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1. INTRODUCTION

A number of authors have employed variations of the Wazewski retract
method (see [12]) to study second-order boundary value problems. In the
area of ordinary differential equations, these include Hukuhara [6, 7],
Jackson and Klaasen [8], and Kaplan, Lasota, and Yorke [9]. Bebernes and
Kelley [1] have extended the results of Jackson and Klaasen to contingent
equations.

In this paper, we use a variation of the WaZewski method similar to those
developed by Kluczny [11] and Hukuhara [6] to prove existence theorems
for some mth-order boundary value problems, where # >> 3. Section 2
contains the basic topological results. In Section 3, we show that an existence
theorem of Klaasen [10] extends to nth-order equations under slightly
weaker hypotheses. The results of Sections 2 and 3 are brought together in
Section 4 to produce existence theorems for a class of boundary value problems.
We conclude the paper with an example of a third-order equation from
boundary-layer theory. Coppel [2] has also used a topological argument
to prove existence for a particular boundary value problem associated with
this equation.

2. ToPOLOGICAL PRELIMINARIES

Let R* denote n-dimensional Euclidean space and let 7 be an open set in
R! x R™ We shall consider the ordinary differential equation

x = f(t, x), )]

where f is a continuous function on ¥ with values in R®. Let W be a subset
of V and ¢ be the topological boundary of I¥.

* This article is a portion of a Ph.D. thesis directed by Professor J. W. Bebernes at
the University of Colorado.
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For P e W, the right zone of emission from P is the set EHP) = {{=, x(r)}:
do < + such that P = (o, (o)), x(f) is a solution of (1) on [o, r] and
(t, x(5)y e W for tefo, 7[}. If A C W, we define ET(A) = Upes ETH{(P). The
right trace of emission from A is defined to be the set T+(A4) = E~(d4) N oWW.

The following criterion for compactness of the right zone of emission will
be useful.

Lemma 2.1, Suppose A is a compact subset of W and W is a closed subset
of V. Then E+(A) is compact if and only if there is no solution x(t) of (1)
emanating from A with (t, x(t)) € W on its right maximal interval of existence.

Proof. If there is such a solution x(2), then E*(4) is not bounded, so it
1S not compact.

Suppose there is no such solution emanating from 4. Let (P57 ; be a
sequence of points in E+(A). For each %, let x;(¢) be a solution of (1) and let
o, and 7, be real numbers such that (a; , (o)) € 4, P, = (71, 1,{7;)) and
(¢, x,{(1)) € W for ¢ € [0}, , 7]. Furthermore, suppose each x,{¢) is defined on
its maximal interval of existence (o, , wy). Since A is compact, we may assume
o — o, 8,{(0;) — %y as B — o0, and we have (o, xy) € 4.

By Theorem 3.2 of [4, p. 14] there is a solution x(¢) of (1) defined on its
maximal interval of existence (o, w) with x(c) = x, and a subsequence which
we again name {xy(#)>%.; which converges uniformly to x(f) on compact
subintervals of («, w). Choose ;€ (o, w) so that (¢, , x(f;} ¢ W. For & sufli-
ciently large, (4, , x,(f,)) ¢ W and thus o, < 7, < #;. Choose ¢ > 0 so that
o« <o —e Theno — e < 7, < £y and x,{t) — x(¢) uniformly on [o — «, #y]
for k sufficiently large, so {P,>%_; is bounded.

Thus some subsequence of (P, >7_, converges to a point P in 1" By the
uniform convergence, P lies on the graph of x(¢), so P € E+(4). Hence E+(4)
is compact. Q.E.D.

The assumption that W is closed can be weakened. See Theorem 4.1 of [11]
for details.

Next, we generalize the idea of a strict egress point in the fashion of
Hukuhara [6]. Define

S = {P = (t, %) € 0W: Je > O such that, for 0 <+ — i, <,
EHPYyNn ({7, x): xe R} U @W N {(t, x): t < 7, x € R"Y})) is connected}.

The points of S are the strict egress points of W relative to Eq. (1).
The following lemma is very much the same as Proposition 4.2 of [6], and
we give only an indication of the proof.

Lemnia 2.2, Swuppose A is a connecied subset of W and ET(A) is compact.
If T+(A4) C S, then TH(A) is connected.

505/18/r-11
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Proof. Suppose T+(A) is not connected. Then we can write TH(A4) =
T,V T,, where T, and T, are nonempty and compact, and T, N T, = &.
Define, fori =1, 2,

E, = Qe EHA): EXQ) N T: # o).

