ s−1Yi−1 ∼= τ t−1Yj−1. Following in this way we can find some l such that i− l = 0 or j− l = 0. But then the almost split
sequence starting from τ s−lYi−l has an indecomposable middle term, so i− l = 0 and j− l = 0. Consequently, i = l = j and
then t = s, because the complexes Yi are not τ -periodic. �

Proposition 5.6. If f : X → Y is an irreducible morphism in the category Cb(Λ proj), then f is either an E-epimorphism or an
E-monomorphism.

Proof. By Lemma 2.16 and Proposition 2.17wemay assume f is a radicalmorphism. Then if X and Y are indecomposable our
result follows from 5.4. If both X and Y are decomposable we should have irreducible morphisms X1 → Y1, X2 → Y2, X2 →

Y1 and X2 → Y2, for pairwise non-isomorphic indecomposable objects X1, X2, Y1 and Y2. But this is impossible in ZA∞. If X
is decomposable and Y indecomposable f is a minimal right almost split morphism, so it is an E-epimorphism. In case X is
indecomposable and Y decomposable f is a minimal left almost split morphism, so it is an E-monomorphism. �

6. Irreducible morphisms involving non-perfect complexes

This last part is devoted to the study of irreducible morphisms between indecomposable complexes f : X → Y in the
category K−,b(Λ proj),where either X or Y is a non-perfect complex.

We first consider the case in which Y is a non-perfect complex, as we see later this implies that X is also a non-perfect
complex.

In case Λ is Gorenstein all Auslander–Reiten triangles in K−,b(Λ proj) consist of perfect complexes, so in this case if
f : X → Y is an irreducible morphism in K−,b(Λ proj) involving non-perfect complexes both X and Y are non-perfect
complexes. This situation is considered in Proposition 5.5 of [7] for finite dimensional Gorenstein algebras over a field. It
is proved that in this case X ∼= νY [−1]. For the general case of an Artin algebra we obtain a generalization of the above
mentioned result.

Finally we consider the case in which Y is a perfect complex and X is non-perfect. This situation occurs when there is an
Auslander–Reiten triangle ending in Y and νY is a non-perfect complex.

In order to prove our results in this section, we use the following Lemma. We also need to recall that for every complex
X ∈ CI(Λ proj) there exist H an EI-injective complex and X0, a complex without EI-injective direct summands, such that
X ≃ X0 ⊕ H in CI(Λ proj).
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Lemma 6.1. Let f : X → Y be an irreducible morphism inK−,b(Λ proj). If Y is a non-perfect complex then X is also a non-perfect
complex.

Proof. We may assume f : X → Y is an irreducible morphism in the category C−,b(Λ proj). By Theorem 3.5 there is an
interval I such that fI is an irreducible morphism and then fI is not a section. So by Proposition 2.4, fI(−) is a retraction. This
implies that for all j ∈ I(−), the map f j is not zero and so X j

≠ 0. So X is not a perfect complex. �

For the proof of next proposition we recall that a complex X ∈ C(Λmod) is called q-projective if HomK(Λmod)(X, C) = 0
for any acyclic complex C ∈ C(Λmod). Moreover if s1 : X1 → Y1 and s2 : X2 → Y2 are quasi-isomorphisms with X1, X2
q-projective then given amorphism f : Y1 → Y2 in C(Λmod) there is a uniquemorphism up to homotopy h : X1 → X2 such
that fs1 = s2h in K(Λmod). Observe that if Y1 = Y2 then there is an isomorphism u : X1 → X2 in the homotopy category
such that s2u = s1 in K(Λmod). If X is a complex in C≤m(Λ proj) for somem, then X is a q-projective complex.

Proposition 6.2. Let W ∈ C≤n(Λmod) and let q : Z → W be a quasi-isomorphism with Z a complex in C≤n(Λ proj) without
E-projective direct summands.

