Some Existence Theorems for nth-Order Boundary Value Problems*

Walter G. Kelley
Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73069

Received July 17, 1973

1. Introduction

A number of authors have employed variations of the Wazewski retract method (see [12]) to study second-order boundary value problems. In the area of ordinary differential equations, these include Hukuhara [6, 7], Jackson and Klaasen [8], and Kaplan, Lasota, and Yorke [9]. Bebernes and Kelley [1] have extended the results of Jackson and Klaasen to contingent equations.

In this paper, we use a variation of the Ważewski method similar to those developed by Kluczny [11] and Hukuhara [6] to prove existence theorems for some n th-order boundary value problems, where $n \geqslant 3$. Section 2 contains the basic topological results. In Section 3, we show that an existence theorem of Klaasen [10] extends to n th-order equations under slightly weaker hypotheses. The results of Sections 2 and 3 are brought together in Section 4 to produce existence theorems for a class of boundary value problems. We conclude the paper with an example of a third-order equation from boundary-layer theory. Coppel [2] has also used a topological argument to prove existence for a particular boundary value problem associated with this equation.

2. Topological Preliminaries

Let \mathbf{R}^{n} denote n-dimensional Euclidean space and let V be an open set in $\mathbf{R}^{\mathbf{1}} \times \mathbf{R}^{n}$. We shall consider the ordinary differential equation

$$
\begin{equation*}
x^{\prime}=f(t, x) \tag{1}
\end{equation*}
$$

where f is a continuous function on V with values in \mathbf{R}^{n}. Let W be a subset of V and ∂W be the topological boundary of W.

[^0]For $P \in W$, the right zone of emission from P is the set $E^{\ddagger}(P)=\{(\tau, x(\tau))$; $\exists \sigma \leqslant \tau$ such that $P=(\sigma, x(\sigma)), x(t)$ is a solution of (1) on $[\sigma, \tau]$ and $(t, x(t)) \in W$ for $t \in[\sigma, \tau]\}$. If $A \subset W$, we define $E^{\dagger}(A)=\bigcup_{P \in A} E^{+}(P)$. The right trace of emission from A is defined to be the set $T^{+}(A)=E^{\perp}(A) \cap \partial W$.

The following criterion for compactness of the right zone of emission will be useful.

Lemma 2.1. Suppose A is a compact subset of W and W is a closed subset of V. Then $E^{+}(A)$ is compact if and only if there is no solution $x(t)$ of (1) emanating from A with $(t, x(t)) \in W$ on its right maximal interval of existence.

Proof. If there is such a solution $x(t)$, then $E^{+}(A)$ is not bounded, so it is not compact.

Suppose there is no such solution emanating from A. Let $\left\langle P_{k}\right\rangle_{k=1}^{\infty}$ be a sequence of points in $E^{+}(A)$. For each k, let $x_{k}(t)$ be a solution of (1) and let σ_{k} and τ_{k} be real numbers such that $\left(\sigma_{k_{i}}, x_{k}\left(\sigma_{k}\right)\right) \in A, P_{k}=\left(\tau_{k}, x_{k}\left(\tau_{k}\right)\right)$ and $\left(t, x_{k i}(t)\right) \in W$ for $t \in\left[\sigma_{k}, \tau_{k i}\right]$. Furthermore, suppose each $x_{k}(t)$ is defined on its maximal interval of existence $\left(\alpha_{k}, \omega_{k}\right)$. Since A is compact, we may assume $\sigma_{k} \rightarrow \sigma, x_{k}\left(\sigma_{k}\right) \rightarrow x_{0}$ as $k \rightarrow \infty$, and we have $\left(\sigma, x_{0}\right) \in A$.

By Theorem 3.2 of [4, p. 14] there is a solution $x(t)$ of (1) defined on its maximal interval of existence (α, ω) with $x(\sigma)=x_{0}$ and a subsequence which we again name $\left\langle x_{k}(t)\right\rangle_{k=1}^{\infty}$ which converges uniformly to $x(t)$ on compact subintervals of (α, ω). Choose $t_{0} \in(\alpha, \omega)$ so that $\left(t_{0}, x\left(t_{0}\right) \notin W\right.$. For k sufficiently large, $\left(t_{0}, x_{k}\left(t_{0}\right)\right) \notin W$ and thus $\sigma_{k} \leqslant \tau_{k}<t_{0}$. Choose $\varepsilon>0$ so that $\alpha<\sigma-\epsilon$. Then $\sigma-\epsilon<\tau_{k}<t_{0}$ and $x_{k}(t) \rightarrow x(t)$ uniformly on $\left[\sigma-\epsilon, t_{0}\right.$] for k sufficiently large, so $\left\langle P_{k}\right\rangle_{k=1}^{\infty}$ is bounded.

Thus some subsequence of $\left\langle P_{k}\right\rangle_{k=1}^{\infty}$ converges to a point P in W. By the uniform convergence, P lies on the graph of $x(t)$, so $P \in E^{+}(A)$. Hence $E^{+}(-1)$ is compact.
Q.E.D.

The assumption that W is closed can be weakened. See Theorem 4.1 of [11] for details.

Next, we generalize the idea of a strict egress point in the fashion of Hukuhara [6]. Define

$$
\begin{aligned}
S= & \left\{P=\left(t_{0}, x_{0}\right) \in \partial W: \exists \epsilon>0 \text { such that, for } 0<\tau-t_{0}<\epsilon,\right. \\
& \left.E+(P) \cap\left(\left\{(\tau, x): x \in \mathbf{R}^{n}\right\} \cup\left(\partial W \cap\left\{(t, x): t \leqslant \tau, x \in \mathbf{R}^{n}\right\}\right)\right) \text { is connected }\right\} .
\end{aligned}
$$

The points of S are the strict egress points of W relative to Eq. (1).
The following lemma is very much the same as Proposition 4.2 of [6], and we give only an indication of the proof.

Lemma 2.2. Suppose A is a connected subset of W and $E^{+}(A)$ is compact. If $T^{+}(A) \subset S$, then $T^{+}(A)$ is connected.