Then each E; is a nonempty closed subset of £+(.4) and E; U E, = E+(A).
Since A4 is connected, E+(A4) is connected, so E; M E, is nonempty and
compact. Let P = (¢, , ;) belong to E; N E, and have the property that no
point in B} N E, has  component greater than 7, .

Suppose P e 0. We can assume P e T . There is an € > 0 such that for
0<r—1, <ge

F,.=EtPYN{(rx):xeR} U (@WN{(x):t < 7,2eRY)
is connected. Fix 7 € (¢, , ¢, -+ €) and define, fori = 1, 2,
F.={QeF:E{Q)N T, # o).

These sets are closed and F,; U F,, = F_. Furthermore, F,, — P is closed
and nonempty since P is not a limit point of /', . Since F,; U (F, — P) =F,
is connected, F,; N (F,; — P) # @ . This result implies that there is a point
in E; N E, with ¢ component greater than £, and gives a contradiction.

If P is in the interior of W, one can arrive at a contradiction in a similar
manner using the Kneser Theorem for ordinary differential equations. It
follows that T+(4) is connected. Q.E.D.

3. A BouNDARY VALUE PROBLEM FOR #TH-ORDER EQUATIONS

We shall now consider the nth-order differential equation

R ()} @

where n > 3 and f is continuous from R' X R” to RL Let 89, ..., 72,
872 be real constants. The boundary value problem to be considered in this

section is
¥ = f(t, ypoers y©),
3)
YO@) =B (1 =0,.,m—2), yeBP) =2 (

The following lemma follows in a routine way from the Schauder fixed-
point theorem.

Lemma 3.1, If f is bounded on [a, b] X R?, then (3) has a solution.



BOUNDARY VALUE PROBLEMS 161

It will be necessary in order to prove existence of solutions to various
boundary value problems to add an assumption governing the behavior of the
(n — 1)st derivative of solutions of (2). Let I be an interval of real numbers.
We have the following hypothesis.

H(I): Let y(t) be a solution of (2) with maximal interval of existence J
with respect to [ x R?, If y*=2)(1) is bounded on J, then y*—1)(¢) is bounded,

on [.

LemMa 3.2, Let Z be a closed subset of {a} X R™ and suppose H([a, b])
is satisfied. If { y,>n_y is a sequence of solutions of v = fi(¢, v,..., ¥V with
initial points in Z such that { y\">%_, is uniformly bounded on [a, b for i = 0,...,
n — 2, where the f;'s are continuous functions on [a, b] X R™ which converge
uniformly to f on compact subsets, then there is a solution y(t) of (2) on [a, 5]
and a subsequence of { y,>%.., which converges to y uniformly on {a, b}.

Proof. 'There is an M such that | v{* (1) < M for each % and all
t€a, b]. Then

(n—2) (n—2) .
Coteen, LT (0) — 3 V(@) | 2M
{ Vi (tl.){_ b — a < h—_ g °

for some sequence {f;>;_, of points in [a, b].

The sequences {t>iy, <V(ti))her s YY) 5es are bounded se-
quences of real numbers. Let {&;>7.; be a subsequence of {&>%_; such that
each of the above sequences converges.

By the convergence theorem used in the proof of Lemma 2.1, there is a
subsequence of {y;, >, which converges uniformly to a solution y(#) of (2)
on compact subintervals of the maximal interval of existence of y(&). Hypo-
thesis H({a, b]) and the uniform boundedness of  y¥% | fori = 0,..., n — 2
imply that y(¢) is defined on [a, &] and that the subsequence converges
uniformly to v(¢) on [a, b]. Q.E.D.

Let 4, ¢ e C™{a, b]) with $O(t) = ¢'9(t) for 1 =0....,2— 2 and all
te[a, b} and
L) < f @ 35, YU, 03(), $OD()), 4
$E) = f(E, pyens 7, $0R(), 012, )
for ¢U(r) < v@ < Y(t) 6 =0,..., 2 — 3) and ¢ € [a, b].
Next, we make some modifications of f. For ¢ = 0,..., z — 3 define the
variables
$U)(2) for y > (),
y(i)(t) —_ y(i) for Z/)‘(i)(t) S y(i) > q’)(i)(t),
(#9()  for ¢P() =y (te(a, b]).
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Then we define
F(t, p,..., yi7-1))
y('rz—z) . z/,('n~2)(z‘>

T 5(n-3) (n—2) (n—1)
f(t’ .y(t)""!.y (t): ‘zl' (t), N4 )+ 1 + y(n—2) . S[,(11—2)(75)
for y(n—Z) > l/,(n—Z)(t),

J(&, (@), 302(E), y 2,y
for l/l("_z)(t) >J,(fn—2) > ¢(’n—2)(t)’

Y] F{n— n—2 N y('n—2) —_— ¢(7L—2)(t)
Ft 5@, 5D, $2(0), ) e

for (]5("‘2’(75) 2 y('n—z).

