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1. 1NT~onucT10N 

A number of authors have employed variations of the Waiewski retract 
method (see [12]) to study second-order boundary value problems. In the 
area of ordinary differential equations, these include Hukuhara [6, 71, 
Jackson and Klaasen [8], and Kaplan, Lasota, and Yorke [9]. Bebernes and 
Kelley [l] have extended the results of Jackson and Klaasen to contingent 
equations. 

In this paper, we use a variation of the Waiewski method similar to those 
developed by Kluczny [ll] and Hukuhara [6] to prove existence theorems 
for some nth-order boundary value problems, where IZ > 3. Section 2 
contains the basic topological results. In Section 3, we show that an existence 
theorem of Klaasen [lo] extends to nth-order equations under slightly 
weaker hypotheses. The results of Sections 2 and 3 are brought together in 
Section 4 to produce existence theorems for a class of boundary value problems. 
We conclude the paper with an example of a third-order equation from 
boundary-layer theory. Coppel [2] has also used a topological argument 
to prove existence for a particular boundary value problem associated with 
this equation. 

2. TOPOLOGICAL PRELIMINARIES 

Let R” denote n-dimensional Euclidean space and let V be an open set in 
R1 x R”. We shall consider the ordinary differential equation 

x’ =f(t, x), (1) 

where f is a continuous function on T/ with values in R”. Let W be a subset 
of lr and aW be the topological boundary of W. 

* This article is a portion of a Ph.D. thesis directed by Professor J. IV. Bebernes at 
the University of Colorado. 
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For P E ‘IV, the right zone of emission fyonz P is the set E+(P) = {(T, X(T)): 
3a < 7 such that P = (0, x(u)), x(t) is a solution of (1) on [in, T] and 
(t, x(t)) G W for t E [G, T]>. If A C IV, we define E+(S) = (JPeA E-t(P). The 
right trace of emission from A is defined to be the set T(A) = E-‘(R) 1-1 %TV. 

The following criterion for compactness of the right zone of emission will 
be useful. 

LEMMA 2.1. Suppose A is a compact subset of I+’ ad W is n closed subset 
of V. Then E+(A) is compact if and only if there is no sobtim x(t) of (1) 
enznnatirg from A with (t, x(t)) E W on its right maximal interral of existence. 

Proof. If there is such a solution x(t), then E’(A) is not bounded, so it 
is not compact. 

Suppose there is no such solution emanating from A. Let (P,:JT===, be a 
sequence of points in E+(A). For each k, let xx.(t) be a solution of (1) and let 
ui; and TV be real numbers such that (ug , ~~(0~)) E A, PI, = (T?:, I +(T,)) and 
(t, xJt>) E PI’ for t E [cli, TJ. Furthermore, suppose each xk(t) is defined on 
its maximal interval of existence (CQ , We). Since A is compact, we may assume 
(TV + G, +..crJ ---t x0 as k + CQ and we have (0, x0) E 4. 

By Theorem 3.2 of [4, p. 141 there is a solution x(t) of (1) defined on its 
maximal interval of existence (a, W) with ~(0) = x’@ and a subsequence which 
we again name <xk(t))rzl which converges uniformly to x(t) on compact 
subintervals of (Al, w). Choose t, E (01, wj so that (t, , x(tO) 6 IV. For k suffi- 
ciently large, (t, , xlc(tD)) $ W and thus (sk < ~~~ < t, . Choose E > 0 so that 
z < 0 - E. Then G - E < ‘TV < t, and sk(t) + x(t) umformlp on [a - E, t,,] 
for k sufficiently large, so (P&F=, is bounded. 

Thus some subsequence of (Pk->FCl converges to a point P in W. %I- the 
uniform convergence, P lies on the graph of x(t), so P E E+(A). Hence E+(=l) 
is compact. Q.E.D. 

The assumption that IV is closed can be weakened. See Theorem 4.1 of [l I] 
for details. 