Proof. Suppose $T^{+}(A)$ is not connected. Then we can write $T^{+}(A)=$ $T_{1} \cup T_{2}$, where T_{1} and T_{2} are nonempty and compact, and $T_{1} \cap T_{2}=\varnothing$. Define, for $i=1,2$,

$$
E_{i}=\left\{Q \in E^{+}(A): E^{+}(Q) \cap T_{i} \neq \varnothing\right\} .
$$

Then each E_{i} is a nonempty closed subset of $E^{+}(A)$ and $E_{1} \cup E_{2}=E^{+}(A)$. Since A is connected, $E^{+}(A)$ is connected, so $E_{1} \cap E_{2}$ is nonempty and compact. Let $P=\left(t_{0}, x_{0}\right)$ belong to $E_{1} \cap E_{2}$ and have the property that no point in $E_{1} \cap E_{2}$ has t component greater than t_{0}.

Suppose $P \in \partial W$. We can assume $P \in T_{1}$. There is an $\epsilon>0$ such that for $0<\tau-t_{0}<\epsilon$,

$$
F_{\tau} \equiv E^{+}(P) \cap\left(\left\{(\tau, x): x \in \mathbf{R}^{n}\right\} \cup\left(\partial W \cap\left\{(t, x): t \leqslant \tau, x \in \mathbf{R}^{n}\right\}\right)\right)
$$

is connected. Fix $\tau \in\left(t_{0}, t_{0}+\epsilon\right)$ and define, for $i=1,2$,

$$
F_{\tau i}=\left\{Q \in F_{\tau}: E^{+}(Q) \cap T_{i} \neq \varnothing\right\} .
$$

These sets are closed and $F_{\tau 1} \cup F_{\tau 2}=F_{\tau}$. Furthermore, $F_{\tau 2}-P$ is closed and nonempty since P is not a limit point of $F_{\tau 2}$. Since $F_{\tau 1} \cup\left(F_{\tau 2}-P\right)=F_{\tau}$ is connected, $F_{\tau 1} \cap\left(F_{\tau 2}-P\right) \neq \varnothing$. This result implies that there is a point in $E_{1} \cap E_{2}$ with t component greater than t_{0} and gives a contradiction.

If P is in the interior of W, one can arrive at a contradiction in a similar manner using the Kneser Theorem for ordinary differential equations. It follows that $T^{+}(A)$ is connected.
Q.E.D.

3. A Boundary Value Problem for n th-Order Equations

We shall now consider the n th-order differential equation

$$
\begin{equation*}
y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right), \tag{2}
\end{equation*}
$$

where $n \geqslant 3$ and f is continuous from $\mathbf{R}^{1} \times \mathbf{R}^{n}$ to \mathbf{R}^{1}. Let $\beta^{0}, \beta^{1}, \ldots, \beta^{n-2}$, δ^{n-2} be real constants. The boundary value problem to be considered in this section is

$$
\begin{gather*}
y^{(n)}=f\left(t, y, \ldots, y^{(n-1)}\right) \\
y^{(i)}(a)=\beta^{i} \quad(i=0, \ldots, n-2), \quad y^{(n-2)}(b)=\delta^{n-2} . \tag{3}
\end{gather*}
$$

The following lemma follows in a routine way from the Schauder fixedpoint theorem.

Lemma 3.1. If f is bounded on $[a, b] \times \mathbf{R}^{n}$, then (3) has a solution.

It will be necessary in order to prove existence of solutions to various boundary value problems to add an assumption governing the behavior of the ($n-1$)st derivative of solutions of (2). Let I be an interval of real numbers. We have the following hypothesis.
$H(I)$: Let $y(t)$ be a solution of (2) with maximal interval of existence J with respect to $I \times \mathbf{R}^{n}$. If $y^{(n-2)}(t)$ is bounded on J, then $y^{(n-1)}(t)$ is bounded, on J.

Lemma 3.2. Let Z be a closed subset of $\{a\} \times \mathbf{R}^{n}$ and suppose $H([a, b])$ is satisfied. If $\left\langle y_{k i}\right\rangle_{k=1}^{\infty}$ is a sequence of solutions of $y^{(n)}=f_{k}\left(t, y, \ldots, y^{(n-1)}\right)$ with initial points in Z such that $\left\langle y_{k}^{(i)}\right\rangle_{k=1}^{\infty}$ is uniformly bounded on $[a, b]$ for $i=0, \ldots$, $n-2$, where the f_{k} 's are continuous functions on $[a, b] \times \mathbf{R}^{n}$ which converge uniformly to f on compact subsets, then there is a solution $y(t)$ of (2) on $[a, b]$ and a subsequence of $\left\langle y_{k}\right\rangle_{k=1}^{\infty}$ which converges to y uniformly on $[a, b]$.

Proof. There is an M such that $\left|y_{k}^{(n-2)}(t)\right| \leqslant M$ for each k and all $t \in[a, b]$. Then

$$
\left|y_{k}^{(n-1)}\left(t_{k}\right)\right|=\frac{\left|y_{k}^{(n-2)}(b)-y_{k}^{(n-2)}(a)\right|}{b-a} \leqslant \frac{2 M}{b-a}
$$

for some sequence $\left\langle t_{k}\right\rangle_{k=1}^{\infty}$ of points in $[a, b]$.
The sequences $\left\langle t_{k}\right\rangle_{h=1}^{\infty},\left\langle y_{k}\left(t_{k}\right)\right\rangle_{k=1}^{\infty}, \ldots,\left\langle y_{k}^{(n-1)}\left(t_{k}\right)\right\rangle_{k=1}^{\infty}$ are bounded sequences of real numbers. Let $\left\langle k_{i}\right\rangle_{i=1}^{\alpha_{j}}$ be a subsequence of $\langle k\rangle_{i=1}^{\infty}$ such that each of the above sequences converges.

By the convergence theorem used in the proof of Lemma 2.1, there is a subsequence of $\left\langle y_{k_{i}}\right\rangle_{i=1}^{\infty}$ which converges uniformly to a solution $y(t)$ of (2) on compact subintervals of the maximal interval of existence of $y(t)$. Hypothesis $H([a, b])$ and the uniform boundedness of $\left\langle y_{k}^{(i)\rangle}\right\rangle k=1$ for $i=0, \ldots, n-2$ imply that $y(t)$ is defined on $[a, b]$ and that the subsequence converges uniformly to $v(t)$ on $[a, b]$.
Q.E.D.