Finally, let

sF(t, Pyeees ,(n~2)}j) for y(n—l) >],
Gilt, yyuens V) = (F(G, 35y y2, y ) for j > 000 > —j
F(t, y,....,y"2, —) for —j =y,

for integers j satisfying j > max,r, 5 {max{] ¢*~2(z)|, | S H{))}.
We now consider the differential equations

y(n) = F(t’ Yseees y(n—l)), (6)
¥ = Gy(t, y,..., y*Y). (7);

Lemma 3.3, Suppose 4(t) and ¢(t) are as described above and suppose y(t)
s a solution of (6) or (7); on some interval I C [a, b]. Let oy , 0p € I with o, > oy
and suppose $"(a,) < ¥*Iay) < $5Nay). If Y D(og) > h-I(ay),
then yn=2(t) > Jr-2(2) for t &1 0 oy , Bl, and if 3" X(ay) < p"(ay), then
yroB(E) < pU-B(E) for tel N oy, b].

Proof. Let y(t) be a solution of (6). If it is a solution of (7); for some j,
the proof is similar.

Consider the case 3™ ¥(o,) > " ?(0,). Suppose there exists a
teln [o,,b] such that y™-2(f) = =-2(¢). Then p™-2 — (- has a
positive maximum at some f, € (oq , £). We have ™ (¢} — 4@=U(z)) = 0,
OI(tg) — (k) > 0, and y(%) — (%) < 0. But, by (4),

Y L) — ™ (te) = Fty ..., " 1(tg)) — '™ (2o)
= f(to s J(to)se-r §" B ), $72(0), %V (t0)) — ) (Z0)
+ y(n—z)(to) — ¢(n—2)(t0)
1 + y(n~2)(t0) — ¢(71—2)(t0)
oY) — gy)
Ly () — in(2y)

> 0.
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This contradiction proves the lemma for the case considered. The case
g,y < $1%2(0,) is similar. Q.ED.

The next theorem is a generalization of Theorem 7 in [10].

TaeoreM 3.1, Let (t) and §(t) be as given above and let 8,..., 572, 872
be real numbers satisfying ¢P(a) < B9 < $'Na) for { = 0,.., 8 — 2 and
2By <L 872 < ln=2(b). Assume hypothesis H([a, b]) is satisfied. Then (3)
has a solution y(t) such that ¢P(2) < yO() < 9 for t e la, b} and
i=0,. 2.

Proof. Since Gi(t, y,..., ') is continuous and bounded on [a, 8] X R7,
the boundary value problem consisting of (7)j and the boundary conditions
in (3) has a solution y,(#) for each value of j by Lemma 3.1. Moreover, by
Lemma 3.3 ¢7-2(¢) < ygn"z’(t) < -2ty for i e[a, b]. Since ¢Pa) <
B < $'¥a) for i =0,...,m — 3, successive integrations yield () <

¥ < () for £ = O ,n— 3.

Now (G converges umformly to F' on compact subsets of [a, 8] X R»
and F coincides with f for () <y < J9(f)and t € {a, 8] ({ =0,...,z — 2).
By Lemma 3.2, a subsequence of {y;> converges uniformly to a solution y(t)
of (3) on {a, 6], and ¢@(2) << yI(F) < @(t) forie[a, blandi = 0,..., n — 2.

Q.ED.

4. A Crass orF Bounpary VALUE PROBLEMS

We can use the results of Sections 2 and 3 to analyze other types of boundary
value problems for (2) with slightly stronger assumptions about ¢, ¢, and f.
Let, ¢ € C*RY with p9(2) = ¢O(t) fori = 0,..., m — 3, 2(2) > 2(¢)
and

) < & h(@),eno, $I@)), (&)
() = @, $(),e.., V), &)

for t € RL. Furthermore, we assume f is nonincreasing in y% for
P D () << vy < H9(¢) and fixed values of £ € RY, ¢F)(f) << 4™ < ofiR)(¢), where
E=0,.,2—2,k #1{ and y@» DR (7 = 0,..., n — 3). Note that (8), (9)
and the additional assumption on f imply that  and ¢ satisfy (4) and (5),
respectively.