Suppose L = [a, n] is an interval of Z. If q1 : Z ′
→ WL is a quasi-isomorphism with Z ′

∈ C≤n(Λ proj) then there is an
isomorphism of complexes:

(ZL)0 ∼= (Z ′

L)0.

Proof. There is a morphism of complexes WL(−)
d

→ WL[1], given by dj = 0 if j ≠ a − 1 , da−1
= da−1

W : W a−1
L(−) = W a−1

→

W a
= WL[1]a−1. Observe thatW = Con(d[−1]). Therefore in K(Λmod)we have the triangle:

(a) WL(−)[−1]
d[−1]
→ WL

u
→ W

v
→ WL(−)

and we have the exact sequence of complexes:

(x) 0 → WL
u

→ W
v

→ WL(−) → 0.

Let q2 : R → WL(−) be a quasi-isomorphism with R ∈ C≤a−1(Λ proj).
There exists amorphism of complexes h : R[−1] → Z ′ such that q1h = d[−1]q2[−1] in the homotopy category. Consider

now the triangle:

(b) R[−1]
h

→ Z ′
→ Con(h) → R.

The triple (q2[−1], q1, λ) is a morphism from the triangle (b) to the triangle (a). Since q2 and q1 are quasi-isomorphisms
then λ : Con(h) → W is also a quasi-isomorphism. We have also a quasi-isomorphism q : Z → W , therefore there is an
isomorphism in the homotopy category v : Con(h) → Z such that qv = λ. Since Z has no E-projective direct summands,
then Con(h) ∼= Z ⊕ T as complexes, with T an E-projective complex.

We have the exact sequence

0 → Z ′
→ Con(h) → R → 0.

Since RL = 0, we obtain

ZL ⊕ TL ∼= Con(h)L ∼= (Z ′)L.

Note that TL is EL-injective and then the result holds. �

Recall that if X, Y belong to C−,b(Λ proj)we can take IX,Y = [m, l] a finite interval such that X, Y ∈ LIX,Y ,with Y l
= 0.

Proposition 6.3. Let X, Y be indecomposable complexes which are not E-projective, and let f : X → Y be an irreducible
morphism in C−,b(Λ proj).

Suppose Y is a non-perfect complex and q : Z → νY [−1] is a quasi-isomorphism with Z a complex in C≤n(Λ proj) without
E-projective direct summands, then for I = IX,Y :

(1) For all interval L containing I, XL is a direct summand of ZL.
(2) If ZL is indecomposable for all interval L containing I then X ∼= Z. In particular Z ∈ C−,b(Λ proj).
(3) If Z ∈ C−,b(Λ proj), then X ∼= Z.

Proof. (1) Since Y is indecomposablewhich is not E-projective in the category C−,b(Λ proj), then by (2) of 3.5 for all interval
L = [a, n] containing I, the complex YL is indecomposable. Moreover, the Nakayama functor ν induces an equivalence
ν : CL(Λ proj) → CL(Λ inj) and ν(Y )L = ν(YL) is indecomposable.

Consider the intervals I1 = [a − 2, n], I0 = (−∞, n]. By Theorem 3.5, fL is an irreducible morphism for all interval
L containing I, in particular, fI1 , fI0 are irreducible morphisms between indecomposable complexes. Take the almost split
sequence in CI1(Λ proj) (see [2]):

(a) 0 → AI1(YI1)
u

→ E
v

→ YI1 → 0.
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We have the inclusion σ : YL → YI1 , this morphism is not a retraction, so there is a morphism λ : YL → YI1 such that
vλ = σ . But this implies that the restriction of the above sequence to L splits.

Here Y n
= 0, thenAI1(YI1) coincideswith Z ′

I1
, where Z ′ is a complexwithout E-projective direct summands inC≤n(Λ proj)

which is quasi-isomorphic to νYI1 [−1] = (νY [−1])[a−1,n] (see Proposition 6.12 in [2]).
By Proposition 6.2, if Z is a complex without E-projective direct summands in C≤n(Λ proj) quasi-isomorphic to νY [−1]

then

(Z[a−1,n])0 ∼= (Z ′

[a−1,n])0.