Let $\psi, \phi \in C^{n}([a, b])$ with $\psi^{(i)}(t) \geqslant \phi^{(i)}(t)$ for $i=0, \ldots, n-2$ and all $t \in[a, b]$ and

$$
\begin{align*}
& \psi^{(n)}(t) \leqslant f\left(t, y, \ldots, y^{(n-3)}, \psi^{(n-2)}(t), \psi^{(n-1)}(t)\right), \tag{4}\\
& \phi^{(n)}(t) \geqslant f\left(t, y, \ldots, y^{(n-3)}, \phi^{(n-2)}(t), \phi^{(n-1)}(t)\right) \tag{5}
\end{align*}
$$

for $\phi^{(i)}(t) \leqslant y^{(i)} \leqslant \psi^{(i)}(t)(i=0, \ldots, n-3)$ and $t \in[a, b]$.
Next, we make some modifications of f. For $i=0, \ldots, n-3$ define the variables

$$
\bar{y}^{(i)}(t)=\left\{\begin{array}{lll}
\psi^{(i)}(t) & \text { for } \quad y^{(i)} \geqslant \psi^{(i)}(t), \\
y^{(i)} & \text { for } \psi^{(i)}(t)>y^{(i)}>\phi^{(i)}(t), \\
\phi^{(i)}(t) & \text { for } \quad \phi^{(i)}(t) \geqslant y^{(i)} \quad(t \in[a, b]) .
\end{array}\right.
$$

Then we define

$$
\begin{aligned}
& F\left(t, y, \ldots, y^{(n-1)}\right) \\
& =\left\{\begin{array}{l}
f\left(t, \bar{y}(t), \ldots, \bar{y}^{(n-3)}(t), \psi^{(n-2)}(t), y^{(n-1)}\right)+\frac{y^{(n-2)}-\psi^{(n-2)}(t)}{1+y^{(n-2)}-\psi^{(n-2)}(t)} \\
\text { for } y^{(n-2)} \geqslant \psi^{(n-2)}(t), \\
f\left(t, \bar{y}(t), \ldots, \bar{y}^{(n-3)}(t), y^{(n-2)}, y^{(n-1)}\right) \\
\text { for } \psi^{(n-2)}(t)>y^{(n-2)}>\phi^{(n-2)}(t), \\
f\left(t, \bar{y}(t), \ldots, \bar{y}^{(n-3)}(t), \phi^{(n-2)}(t), y^{(n-1)}\right)+\frac{y^{(n-2)}-\phi^{(n-2)}(t)}{1+\phi^{(n-2)}(t)-y^{(n-2)}} \\
\text { for } \phi^{(n-2)}(t) \geqslant y^{(n-2)}
\end{array}\right.
\end{aligned}
$$

Finally, let

$$
G_{j}\left(t, y, \ldots, y^{(n-1)}\right)= \begin{cases}F\left(t, y, \ldots, y^{(n-2)}, j\right) & \text { for } y^{(n-1)} \geqslant j \\ F\left(t, y, \ldots, y^{(n-2)}, y^{(n-1)}\right) & \text { for } j>y^{(n-1)}>-j \\ F\left(t, y, \ldots, y^{(n-2)},-j\right) & \text { for }-j \geqslant y^{(n-1)}\end{cases}
$$

for integers j satisfying $j \geqslant \max _{t \in[a b]}\left\{\max \left\{\left|\phi^{(n-1)}(t)\right|,\left|\psi^{(n-1)}(t)\right|\right)\right\}$.
We now consider the differential equations

$$
\begin{align*}
& y^{(n)}=F\left(t, y, \ldots, y^{(n-1)}\right) \tag{6}\\
& y^{(n)}=G_{3}\left(t, y, \ldots, y^{(n-1)}\right) \tag{7}
\end{align*}
$$

Lemma 3.3. Suppose $\psi(t)$ and $\phi(t)$ are as described above and suppose $y(t)$ is a solution of (6) or $(7)_{;}$on some interval $I \subset[a, b]$. Let $\sigma_{1}, \sigma_{2} \in I$ with $\sigma_{2}>\sigma_{1}$ and suppose $\phi^{(n-2)}\left(\sigma_{1}\right) \leqslant y^{(n-2)}\left(\sigma_{1}\right) \leqslant \psi^{(n-2)}\left(\sigma_{1}\right)$. If $y^{(n-2)}\left(\sigma_{2}\right)>\psi^{(n-2)}\left(\sigma_{2}\right)$, then $y^{(n-2)}(t)>\psi^{(n-2)}(t)$ for $t \in I \cap\left[\sigma_{2}, b\right]$, and if $y^{(n-2}\left(\sigma_{2}\right)<\phi^{(n-2}\left(\sigma_{2}\right)$, then $y^{(n-2)}(t)<\phi^{(n-2)}(t)$ for $t \in I \cap\left[\sigma_{2}, b\right]$.

Proof. Let $y(t)$ be a solution of (6). If it is a solution of (7) for some j, the proof is similar.

Consider the case $y^{(n-2)}\left(\sigma_{2}\right)>\psi^{(n-2)}\left(\sigma_{2}\right)$. Suppose there exists a $t \in I \cap\left[\sigma_{2}, b\right]$ such that $y^{(n-2)}(t)=\psi^{(n-2)}(t)$. Then $y^{(n-2)}-\psi^{(n-2)}$ has a positive maximum at some $t_{0} \in\left(\sigma_{1}, t\right)$. We have $\gamma^{(n-1)}\left(t_{0}\right)-\psi^{(n-1)}\left(t_{0}\right)=0$, $y^{(n-2)}\left(t_{0}\right)-\psi^{(n-2)}\left(t_{0}\right)>0$, and $y^{(n)}\left(t_{0}\right)-\psi^{(n)}\left(t_{0}\right) \leqslant 0$. But, by (4),

$$
\begin{aligned}
y^{(n)}\left(t_{0}\right) \cdots \psi^{(n)}\left(t_{0}\right)= & F\left(t_{0}, \ldots, y^{(n-1)}\left(t_{0}\right)\right)-\psi^{(n)}\left(t_{0}\right) \\
= & f\left(t_{0}, \bar{y}\left(t_{0}\right), \ldots, \bar{y}^{(n-3)}\left(t_{0}\right), \psi^{(n-2)}\left(t_{0}\right), \psi^{(n-1)}\left(t_{0}\right)\right)-\psi^{(n)}\left(t_{0}\right) \\
& +\frac{y^{(n-2)}\left(t_{0}\right)-\psi^{(n-2)}\left(t_{0}\right)}{1+y^{(n-2)}\left(t_{0}\right)-\psi^{(n-2)}\left(t_{0}\right)} \\
\geqslant & \frac{y^{(n-2)}\left(t_{0}\right)-\psi^{(n-2)}\left(t_{0}\right)}{1+y^{(n-2)}\left(t_{0}\right)-\psi^{(n-2)}\left(t_{0}\right)}>0 .
\end{aligned}
$$

This contradiction proves the lemma for the case considered. The case $y^{(n-2)}\left(\sigma_{2}\right)<\phi^{(n-2)}\left(\sigma_{2}\right)$ is similar.
Q.E.D.