Now (2) can be thought of as a special case of (1), and we shall use the
terminology of Section 2, where V' = R! X R” and W = {(t, y,..., y"):
FnD(t) <L 42 L Yn-2(7) and £, Pyeur, Y3 y(0-1 any real numbers).
It will be useful to single out two subsets of 6. Let B, be the set of points
in the boundary {y"2 = J=3(t)} with 1*D = 4"-1() and let B, be
the set of points in {y"? = -2} with y» P < ¢ ¢). Clearly,
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if Qe(interior W)U B, U B,, then THQ)C B, U B,. The following
result will allow us to apply Lemma 2.2 below.

Lemvma 4.1.  Suppose there is an e >0 so that H([c,d]) is satisfied
whenever d — ¢ < e . If P = (y, o¥..., 0 V) e B, U B, and $'V(y) < o <
$(y) for i = 0,...,n — 3, then P S.

Proof. We shall consider only the case Pe B, for the case Pe B, is
handled in the same way.

Suppose o1 > h»=D(y). If y(¢) is a solution of (2) passing through P,
then y-1(y) > @B(y). Since y"2(y) = H»(y), it is clear that
Y223y > J=2(¢) in some interval (y, y'), ' > y. Then, for any = > y,
EHPYN ({(r, x): xR} U W N {{(t, x): t < 7,x€R"})) consists of the
single point P and thus is connected.

The other possibility is o=t = »~1(y). Choose 1 — y > 0 sufficiently
small that all solutions of (6) through P exist on [y, 7] and do not intersect B, .
Let

Zp = {¥(t) = (y(t),..., y*D(2)): v is a solution of (6) on [y, ] through P}.

By the generalized Kneser Theorem for ordinary differential equations (see
[5]), Zp is a compact connected subset of the Banach space of continuous
functions on [y, 7].

Define K = EHP) N ({(r, x): xe R} U 0W N {(t, ): t <7, xe R"})).
K is closed and bounded, so it is compact. If K is not connected, then
K=K/ UK,, where K, NK, = @ and K, and K, are compact and
nonempty. For i =1, 2, let

T, ={YeZ(t, Y(t,) € K, , where #, = supfy < t < = (&, Y(&)) € W}

Clearly, 21N 2, = @. By Lemma 3.3, if Y2}, and (4,, Y(¢,)) € W for
some fy =y, then (¢, Y(#)e W for y <t <. Thus 2, U2, = 2;.
Next, we prove 2, is closed.

Let <Y (#)>5; be a sequence in X} such that Y,(f) — Y(¢) € 2 uniformly
for ¢ €[y, 7]. For each k, there is a #, € [y, 7] such that (¢, , ¥3(z,)) € K and
either t;, = 7or (¢, Y,(£)) ¢ Wfor t > t; . T'aking a subsequence, if necessary,
suppose t; —%,. Then (f,, Y () — (f, Y(t) e Ky . If ¢, =7, then
(v, Y(=)) e K; and Y € 2] . If £, << 7, then for & sufficiently large #;, << 7 and
(¢, Yi(t)) ¢ Wior t e (8, , 7. Thus (¢, Y(£)) cannot belong to the interior of ¥/
forany t € [, , 7]. Suppose Y € %, . Then It, € (¢, , 7] so that (¢, , Y(#,)) e K, .
Now (%, Y(t,)e K, and (;, Y(#)e K, VK, for t, <t <t . This is
clearly impossible since the distance between K; and X, is positive. Since
Y ¢2,, YelZ, . Itfollowsthat X is closed in X . Similarly, X, is closed.
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Finally, we show that 2, and 2, are nonempty. Suppose 2 is empty.
Then no point in K has £ component . Let O == (, £9,..., 8#%) be a point
in K; with the largest possible ¢ component A. Now Qe By, so 71 >
U I Bl > (), then any Y = (y,.., "M e, with
(A, Y(A)) = QO satisfies y@-D(A) > -D(A) and 3"=2Q) = $-D(Q), so
ye=B(t) > n-2(t) for ¢ in some open interval with left endpoint A. By
Lemma 3.3, y™=2(2) > "~2(¢) for te (A, 7]. Thus Y € Z|, so in this case
2y % @, and we can assume that f71 = " U(}). Also, 72 = "—2(Q).
By definition of E+(P),Q € K implies O is reached by some ¥ = {3,..., ¥ V) e
Zp such that (1, Y(2)) e W for vy <t << A Thus y@-28(2) < =3(z) for
t € [y, A]. Since of < P'?(y) for ¢ = 0,..., = — 3, successive integrations yield
B < (A} for i = 0,...,m — 3.