Kest, we generalize the idea of a strict egress point in the fashion of 
Hukuhara [6]. Define 

s = (P = (t, ) x,,) E ~IIJ’z 3~ > 0 such that, for 0 < T - t, < E, 

E+(P) n (((7, x): x E R”) u (aI7 n {(t, x): t < T, x E R”))) is connected). 

The points of S are the strict egress points of T/t’ relative to Eq. (1). 
The following lemma is very much the same as Proposition 4.2 of [6], and 

we give only an indication of the proof. 

LEMRZZ 2.2. Suppose A ti a cmnected subset of F ad E-b(A) is compact. 
If T+(A) C S, then T+(A) is connected. 
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Proof. Suppose T+(A) is not connected. Then we can write T+(A) = 
Tl u T2 , where Tl and T2 are nonempty and compact, and Tl f~ T, = .B. 
Define, for i = 1, 2, 

EL = (0 E E+(A): E+(Q) n Ti f ia>. 

Then each Ei is a nonempty closed subset of E+(A) and El u E2 = E+(A). 
Since A is connected, E+(A) is connected, so El n E2 is nonempty and 
compact. Let P = (t, , x0) belong to El n E2 and have the property that no 
point in El n E2 has t component greater than to . 

Suppose P E al%‘. We can assume P E TL . There is an E > 0 such that for 
O<T--tO<E, 

F, = E+(P) II ({(T, x): x E R”) u (8Vn ((i, x): t < T, x E R”})) 

is connected. Fix 7 E (to , to + l ) and define, for i = 1, 2, 

F,i = {Q EF,: E+(Q) n Ti f D:>. 

These sets are closed and F,, u F,, = F, . Furthermore, F,, - P is closed 
and nonempty since P is not a limit point of F,, . Since F,., u (FT2 - P) = F, 
is connected, FT1 n (FTg - P) f IZ; . This result implies that there is a point 
in El n E2 with t component greater than to and gives a contradiction. 

If P is in the interior of IV, one can arrive at a contradiction in a similar 
manner using the Kneser Theorem for ordinary differential equations. It 
follows that T+(A) is connected. Q.E.D. 

3. A BOUNDARY T~ALUE PROBLEM FOR ~TH-ORDER EQUATIONS 

We shall now consider the nth-order differential equation 

3 ,(n) = f(t, y )..., y-l)), (59 

where n > 3 and f is continuous from R1 x R” to R1. Let PO, ,@,..., pndz, 
Ws be real constants. The boundary value problem to be considered in this 
section is 

y(rz) = f(t, y,..., y(+l)), 

y(i)(a) = pi (i = o,..., n - 2), y’“-2’(q = p-2. (3) 

The following lemma follows in a routine way from the Schauder fixed- 
point theorem. 

LEMMA 3.1. Iff is Bounded on [a, b] x R’“, then (3) has a solutiow 
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It will be necessary in order to prove existence of solutions to various 
boundary value problems to add an assumption governing the behavior of the 
(n - 1)st derivative of solutions of (2). Let I be an interval of real numbers. 
We have the following hypothesis. 

H(I): Let y(t) be a solution of (2) with maximal interval of existence J 
with respect to I x IV. If y(n-8)(t) is bounded on J, then yo-l)(t) is bounded, 
on J. 

LE~IMA 3.2. Let Z be a closed subset of (a> x Rn and suppose H([a, b]) 
is satisfied. If ( ykj& is a sequence of solutions of yin) = fr;(t, y,. .., y(+l)) z&h 
initialpoints ill Z such that (JJ$)>:=~ is uniformly bounded on [a, b] for i = Q,..., 
n - 2, where theft’s are continuous functions on [a, b] x RTz which converge 
unifomzly to f on compact subsets, then there is a sobtioz y(t) of (2) on [a, b] 
and a subsequence of (yk>Tzl which cowterges toy xmiformly OR [a, b]. 