The next theorem is a generalization of Theorem 7 in [10].
Theorem 3.1. Let $\psi(t)$ and $\phi(t)$ be as given above and let $\beta^{0}, \ldots, \beta^{n \cdot 2}, 8^{n-2}$ be real numbers satisfying $\phi^{(i)}(a) \leqslant \beta^{(i)} \leqslant \psi^{(i)}(a)$ for $i=0, \ldots, n-2$ and $\phi^{(i n-2)}(b) \leqslant \delta^{n-2} \leqslant \psi^{(n-2)}(b)$. Assume hypothesis $H([a, b])$ is satisfied. Then (3) has a solution $y(t)$ such that $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in\lfloor a, b]$ and $i=0, \ldots, n-2$.

Proof. Since $G_{j}\left(t, y, \ldots, y^{(n-1)}\right)$ is continuous and bounded on $[a, b] \times \mathbf{R}^{n}$, the boundary value problem consisting of (7) j and the boundary conditions in (3) has a solution $y_{j}(t)$ for each value of j by Lemma 3.1. Moreover, by Lemma $3.3 \phi^{(n-2)}(t) \leqslant y_{j}^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ for $t \in[a, b]$. Since $\phi^{(i)}(a) \leqslant$ $\beta^{i} \leqslant \psi^{(i)}(a)$ for $i=0, \ldots, n-3$, successive integrations yield $\phi^{(i)}(t) \leqslant$ $y_{j}^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $i=0, \ldots, n-3$.

Now $\left\langle G_{j}\right\rangle$ converges uniformly to F on compact subsets of $[a, b] \times \mathbf{R}^{n}$ and F coincides with f for $\phi^{(i)}(t) \leqslant y^{(i)} \leqslant \psi^{(i)}(t)$ and $t \in[a, b](i=0, \ldots, n-2)$. By Lemma 3.2, a subsequence of $\left\langle y_{j}\right\rangle$ converges uniformly to a solution $y(t)$ of (3) on $[a, b]$, and $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[a, b]$ and $i=0, \ldots, n-2$.
Q.E.D.

4. A Class of Boundary Value Problems

We can use the results of Sections 2 and 3 to analyze other types of boundary value problems for (2) with slightly stronger assumptions about ψ, ϕ, and f. Let $\psi, \phi \in C^{n}\left(\mathbf{R}^{1}\right)$ with $\psi^{(i)}(t) \geqslant \phi^{(i)}(t)$ for $i=0, \ldots, n-3, \psi^{(n-2)}(t)>\phi^{(n-2)}(t)$ and

$$
\begin{align*}
& \psi^{(n)}(t) \leqslant f\left(t, \psi(t), \ldots, \psi^{(n-1)}(t)\right) \tag{8}\\
& \phi^{(n)}(t) \geqslant f\left(t, \phi(t), \ldots, \phi^{(n-1)}(t)\right) \tag{9}
\end{align*}
$$

for $t \in \mathbf{R}^{1}$. Furthermore, we assume f is nonincreasing in $y^{(i)}$ for $\phi^{(i)}(t) \leqslant y^{(i)} \leqslant \psi^{(i)}(t)$ and fixed values of $t \in \mathbf{R}^{1}, \phi^{(t)}(t) \leqslant y^{(k)} \leqslant \psi^{(h)}(t)$, where $k=0, \ldots, n-2, k \neq i$, and $y^{(n-1)} \in \mathbf{R}^{1}(i=0, \ldots, n-3)$. Note that (8), (9) and the additional assumption on f imply that ψ and ϕ satisfy (4) and (5), respectively.

Now (2) can be thought of as a special case of (1), and we shall use the terminology of Section 2, where $V=\mathbf{R}^{1} \times \mathbf{R}^{n}$ and $W=\left\{\left(t, y, \ldots, y^{(n-1)}\right)\right.$: $\phi^{(n-2)}(\dot{t}) \leqslant y^{(n-2)} \leqslant \psi^{(n-2)}(t)$ and $\dot{t}, y, \ldots, y^{(n-3)}, y^{(n-1)}$ any real numbers $\}$. It will be useful to single out two subsets of δW. Let B_{1} be the set of points in the boundary $\left\{y^{(n-2)}=\psi^{(n-2)}(t)\right\}$ with $y^{(n-1)} \geqslant \psi^{(n-1)}(t)$ and let B_{2} be the set of points in $\left\{y^{(n-2)}=\phi^{(n-2)}(l)\right\}$ with $y^{(n-1)} \leqslant \phi^{(n-1)}(t)$. Clearly,
if $Q \in($ interior $W) \cup B_{1} \cup B_{2}$, then $T^{+}(Q) \subset B_{1} \cup B_{2}$. The following result will allow us to apply Lemma 2.2 below.

Lemma 4.1. Suppose there is an $\epsilon_{1}>0$ so that $H([c, d])$ is satisfied whenever $d-c<\epsilon_{1}$. If $P=\left(\gamma, x^{0}, \ldots, \alpha^{n-1}\right) \in B_{1} \cup B_{2}$ and $\phi^{(i)}(\gamma) \leqslant \alpha^{i} \leqslant$ $\psi^{(i)}(\gamma)$ for $i=0, \ldots, n-3$, then $P \in S$.

Proof. We shall consider only the casc $P \in B_{1}$, for the casc $P \in B_{2}$ is handled in the same way.