Note that for any complex C , CL = (C[a−1,n])L.Moreover C[a−1,n] = (C[a−1,n])0 ⊕ T , with T an E[a−1,n]-injective. Clearly TL
is an EL-injective, so

(∗) (CL)0 ∼= [((C[a−1,n])0)L]0.

Using the isomorphism (∗), we obtain the following isomorphisms of complexes:

(ZL)0 ∼= [((Z[a−1,n])0)L]0 ∼= [((Z ′

[a−1,n])0)L]0
∼= (Z ′

L)0.

Here fI1 : XI1 → YI1 is an irreducible morphism, then there exists a complex isomorphism E ∼= E ′
⊕XI1 . But the sequence

(a) restricted to L splits, then (Z ′

I1
)L ⊕ YL ∼= E ′

L ⊕ XL. Note that XL is not EL-injective because by Lemma 6.1 X is a non-perfect
complex. Using Proposition 2.15 we know that XL is not isomorphic to YL and then, by Krull–Schmidt Theorem, we conclude
thatXL is a direct summand of (Z ′

I1
)L ∼= Z ′

L, and thenXL is a direct summandof (Z ′

L)0
∼= (ZL)0 andweobtain our first statement.

(2) If ZL is indecomposable for all interval L containing I , then XL ∼= ZL, for all interval L containing I. In particular, for all
i ∈ Z, H i(X) ∼= H i(Z) and hence Z ∈ C−,b(Λ proj).

(3) Suppose Z ∈ C−,b(Λ proj). Take L = [t, n] an interval containing I such that H i(X) = 0 and H i(Z) = 0 for i outside
of [t + 1, n] and Z ∈ C≤n(Λ proj). Then X and Z are in LL, by (2) of Theorem 3.5, ZL is indecomposable, so by (1) we have
XL ∼= ZL. Then, from (d) of 1.2 we deduce that X ∼= Z . �

As a consequence of the above we obtain the following result in case of Gorenstein Artin algebras. This was proved in
Proposition 5.5 of [7] for finite dimensional algebras over a field.

Corollary 6.4. If Λ is a Gorenstein Artin algebra, and there is an irreducible morphism in C−,b(Λ proj), f : X → Y with X, Y
indecomposable, Y a non-perfect complex, then X is quasi-isomorphic to νY [−1].

Proof. In case Λ is Gorenstein, if Y ∈ C−,b(Λ proj) then ν(Y ) = D(Λ) ⊗Λ Y is a complex quasi-isomorphic to a complex
Z ∈ C−,b(Λ proj), then we apply Proposition 6.3. �

Proposition 6.5. If f : X → Y is an irreducible morphism between indecomposable complexes in K−,b(Λ proj) with Y a perfect
complex and X a non-perfect complex then H j(νX) ≠ 0 for infinitely many integers j ∈ Z, or ν(X) ∼= ν(Y ) in Db(Λmod).

Proof. Since Y is a perfect complex, there is an Auslander–Reiten triangle in K−,b(Λ proj):

W → E → Y → W [1],

so X is a direct summand of E and then there is an irreducible morphism u : W → X .
Now, suppose the integers j ∈ Z such that H j(νX) ≠ 0 form a finite set. Take Z ∈ C≤n(Λ proj) an indecomposable

complex quasi-isomorphic to νX for some n. Then by our hypothesis Z ∈ C−,b(Λ proj). Therefore by (3) of Proposition 6.3,
W ≃ Z[−1], soW ≃ νX[−1] in the bounded derived category. ButW ≃ νY [−1] inDb(Λmod) (see [5]), then ν(X) ∼= ν(Y )
in Db(Λmod). �
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