Proof. There is an d/I such that 1 yr-‘j(t) I < M for each k and all 
t E [a, b]. Then 

j yp(t&“)j = / &“‘(b) - y?-‘)(a) 1 211d _______ ___ 
b-a G b--a ’ 

for some sequence (t,jTzI of points in [a, b]. 
The sequences (TV)& , <~yk(tk)>~Cl ,..., (y~‘~l)(tT,.))~~l are bounded se- 

quences of real numbers. Let <ki)Tzj=, be a subsequence of (g>%, such that 
each of the above sequences converges. 

By the convergence theorem used in the proof of Lemma 2.1, there is a 
subsequence of (&.>~=r which converges uniformly to a solution y(t) of (2) 
on compact subintervals of the maximal interval of existence of y(t). Hypo- 
thesis H([n, b]) and the uniform boundedness of ~:yfj’j& for i = O,..., n -. 2 
imply that y(t) is defined on [a, b] and that the subsequence converges 
uniformly to y(t) on [a, b]. Q.E.D. 

Let $,$ E C”([a, b]) with G”)(t) > 4o)(t) for i = O,..., IZ - 2 and all 
t E [n, b] and 

$/P’(t) < f(t, y,..., y’“-31, p”‘(t), p-l’(t)), (4) 

p’(t) > f (t, J’ ,-..,J 
An-3), #W)(t), p”-l’(q) 

(3 

for $o)(t) < y(i) < #i)(t) (i = O,..., IZ - 3) and t E [a: b]. 
Next, we make some modifications of f. For i = O,..., n - 3 define the 

variables 

for yo) > z+Yi)(t), 
j+‘(t) = for yW(t) > y”) > 4”)(t), 

for $(i)(t) > y(“) (t E [a, 41. 
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Then we define 

F(t,y,...,y(+l’) 

f(t, y(t) )..., yn-3’(t), y(=2’, y’“-1’) = 

I 

for p"(t) > p-2) > p-"(t), 

f(t, y(t) )..., y-(t), p-(t), y-q + 1 ~';~L'$r~;~~~2) 

for p-"(t) 3 p-2). 

Finally, let 

G,(t,~‘,...,y-’ ) \ 
‘F(t, y )...) y(‘l-2’,j) for y(“-l) > j, 

= t F(t, y )...) y(n-2’, y(n-1’) 

t 

for j > y(+l) > -j, 

F(t, Y ,...,y(n-2), -j) for -j > y(+l), 

for integers j satisfying j > maxtpIa bl (max{l +“-l)(t)[, / #(“-l)(t)i)}. 
We now consider the differential equations 

yen’ = F(t, y ,..., y@-l)), (6) 

yen’ = G3(t, y ,..., yO’-l)). (7)j 

LEMMA 3.3. Suppose #(t) and d(t) are as described above and suppose y(t) 
is a solution of (6) OY (7)j on some interval I C [a, b]. Let cl , a2 E I with a, > u1 
and suppose 4(“-2)(s) < y’+“)(ul) < #“-2)(ul). If Y(“-~)(u~) > x/@-~)(u~), 
then y’“-“)(t) > #n-z)(t) fey t E I n [uB , b], and ify(+“(u2) < $(“l-2(u2), then 
p2j(t) < p-2)(t) for t E I n [u, , b]. 

Proof. Let y(t) be a solution of (6). If it is a solution of (7)j for some j, 
the proof is similar. 