Suppose $\alpha^{n-1}>\psi^{(n-1)}(\gamma)$. If $y(t)$ is a solution of (2) passing through P, then $y^{(n-1)}(\gamma)>\psi^{(n-1)}(\gamma)$. Since $y^{(n-2)}(\gamma)=\psi^{(n-2)}(\gamma)$, it is clear that $y^{(n-2)}(t)>\psi^{(n-2)}(t)$ in some interval $\left(\gamma, \gamma^{\prime}\right), \gamma^{\prime}>\gamma$. Then, for any $\tau>\gamma$, $E^{+}(P) \cap\left(\left\{(\tau, x): x \in \mathbf{R}^{n}\right\} \cup\left(\partial W \cap\left\{(t, x): t \leqslant \tau, x \in \mathbf{R}^{n}\right\}\right)\right)$ consists of the single point P and thus is connected.

The other possibility is $\alpha^{n-1}=\psi^{(n-1)}(\gamma)$. Choose $\tau-\gamma>0$ sufficiently small that all solutions of (6) through P exist on $[\gamma, \tau]$ and do not intersect B_{2}. Let
$\Sigma_{P}=\left\{Y(t)=\left(y(t), \ldots, y^{(n-1)}(t)\right): y\right.$ is a solution of (6) on $[\gamma, \tau]$ through $\left.P\right\}$.
By the generalized Kneser Theorem for ordinary differential equations (see [5]), Σ_{P} is a compact connected subset of the Banach space of continuous functions on $[\gamma, \tau]$.

Define $K=E^{+}(P) \cap\left(\left\{(\tau, x): x \in \mathbf{R}^{n}\right\} \cup\left(\partial W \cap\left\{(t, x): t \leqslant \tau, x \in \mathbf{R}^{n}\right\}\right)\right)$. K is closed and bounded, so it is compact. If K is not connected, then $K=K_{1} \cup K_{2}$, where $K_{1} \cap K_{2}=\varnothing$ and K_{1} and K_{2} are compact and nonempty. For $i=1,2$, let
$\Sigma_{i}=\left\{Y \in \Sigma_{P}:\left(t_{0}, Y\left(t_{0}\right)\right) \in K_{i}\right.$, where $\left.t_{0}=\sup \{\gamma \leqslant t \leqslant \tau:(t, Y(t)) \in W\}\right\}$.
Clearly, $\Sigma_{1} \cap \Sigma_{2}=\varnothing$. By Lemma 3.3, if $Y \in \Sigma_{P}$ and $\left(t_{0}, Y\left(t_{0}\right)\right) \in W$ for some $t_{0} \geqslant \gamma$, then $(t, Y(t)) \in W$ for $\gamma \leqslant t \leqslant t_{0}$. Thus $\Sigma_{1} \cup \Sigma_{2}=\Sigma_{P}$. Next, we prove Σ_{1} is closed.

Let $\left\langle Y_{k}(t)\right\rangle_{k=1}^{\infty}$ be a sequence in Σ_{1} such that $Y_{k}(t) \rightarrow Y(t) \in \Sigma_{p}$ uniformly for $t \in[\gamma, \tau]$. For each k, there is a $t_{k} \in[\gamma, \tau]$ such that $\left(t_{k}, Y_{k}\left(t_{k}\right)\right) \in K_{1}$ and either $t_{k}=\tau$ or $\left(t, Y_{k}(t)\right) \notin W$ for $t>t_{k}$. Taking a subsequence, if necessary, suppose $t_{k} \rightarrow t_{0}$. Then $\left(t_{k}, Y_{k}\left(t_{k}\right)\right) \rightarrow\left(t_{0}, Y\left(t_{0}\right)\right) \in K_{1}$. If $t_{0}=\tau$, then $(\tau, Y(\tau)) \in K_{1}$ and $Y \in \Sigma_{\mathbf{1}}$. If $t_{0}<\tau$, then for k sufficiently large $t_{k}<\tau$ and $\left(t, Y_{k}(t)\right) \notin W$ for $t \in\left(t_{k}, \tau\right]$. Thus $(t, Y(t))$ cannot belong to the interior of W for any $t \in\left[t_{0}, \tau\right]$. Suppose $Y \in \Sigma_{2}$. Then $\exists t_{1} \in\left(t_{0}, \tau\right]$ so that $\left(t_{1}, Y\left(t_{1}\right)\right) \in K_{2}$. Now $\left(t_{0}, Y\left(t_{0}\right)\right) \in K_{1}$ and $(t, Y(t)) \in K_{1} \cup K_{2}$ for $t_{0} \leqslant t \leqslant t_{1}$. This is clearly impossible since the distance between K_{1} and K_{2} is positive. Since $Y \notin \Sigma_{2}, Y \in \Sigma_{1}$. It follows that Σ_{1} is closed in Σ_{P}. Similarly, Σ_{z} is closed.

Finally, we show that Σ_{1} and Σ_{2} are nonempty. Suppose Σ_{1} is empty. Then no point in K_{1} has t component τ. Let $Q=\left(\lambda, \beta^{0}, \ldots, \beta^{n-1}\right)$ be a point in K_{1} with the largest possible t component λ. Now $Q \in B_{1}$, so $\beta^{n-1} \geqslant$ $\psi^{(n-1)}(\lambda)$. If $\beta^{n-1}>\psi^{(n-1)}(\lambda)$, then any $Y=\left(y, \ldots, y^{(n-1)}\right) \in \Sigma_{P}$ with $(\lambda, Y(\lambda))=Q$ satisfies $y^{(n-1)}(\lambda)>\psi^{(n-1)}(\lambda)$ and $y^{(n-2)}(\lambda)=\psi^{(n-2)}(\lambda)$, so $y^{(n-2)}(t)>\psi^{(n-2)}(t)$ for t in some open interval with left endpoint λ. By Lemma 3.3, $y^{(n-2)}(t)>\psi^{(n-2)}(t)$ for $t \in(\lambda, \tau]$. Thus $Y \in \Sigma_{1}$, so in this case $\Sigma_{1} \nsucc \varnothing$, and we can assume that $\beta^{n-1}=\psi^{(n-1)}(\lambda)$. Also, $\beta^{n-2}=\psi^{(n-2)}(\lambda)$. By definition of $E^{+}(P), Q \in K$ implies Q is reached by some $Y=\left(y, \ldots, y^{(n-1)}\right) \in$ Σ_{P} such that $(t, Y(t)) \in W$ for $\gamma \leqslant t \leqslant \lambda$. Thus $y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ for $t \in[\gamma, \lambda]$. Since $\alpha^{i} \leqslant \psi^{(i)}(\gamma)$ for $i=0, \ldots, n-3$, successive integrations yield $\beta^{i} \leqslant \psi^{(i)}(\lambda)$ for $i=0, \ldots, n-3$.