Consider the case y(+2)(u,) > ~,P-~)(cs~). Suppose there exists a 
t E I n [u2 , b] such that y(n-2)(t) = #(n-2)(t). Then JJ(+~) - $(n-2) has a 
positive maximum at some t,, E (ul , t). We have y(n-l)(t,,) - f”-“(to) = 0, 
y~~-ytJ - 2p-2’(q)) > 0, and y(“)(t,,) - q!@(t,,) ,( 0. But, by (4), 

y’“‘(t,) - $‘“‘(to) = F(to )..., y’yt,)) - ap’(t,) 

= f (t, ) j&J,..., p’“-3’(t0), $W”‘(t,), z/‘n-l’(t,)) - @“‘(to) 

+ 
yr”-2yto) - #‘“-“(to) 

1 + y’“-2’(to) _ p-“‘(t,) 

y’“-2’(to) - ~w-a(to) 

3 1 +y’n-2’(to) - pz-“‘(to) ’ O- 
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This contradiction proves the lemma for the case considered. The case 
ycn-s)(ua) < +(+2)(crs) is similar. Q.E.D. 

The next theorem is a generalization of Theorem 7 in [lo]. 

THEOREM 3.1. Let S/J(~) and 4(t) be as given above and let PO,..., ,!3+87 STs-” 
be real nmzbers satisfying $(z)(a) < /3(z) < #@(a) for i = O,..., IZ - 2 and 
#“-“l(b) < &n-2 < #(n-21(@. /j ssunze hypothesis H([a, b]) is satisjied. Tlzen (3) 
has a solzztion y(t) such that $(i)(t) < yfi)(t) < fP(t) for t E [a, b] ad 
i = O,..., n - 2. 

F’roc~f. Since Gj(t, y ,..., y(“-l)) is continuous and bounded on [a, b] x R”, 
the boundary value problem consisting of (7)j and the boundary conditions 
in (3) has a solution yj(t) for each value of j by Lemma 3.1. Moreover, by 
Lemma 3.3 $l+2)(t) <y:“-“)(t) < 4(+“)(t) for t E [a, b]. Since $@)(a) < 
pi < #J”)(a) for i = O,..., n - 3, successive integrations yield do)(t) < 
y?‘(t) < t/W(t) for i = O,..., n - 3. 

Now c,Gj> converges uniformly to F on compact subsets of [a, b] x Rn 
andF coincides withf for+“)(t) <y(o < #o)(t) and t E [a, b] (i = O,..., n - 2). 
By Lemma 3.2, a subsequence of < yj) converges uniformly to a solution y(t) 

of (3) on [a, b], and$ci)(t) < y(z)(t) < yW(t) fort E [a, b] and i = O,..., n - 2. 
Q.E.D. 

4. A CLASS OF BOUNDARY T~ALUE PROBLEMS 

We can use the results of Sections 2 and 3 to analyze other types of boundary 
value problems for (2) with slightly stronger assumptions about #, (b, and f. 
Let #, 4 E CTz(R1) with #o)(t) >, #i)(t) for i = O,..., n - 3, qYT+2)(t> > ~+5(“-~)(t) 
and 

g+‘(t) d f (4 #(t),..., #““-yt>>, (8) 
p’(t) > f (t, 4(t),..., pyt)), (9) 

for t E RI. Furthermore, we assume f is nonincreasing in y(“) for 
@i)(t) < y(i) < z/P)(t) and fixed values oft E R1, +(“)(t) < yfk) < $W(t), where 
lz = o,..., zz - 2, k f i, and y(‘~-l) E R1 (i = 0 ,..., n - 3)“. Note that (g)$ (9) 
and the additional assumption on f imply that 4 and $ satisfy (4) and (5), 
respectively. 

Now (2) can be thought of as a special case of (I), and we shall use the 
terminology of Section 2, where I/’ = R1 x R” and 14’ = {(t, y,..., yl+*J): 
$(+2J(t) < +-~) < #(“-2)(t) and t, y,..., y(ix+a), ;I+~) any real numbers). 
It will be useful to single out two subsets of aW. Let B, be the set of points 
in the boundary {y(“-“) = #(“-2)(t)> with y(“+r) >, $@-l)(t) and let Bs be 
the set of points in (y(+“) = +(“-2)(t)> with yin-l) < +(“-l’(t). Clearly, 
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if Q E (interior W) U B, u B, , then T+(Q) C B, U B, . The following 
result will allow us to apply Lemma 2.2 below. 

LEMMA 4.1. Suppose there is an l 1 > 0 so that H([c, d]) is satis$ed 
euhmever d - c < l 1 . If P = (y, LxO,..., c?-~) E B, u B, and #“J(r) < 01~ < 
#(i)(y)for i = 0 ,..., n - 3, then P G S. 

Proof. We shall consider only the case P E B, , for the case P E B, is 
handled in the same way. 

Suppose oin-l > #+i)(y). If y(t) is a solution of (2) passing through P, 
then y(+i)(y) > #oz-iJ(y). Since yen-s)(y) = #‘1L-2)(y), it is clear that 
y(n-z)(t) > t,!Jn-2)(t) in some interval (y, y’), y’ > y. Then, for any ‘T > y, 
E+(P) I-J (((7, x): N E R”} u (8W n {(t, x): t < 7, E E R”})) consists of the 
single point P and thus is connected. 

The other possibility is 0112-l = #+l)(y). Choose 7 - y > 0 sufficiently 
small that all solutions of (6) through P exist on [y, T] and do not intersect B, . 
Let 

.ZP = {Y(t) = (y(t),..., y’“-‘)(t)): y is a solution of (6) on [y, T] through P}. 

By the generalized Kneser Theorem for ordinary differential equations (see 
[5]), ZP is a compact connected subset of the Banach space of continuous 
functions on [y, T]. 

Define K = E+(P) n (((7, N): x E R”} U (aWn ((t, x): t < T, x E R”))). 
K is closed and bounded, so it is compact. If K is not connected, then 
K = Kl u K2, where Kl n K2 = o and Kl and K2 are compact and 
nonempty. For i = 1, 2, let 

zZi = {YE Zp: (to , Y(t,)) E Ki , where to = sup{‘/ < t < T: (t, I’(t)) E TV}). 

Clearly, Z1 n Zs = 0. By Lemma 3.3, if I’ E ZP and (to , Y(t,)) E W for 
some to 3 y, then (t, Y(t)) E W for y < t < to. Thus .Zi u ~5’~ = Zp . 

Next, we prove X1 is closed. 
Let (Yk(t)>p=i be a sequence in Zi such that Yk(t) --j Y(t) E .Z, uniformly 

for t E [y, T]. For each K, there is a t, E [y, T] such that (tk , Yk(tk)) E Kl and 
either t, = T or (t, YTc(t)) $ Wfor t > t, . Taking a subsequence, if necessary, 
suppose t, + to . Then (tk , Yk(tk)) --t (to , Y(t,)) E Kl . If to = 7, then 
(7, Y(T)) E Kl and Y E Zi . If to < T, then for R sufficiently large t, < 7 and 
(t, Y,<(t)) $ FYfor t E (tk , T]. Thus (t, Y(t)) cannot belong to the interior of 1%’ 
for any t E [to , T]. Suppose YE Z’s . Then 3t, E (to , T] so that (tl , Y(ti)) E K2 . 
Now (to , Y(t,)) E Kl and (t, Y(t)) E Kl u K2 for to < t < ti . This is 
clearly impossible since the distance between Kl and K2 is positive. Since 
Y $ A’2 , YE A’i . It follows that Zi is closed in .ZP . Similarly, Za is closed. 
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Finally, we show that Z; and za are nonempty. Suppose JY1 is empty. 
Then no point in Kl has t component T. Let Q = (A, PO,..., ,@-I) be a point 
in Kl with the largest possible t component A. Now 0 E B, , so pIL-l 3 
q!J+l)(hj. If p-r > #k-l)(h), then any Y = (y ,..., y(“-l)) E & with 
(A, Y(h)j = Q satisfies y+l)(X) > #+lj(xj and y(“-“)(A) z #f”-~)(h), so 
ycn-yt) > p”-“‘(t) f or t in some open interval with left endpoint A. By 
Lemma 3.3, y(n-2)(t) > yP-“j(t) for t E (A, T]. Thus YE & , so in this case 
2 I f O, and we can assume that /3+-l = Q!J(~-~)(A). Also, ,P-a = $(72--a)(h). 
By definition of E+(P), Q E K implies9 is reached by some Y = (y,...,y(+l)j E 
zP such that (t, I’(t)) E W for y < t < A. Thus y(7P--Z)(t) < yYn-2)(t) for 
t E [y, A]. Since oli < +(i)(r) for i = 0 ,..., n - 3, successive integrations yield 
fli << Z+(~)(X) for 1. = O,..., n - 3. 