Let y be a solution of (6) which emanates from Q. If there is no $\lambda^{\prime} \in(\lambda, \tau]$ such that $y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ on $\left[\lambda, \lambda^{\prime}\right]$, then $y^{(n-2)}(t)>\psi^{(n-2)}(t)$ on $(\lambda, \tau]$ by Lemma 3.3, contradicting $\Sigma_{1}=\varnothing$. Thus $y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ on some interval $\left[\lambda, \lambda^{\prime}\right]$. Fix an $\epsilon>0$ which is smaller than $\epsilon_{1}, \lambda^{\prime}-\lambda$ and the distance from K_{1} to K_{2}.

For $t \in[\lambda, \lambda+\epsilon], \psi(t)$ satisfies (4) and $y(t)$ satisfies (5) because of the monotony of f and $\psi^{(i)}(t) \geqslant y^{(i)}(t)$ for $i=0, \ldots, n-2$. Therefore, by Theorem 3.1, there is a solution $z(t)$ of (2) such that $z^{(i)}(\lambda)=\beta^{i}$ for $i=0, \ldots$, $n-2, z^{(n-2)}(\lambda+\epsilon)=\psi^{(n-2)}(\lambda+\epsilon)$ and $y^{(i)}(t) \leqslant z^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[\lambda, \lambda+\epsilon]$ and $i=0, \ldots, n-2$. Since $y^{(n-1)}(\lambda)=\psi^{(n-1)}(\lambda)$, it must be true that $z^{(n-1)}(\lambda)=\beta^{n-1}$, so $\left(\lambda, z(\lambda), \ldots, z^{(n-1)}(\lambda)\right)=Q$. Now the point $\left(\lambda+\epsilon, \ldots, z^{(n-1)}(\lambda+\epsilon)\right)$ must belong to either K_{1} or K_{2}, but it cannot be in K_{1} by the assumption on $\underset{\sim}{ }$ and it cannot be in K_{2} by the choice of ϵ.

This contradiction implies that $\Sigma_{1} \neq \varnothing$, and a similar argument proves the assertion for Σ_{2}. Thus $\Sigma_{P}=\Sigma_{1} \cup \Sigma_{2}$ is a separation, but we know Σ_{P} is connected. It must be true that K is connected.
Q.E.D.

We can use the preceding lemma to obtain an additional result for the left-hand boundary set considered in Section 3.

Theorem 4.1. Let $\beta^{0}, \ldots, \beta^{n-2}$ be real numbers satisfying $\phi^{(i)}(a) \leqslant \beta^{(i)} \leqslant$ $\psi^{(i)}(a)$ for $i=0, \ldots, n-2$ and some $a \in \mathbf{R}^{1}$. Let $Z=\left\{\left(a, \beta^{0}, \ldots, \beta^{n-2}, y^{(n-1)}\right)\right.$: $\left.y^{(n-1)} \in \mathbf{R}^{1}\right\}$ and assume $H([c, d])$ is satisfied for all $a \leqslant c<d$. Then there is a solution $y(t)$ of (2) emanating from Z which exists for $t \in[a, \infty)$ and satisfies $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[a, \infty)$ and $i=0, \ldots, n-2$.

Proof. Let $b>a$. By Theorem 3.1, there are solutions y_{1} and y_{2} of (2) emanating from Z such that $y_{1}^{(n-2)}(b)=\psi^{(n-2)}(b)$ and $y_{2}^{(n-2)}(b)=\phi^{(n-2)}(b)$ and $\phi^{(n-2)}(t) \leqslant y_{i}^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ for $t \in[a, b]$ and $i=1,2$. Let $Z^{1}=$ $\left\{\left(a, \beta^{0}, \ldots, \beta^{n-2}, y^{(n-1)}\right): y^{(n-1)}\right.$ belongs to the closed interval with endpoints $y_{1}^{(n-1)}(a)$ and $\left.y_{2}^{(n-1)}(a)\right\}$. Now Z^{1} is compact and connccted, $T^{+}\left(Z^{1}\right)$ is not
connected and $T^{+}\left(Z^{1}\right) \subset S$ by Lemma 4.1. Thus by Lemmas 2.1 and 2.2 there is a solution $y(t)$ emanating from Z^{1} with $\phi^{(n-2)}(t) \leqslant y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ on its right maximal interval of existence. Since $H([a, d])$ is satisfied for all $d>a, y(t)$ exists for all $t \geqslant a$, and $y(t)$ satisfies $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \geqslant a$ and $i=0, \ldots, n-2$.
Q.E.D.

We now consider boundary value problems with very general boundary sets. Let Z_{1} be a compact connected subset of $\left\{\left(a, y, \ldots, y^{(n-1)}: \phi^{(i)}(a) \leqslant y^{(i)} \leqslant\right.\right.$ $\psi^{(i)}(a)(i=0, \ldots, n-2)$ and $\left.y^{(n-1)} \in \mathbf{R}^{1}\right\}$ which intersects the boundary $\left\{y^{(n-2)}=\psi^{(n-2)}(t)\right\}$ in a nonempty subset of B_{1} and intersects $\left\{y^{(n-2)}=\right.$ $\left.\phi^{(n-2)}(t)\right\}$ in a nonempty subset of B_{2}. The proof of the following theorem is like that of Theorem 4.1, except that Theorem 3.1 is not needed.

Theorem 4.2. Suppose $H([c, d])$ is satisfied for all $a \leqslant c<d$. Then there is a solution $y(t)$ of (2) emanating from Z_{1} which exists for $t \in[a, \infty)$ and satisfies $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[a, \infty)$ and $i=0, \ldots, n-2$.

Let $b>a$ be fixed. We shall now take W to be the set

$$
\begin{aligned}
& W=\left\{\left(t, y, \ldots, y^{(n-1)}\right): t \in(-\infty, b\rceil, \phi^{(n-2}(t) \leqslant y^{(n-2)} \leqslant \psi^{(n-2)}(t)\right. \\
& \left.\quad \text { and } y, \ldots, y^{(n-3)}, y^{(n-1)} \text { any real numbers }\right\} .
\end{aligned}
$$

If the sets B_{1} and B_{2} are adjusted in the obvious way, Lemma 4.1 remains true. Let $E=W \cap\left\{\left(b, y, \ldots, y^{(n-1)}\right)\right\}$ and let Z_{2} be a subset of E such that there is a separation $E \sim Z_{2}=E_{1} \cup E_{2}$ with $B_{1} \cap E \subset E_{1}$ and $B_{2} \cap E \subset E_{2}$.

Theorem 4.3. Assuming hypothesis $H([c, d])$ is satisfied for $a \leqslant c<d \leqslant b$, there exists a solution $y(t)$ of (2) emanating from Z_{1} and terminating in Z_{2} which satisfies $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[a, b]$ and $i=0, \ldots, n-2$.

Proof. Suppose there is no solution $y(t)$ of (2) from Z_{1} to Z_{2} which satisfies $\phi^{(n-2}(t) \leqslant y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ for $t \in[a, b]$. Then $T^{+}\left(Z_{1}\right) \cap Z_{z}-\varnothing$, and we have

$$
T^{+}\left(Z_{1}\right)=\left[\left(T^{+}\left(Z_{1}\right) \cap B_{1}\right) \cup\left(T^{+}\left(Z_{1}\right) \cap E_{1}\right)\right] \cup\left[\left(T^{+}\left(Z_{1}\right) \cap B_{2}\right) \cup\left(T^{+}\left(Z_{1}\right) \cap E_{2}\right)\right]
$$

is a separation of $T^{+}\left(Z_{1}\right)$.
Now $T^{+}\left(Z_{1}\right) \subset S$ by Lemma 4.1 and the fact that $E \subset S$. By Lemmas 2.1 and 2.2 there is a solution $y(t)$ of (2) emanating from Z_{1} with $\phi^{(n-2)}(t) \leqslant$ $y^{(n-2)}(t) \leqslant \psi^{(n-2)}(t)$ on its right maximal interval of existence with respect to $\mathbf{R}^{1} \times \mathbf{R}^{n}$. By hypothesis $H([a, b])$, this situation is impossible.

Then there is a solution $y(t)$ of (2) from Z_{1} to Z_{2} with $\phi^{(n-2}(t) \leqslant y^{(n-2)}(t) \leqslant$ $\psi^{(n-2)}(t)$ for $t \in[a, b]$. It follows that $\phi^{(i)}(t) \leqslant y^{(i)}(t) \leqslant \psi^{(i)}(t)$ for $t \in[a, b]$ and $i=0, \ldots, n-2$.

5. An Example

To illustrate how the above theorems can be applied, we consider the following equation from boundary-layer theory:

$$
\begin{equation*}
y^{\prime \prime \prime}=-y y^{\prime \prime}+\lambda\left(y^{\prime 2}-1\right) \quad(\lambda \geqslant 0) \tag{10}
\end{equation*}
$$

First, let us specify the boundary conditions $y(a)=\beta^{0}, y^{\prime}(a)=\beta^{1}$, $y^{\prime}(b)=\delta^{1}$, where $a, b, \beta^{0}, \beta^{1}, \delta^{1}$ are real numbers with $a<b, \beta^{1} \geqslant-1$, and $\delta^{1} \geqslant-1$. Let $C_{1} \geqslant \max \left\{1, \beta^{1}, \delta^{1}\right\}$ and $-1 \leqslant C_{2} \leqslant \min \left\{1, \beta^{1}, \delta^{1}\right\}$. Define $\psi(t)=C_{1} t+\beta^{0}-C_{1} a$ and $\phi(t)=C_{2} t+\beta^{0}-C_{2} a$. Then

$$
\psi^{\prime \prime \prime}(t)=0 \leqslant \lambda\left(C_{1}^{2}-1\right)=y \psi^{\prime \prime}(t)+\lambda\left(\beta^{\prime 2}(t)-1\right)
$$

and

$$
\phi^{\prime \prime \prime}(t)=0 \geqslant \lambda\left(C_{2}^{2}-1\right)=-y \phi^{\prime \prime}(t)+\lambda\left(\phi^{2}(t)-1\right)
$$

so ψ and ϕ satisfy (4) and (5), respectively, for

$$
f\left(t, y, y^{\prime}, y^{\prime \prime}\right)=-y y^{\prime \prime}+\lambda\left(y^{r 2}-1\right)
$$

Also, $\psi(a)=\phi(a)=\beta^{0}, \psi^{\prime}(a) \geqslant \beta^{1} \geqslant \phi^{\prime}(a)$, and $\psi^{\prime}(b) \geqslant \delta^{1} \geqslant \phi^{\prime}(b)$.
Next, we show that $H([a, b])$ is satisfied for (10). Let $y(t)$ be a solution of (10) with maximal interval of existence J with respect to $[a, b] \times \mathbf{R}^{3}$.

Suppose that $\left|y^{\prime}(t)\right| \leqslant R$ for $t \in J$. Note that

$$
\left|y^{\prime \prime \prime}(t)\right| \leqslant|y|\left|y^{\prime \prime}\right|+\lambda\left|y^{\prime 2}-1\right| \leqslant Q\left|y^{\prime \prime}\right|+\lambda\left(R^{2}+1\right) \equiv \Phi\left(\left|y^{\prime \prime}\right|\right)
$$

where Q is a positive number such that $Q>R(b-a)+\left|y\left(t_{0}\right)\right|$, where $t_{0} \in J$. Now

$$
\int^{\infty} \frac{s d s}{\Phi(s)}=\int^{\infty} \frac{s d s}{Q s+\lambda\left(R^{2}+1\right)}=\infty
$$

so by Lemma 5.1 of [4, p. 428], there is an M such that $\left|y^{\prime \prime}(t)\right| \leqslant M$ for $\dot{t} \in J$.
By Theorem 3.1, there is a solution $y(t)$ of (10) such that $y(a)=\beta^{0}$, $y^{\prime}(a)=\beta^{1}, \quad y^{\prime}(b)=\delta^{1}, \quad C_{2} t+\beta^{0}-C_{2} a \leqslant y(t) \leqslant C_{1} t+\beta^{0}-C_{1} a, \quad$ and $C_{2} \leqslant y^{\prime}(t) \leqslant C_{1}$ for $t \in[a, b]$.