Let y be a solution of (6) which emanates from Q. If there is no A’ E (A, T] 
such that y(zl-z)(t) < #(n-2j(t) on [A, A’], then ~(+~)(tj > @n-z)(t) on (A, T] 
by Lemma 3.3, contradicting JYi = a. Thus ytil-s)(t) < #(n-2)(t) on some 
interval [A, A’]. F iu an E > 0 which is smaller than <I , h’ - X and the distance 
from Kl to K2 . 

For t E [A, X + E], t&t) satisfies (4) and y(t) satisfies (5) because of the 
monotony of f and (N(t) > y(f)(t) for i = O,..., n - 2. Therefore, by 
Theorem 3.1: there is a solution x(t) of (2) such that z(“)(h) = pi for i = O,..., 
~2 - 2, $n-“)(h + c) = gIr(n-z)(h + c) and y(“)(t) < ,&i)(t) < #i’(t) for 

t E [A? A f C] and i = O,..., n - 2. Since y(+l)(X) = $~(~~-r)(hj, it must be 
true that .zc+l)(h) = p?“-r, so (A, ,~(h),...,~ x’“-l)(h)) = &. Now the point 
(A f E,..., z(~-~)(A + l )) must belong to either K1 or Ki? , but it cannot be in 
Kl by the assumption on Q and it cannot be in Kz by the choice of E. 

This contradiction implies that X1 f 0, and a similar argument proves 
the assertion for C, . Thus zP = Z; u ,& is a separation, but we know zP 
is connected. It must be true that K is connected. Q.E.D. 

We can use the preceding lemma to obtain an additional result for the 
left-hand boundary set considered in Section 3. 

THEOREM 4.1. Let PO ,..., fin-’ Be real numbers satisfying +(“)(a) < PCs! < 
i+W(a) fo7 i = O,..., n - 2 and some a E RI. Let 2 = {(a, ,@I ,..., ~-2,y(n-1~j: 
y(“-l) E R1) and assume H([c, d]) is satisfied for all a < c < d. Then there is 
a solution y(t) of (2) emanating from Z whiciz exists fey t E [a, CO) and sati$es 
@“j(t) < y(i)(t) < ~)(~j(t) for t E [a, a) a?zd i = O,..., n - 2. 

Proof. Let b > a. By Theorem 3.1, there are solutions y1 and y2 of (2) 
emanating from 2 such that y:“-‘)(b) = @+?f(b) and yy-")(b) = +(n-zl(f~) 
and +“h-2’(t) < lJ”+a)(t) < @n-“)(t) for t E [a, b] and i = 1, 2. Let Z1 = 
((a, fj0 ,..., fl”-“, yY:-1)). . y(**-l) belongs to the closed interval with endpoints 
F?-‘)(a) and y&“-‘)(a)). N ow z1 is compact and connected, T+(Zl) is not 
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connected and T+(P) C S by Lemma 4.1. Thus by Lemmas 2.1 and 2.2 
there is a solutiony(t) emanating from Z1 with++a)(t) < y@-s)(t) < @‘+“)(t) 
on its right maximal interval of existence. Since H([a, d]) is satisfied for all 
d > a, y(t) exists for all t > a, and y(t) satisfies $ci)(t) < yti)(t) < #PI(t) for 
t > a and i = O,..., n - 2. Q.E.D. 

We now consider boundary value problems with very general boundary 
sets. Let Z, be a compact connected subset of {(a, y,..., yen-1): #“)(a) < y(“) < 
yYi’(u) (i = o,..., 71 - 2) and y(“-r) E RI) which intersects the boundary 

- (y'n-2' = pn-2'(t)> in a nonempty subset of B, and intersects (y(Vr-P) = 
#n-2)(t)} in a nonempty subset of B, . The proof of the following theorem is 
like that of Theorem 4.1, except that Theorem 3.1 is not needed. 

THEOREM 4.2. suppose WC, 4) is satisjied for all a < c < d. Then theye 
is a solution y(t) of (2) emanating from Z, which exists for t E [a, KI) and satisfies 
$ti)(t) < y(()(t) < #@b(t) for t E [a, co) and i = O,..., n - 2. 

Let 6 > a be fixed. We shall now take H’to be the set 

w = {(t,y,...,y+l)): t E (-03, b], #“-2(t) < y(+-2) < #n-2’(t) 

and y,..., Y()+~), ~(‘~-l) any real numbers}. 

If the sets B, and B, are adjusted in the obvious way, Lemma 4.1 remains 
true. Let E = W n {(b, y ,..., y(+l) )> and let Z, be a subset of E such that 
there is a separation E N Z, =E,uE2withB,nECE,andB,nECE,. 

THEOREM 4.3. Assuming hypothesis H([c, d]) is satisfiedfor a < c < d < b, 
there exists a solution y(t) of (2) emanating from 2, and terminating i?l Z, which 
satisfies #“J(t) < yci)(t) < $ci)(t) for t E [a, b] and i = O,..., n - 2. 

Proof. Suppose there is no solution y(t) of (2) from Z, to Z, which 
satisfies+‘+*(t) ,( ycne2)(t) < #(n-2)(t) for t E [a, b]. Then T+(Z,) n Z, = a, 
and we have 

T+(z,) = [(T+(Z,) n BJ u (T+(Z,) n El>1 u [G”+(ZJ n B2) u CT+&) n E2)l 

is a separation of T+(Z,). 
Now T+(Z,) C S by Lemma 4.1 and the fact that E C 5’. By Lemmas 2.1 

and 2.2 there is a solution y(t) of (2) emanating from Z, with $“-2)(t) < 
y(fi-z)(t) < c+Vpz-2)(t) on its right maximal interval of existence with respect to 
Rl x R”. By hypothesis H([a, b]), this situation is impossible. 

Then there is a solutiony(t) of (2) from Z, to Z, with@+“(t) < y(n-2)(t) < 
#(+2)(t) for t E [a, b]. It follows that +ci)(t) < yci)(t) < $+)(t) for t E [a, b] 
and i = O,..., n - 2. Q.E.D. 



BOUND.4RY VALUE PROBLEMS 167 

5. AN EXAMPLE 

To illustrate how the above theorems can be applied, we consider the 
following equation from boundary-layer theory: 

y”’ = -yy” + X(y” - 1) (A 2 0). w 
First, let us specify the boundary conditions y(~) = ,Q”, y’(a) = /Z1, 

y’(b) = 61, where a, b, ,8O, /El, # are real numbers with n < B, /3l 3 -1, and 
a1 > - 1. Let C, 2 max{l, PI, Sr} and - 1 < C, < min(l, ,P, Slj. Define 
4(t) = CIt + /Ia - C,a and 4(t) = Cat + pa - C,a. Then 

and 

$Y(t) = 0 < X(C,~ - 1) = y$“(t) + X(qY~(t) - 1) 

&yt) = 0 3 A(C,Z - 1) = -y$Y(t) + A($“@) - I), 

so $J and d, satisfy (4) and (5), respectively, for 

f(t, y, y’, y”) = -yy” + /\(y?? - 1). 