Now consider the following modification of (10):

$$
\begin{equation*}
y^{\prime \prime \prime}=-y\left|y^{\prime \prime}\right|+\lambda\left(y^{\prime 2}-1\right) \quad(\lambda \geqslant 0) \tag{11}
\end{equation*}
$$

Let $a, \beta^{0} \in \mathbf{R}^{1}$ and define $\psi(t)=t+\beta^{0}-a, \phi(t)=\beta^{0}$. Then ψ and ϕ satisfy (8) and (9), respectively, and the right-hand side of (11) is nonincreasing in y for fixed values of $y^{\prime \prime}, y^{\prime}$, and λ. We can apply Theorems 4.1, 4.2 , and 4.3 to obtain the following results (a), (b), and (c), respectively.
(a) Suppose $0 \leqslant \beta^{1} \leqslant 1$. There is a solution $y(t)$ of (11) which exists for all $t \geqslant a$ and satisfies $y(a)=\beta^{0}, y^{\prime}(a)=\beta^{1}, \beta^{0} \leqslant y(t) \leqslant t+\beta^{0}-a$ and $0 \leqslant y^{\prime}(t) \leqslant 1$ for all $t \geqslant a$.
(b) Suppose $C_{3}>0$ and $0 \leqslant C_{4} \leqslant 1$. There is a solution $y(t)$ of (11) which exists for all $t \geqslant a$ and satisfies $y(a)=\beta^{0}, y^{\prime}(a) \cdots C_{3} y^{\prime \prime}(a)=C_{4}$, $\beta^{0} \leqslant y(t) \leqslant t+\beta^{0}-a$ and $0 \leqslant y^{\prime}(t) \leqslant 1$ for $t \geqslant a$.
(c) Suppose C_{3} and C_{4} are as above, $0<\delta^{1}<1$ and $b>a$. There is a solution $y(t)$ of (11) such that $y(a)=\beta^{0}, y^{\prime}(a)-C_{3} y^{\prime \prime}(a)=C_{4}, y^{\prime}(b)=\delta^{1}$, $\beta^{0} \leqslant y(t) \leqslant t+\beta^{0}-a$ and $0 \leqslant y^{\prime}(t) \leqslant 1$ for $t \in[a, b]$.

Suppose $y(t)$ is a solution of (11) with $y(a) \geqslant 0$ and $0 \leqslant y^{\prime}(t) \leqslant 1$ for all $t \geqslant a$. Assume $y^{\prime \prime}\left(t_{0}\right)<0$ for some $t_{0} \geqslant a$. Now $y(t) \geqslant 0$ for $t \geqslant a$, so $y^{\prime \prime \prime}(t) \leqslant 0$ for $t \geqslant a$. For $t \geqslant t_{0}, y^{\prime \prime}(t) \leqslant y^{\prime \prime}\left(t_{0}\right)<0$, so $y^{\prime}(t) \geqslant 0$ for all $t>a$ is impossible. Hence, $y^{\prime \prime}(t) \geqslant 0$ for all $t \geqslant a$, and $y(t)$ is a solution of (10). Thus, if $\beta^{0} \geqslant 0$, we may replace (11) by (10) in (a) and (b) above.

If, in addition, $\lambda>0$, we can reason as follows: Since $y^{\prime \prime}(t) \geqslant 0, y^{\prime}(t)$ is nondecreasing, so $y^{\prime}(t)$ approaches a finite limit as $t \rightarrow \infty$. Now $y^{\prime \prime \prime}(t) \leqslant$ $\lambda\left(y^{\prime 2}(t)-1\right)$ and $y^{\prime \prime}(t)$ is bounded; hence, it follows that $y^{\prime}(t) \rightarrow 1$ as $t \rightarrow \infty$. Thus, for $\lambda>0, \beta^{0} \geqslant 0$, we can assert in (a) and (b) that $y^{\prime}(t) \rightarrow 1$ as $t \rightarrow \infty$. Then result (a) contains the classical boundary conditions for (10): $y(0)=0$, $y^{\prime}(0)=0$, and $y^{\prime}(\infty)=1$ (see [3, p. 23]).

Remark. There are a number of interesting possibilities for the boundary sets Z_{1} and Z_{2} in Theorems 4.2 and 4.3. In (b) and (c) above, we have made the simplest choices. One could substitute, for example, $y^{\prime}(b)+C_{5} y^{\prime \prime}(b)=$ C_{6} for $y^{\prime}(b)=\delta^{1}$ in (c), where $C_{5}>0$ and $0 \leqslant C_{6} \leqslant 1$.

References

1. J. W. Bebernes and W. Kelley, Some boundary value problems for generalized differential equations, SIAM J. Appl. Math. 25 (1973), 16-23.
2. W. A. Coppel, On a differential equation of boundary-layer theory, Phil. Trans. Roy. Soc. London Ser. A 253 (1960), 101-136.
3. N. Curle, "The Laminar Boundary Layer Equations," Oxford at the Clarendon Press, 1962.
4. P. Hartman, ''Ordinary Differential Equations," Wiley, New York, 1964.
5. M. Hukuhara, Sur une généralisation d'un théorème de Kneser, Proc. Japan Acad. 29 (1953), 154-155.
6. M. Hukuhara, Familles Knesériennes et le problème aux limites pour l'équation différentielle ordinaire du second order, Publ. Res. Inst. Math. Sci. Ser. A 3 (1967), 243-270.
7. M. Huкuhara, The theory of Kneser families and the topological treatment of boundary value problems, J. Math. Soc. Japan 21 (1969), 178-188.
8. L. K. Jackson and G. Klaasen, A variation of the topological method of Ważewski, SIAM J. Appl. Math. 20 (1971), 124-130.
9. J. Kaplan, A. Lasota, and J. Yorke, An application of the Ważewski retract method to boundary value problems, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., to appear.
10. G. Klaasen, Differential inequalities and existence theorems for second and third order boundary value problems, J. Differential Equations 10 (1971), 529-537.
11. C. Kluczny, Sur certaines familles de courbes en rélation avec la théorie des équations différentielles ordinaires I, II, Ann. Univ. Mariae Curie-Sklodowska 15 (1961), 13-40; 16 (1962), 5-18.
12. T. Ważewski, Une méthode topologique de l'examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Lincei 3 (1947), 210-215.

[^0]: * This article is a portion of a Ph.D. thesis directed by Professor J. W. Bebernes at the University of Colorado.