Also, #(a) = d(a) = /3O, #‘(a) > S1 > $‘(a), and $‘(b) > S1 > 4’(b). 
Next, we show that H([a, b]) is satisfied for (10). Let y(t) be a solution of 

(10) with maximal interval of existence J with respect to [a, 61 x R3. 
Suppose that j y’(t)\ < R for t E J. Note that 

j y”‘(t)\ < j y i 1 y” j + X / y’” - 1 i < Q 1 y” j + A(R2 + I) = @(I y” I), 

where Q is a positive number such that 0 > R(b - u) + / y(t&, where 
to 6 J. Now 

.i 
u) sds -cG 

J 
s ds --= 

w Qs + h(R” + 1) = x’ 

so by Lemma 5.1 of [4, p. 4281, there is an M such that j y”(t)] ,( M for f E J. 
By Theorem 3.1, there is a solution y(t) of (10) such that y(a) = so, 

y’(u) = p, y’(b) = 61, C,t + pa - C,u < y(t) < C,t + ,@ - Cra, and 
C, <y’(t) < Cl for t E [a, b]. 

Now consider the following modification of (10): 

y “’ = -y [ y” ( + X(y’” - 1) (A > 0). (11) 

Let a, /3O E R1 and define #(t) = t + pa - a, C(t) = /3”. Then #J and $ 
satisfy (8) and (9), respectively, and the right-hand side of (11) is non- 
increasing in y for fixed values of y”, y’, and X. We can apply Theorems 4.1, 
4.2, and 4.3 to obtain the following results (a), (b), and (c), respectively. 
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(a) Suppose 0 < p1 < 1. There is a solution y(t) of (11) which exists 
for all t > a and satisfies y(a) = PO, y’(u) = ,@, /3” < y(t) ,( t + /Jo - a 
and 0 < y’(t) < 1 for all t > a. 

(b) Suppose C, > 0 and 0 < C, < 1. There is a solution y(t) of (11) 
which exists for all t 3 a and satisfies y(a) = j?O, y’(u) - C,y”(u) = C, , 
8” < y(t) < t + ,kl” - n and 0 ,( y’(t) < 1 for t > a. 

(c) Suppose C, and C, are as above, 0 < S1 < 1 and b > a. There is a 
solution y(t) of (11) such that y(u) = PO, y’(u) - C&(a) = C, , y’(b) = P, 
/3O <y(t) < t + /I0 - a and 0 <y’(t) < 1 for t E [a, b]. 

Suppose y(t) is a solution of (11) with y(u) 3 0 and 0 < y’(t) < 1 for all 
t > a. Assume y”(to) < 0 for some to > a. Now y(t) > 0 for t > a, so 
y”‘(t) < 0 for t > a. For t 3 to , J J”(t) < yn(to) < 0, so y’(t) > 0 for all 
t > a is impossible. Hence, y”(t) > 0 f or all t 3 a, and y(t) is a solution of 
(10). Thus, if /30 > 0, we may replace (11) by (10) in (a) and (b) above. 

If, in addition, h > 0, we can reason as follows: Since y”(t) > 0, y’(t) 
is nondecreasing, so y’(t) approaches a finite limit as t + co. Now y”‘(t) < 
h(y’g(t) - 1) and y”(t) is bounded; hence, it follows thaty’(t) + 1 as t -+ a3. 
Thus, for X > 0, j30 3 0, we can assert in (a) and (b) thaty’(t) + 1 as t -+ CO. 
Then result (a) contains the classical boundary conditions for (10): y(0) = 0, 
y’(0) = 0, andyI = 1 (see [3, p. 231). 

Remark. There are a number of interesting possibilities for the boundary 
sets 2, and Z, in Theorems 4.2 and 4.3. In (b) and (c) above, we have made 
the simplest choices. One could substitute, for example, y’(B) + C,y”(b) = 
C, for y’(6) = a1 in (c), where C, > 0 and 0 < C, < 1. 
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