Let y be a solution of (6) which emanates from Q. If there is no A" € (A, 7]
such that y*=2(1) < »-3(1) on [A, A'], then y"~2(z) > " 2(¢) on (A, 7]
by Lemma 3.3, contradicting 2; = @. Thus y'#2() < "2z} on some
interval [A, A']. Fix an ¢ > 0 which is smaller than ¢; , A" — A and the distance
from Kj to K, .

For te[A A 4 €], (t) satisfies (4) and 1(?) satisfies (5) because of the
monotony of f and $¥() = yO(t) for { =0,...,n — 2. Therefore, by
Theorem 3.1, there is a solution () of (2) such that 29(x) = B fori = 0,...,
i — 2, 2P0 4 &) = S DA 4 €) and yOE) < 2f) < () for
te[A, A+ €] and { = 0,...,7 — 2. Since ¥y BA) = -D(A), it must be
true that 2™-Y(A) = "% so (A 2{}),..., 2* V() = Q. Now the point
(A 4+ «,..., 27 D(A 4- €)) must belong to either K; or K, , but it cannot be in
K, by the assumption on Q and it cannot be in K, by the choice of e.

This contradiction implies that 2y 4 @, and a similar argument proves
the assertion for 2, . Thus Xp = 2 U J, is a separation, but we know 2,
is connected. It must be true that K is connected. QE.D.

We can use the preceding lemma to obtain an additional result for the
left-hand boundary set considered in Section 3.

TraeoreM 4.1, Let B0,..., 872 be real numbers satisfying ¢a) < B® <
$O{a) for i =0,...,n — 2 and some ac RL Let Z = {(a, B°,..., B2, yn-1)):
vV e RY} and assume H([c, d]) is satisfied for all a < ¢ < d. Then there is
a solution y(t) of (2) emanating from Z which exisis for t € [a, o) and satisfies
() < v < PO for te[a, ) and {1 = 0,...,n — 2.

Proof. Let b > a. By Theorem 3.1, there are solutions y; and y, of (2)
emanating from Z such that y{*2(b) = (b)) and yp{" (b)) = "-2(h)
and ¢B(8) < () L pinD(2) for tefa, b] and [ = 1,2. Let Zt =
{(a, B°,..., 8772, 1) 4n-L) belongs to the closed interval with endpoints
" D(a) and y§*P(a)}. Now Z! is compact and connected, T+(Z%) is not
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connected and T+(Z*) C S by Lemma 4.1. Thus by Lemmas 2.1 and 2.2
there is a solution y(t) emanating from Z! with ¢™=2(¢) < y"=2(¢) < 7-2(¢)
on its right maximal interval of existence. Since H([a, d]) is satisfied for all
d > a, y() exists for all t > a, and y(¢) satisfies $2() < y(t) < $9() for
t>aand i =0,.,n— 2. Q.E.D.

We now consider boundary value problems with very general boundary
sets. Let Z; be a compact connected subset of {(a, ¥,..., Y P: a) < yD <
$9a) ({ =0,.,n—2) and y» 1R} which intersects the boundary
{y*-3 = Jl==2(f)} in a nonempty subset of B, and intersects {y®2 =
¢=-2(1)} in a nonempty subset of B, . The proof of the following theorem is
like that of Theorem 4.1, except that Theorem 3.1 is not needed.

TreEOREM 4.2.  Suppose H([c, d]) is satisfied for all a << ¢ << d. Then there
1s a solution y(t) of (2) emanating from Z, which exists for t € [a, o0) and satisfies
() < () < SO for te[a, ) and i = 0,...,n — 2.

Let b > a be fixed. We shall now take ¥ to be the set

W = {(t, Yy Y 0): £ € (—00, b], 72(£) < y1=2 < 2%
and y,..., y»=3, y»=1 any real numbers}.

If the sets By and B, are adjusted in the obvious way, Lemma 4.1 remains
true. Let E = W N {(b, ¥,..., ")} and let Z, be a subset of E such that
there is a separation £ ~ Z, = B, U E,with BN ECE and B,N ECE,.

TueorREM 4.3.  Assuming hypothesis H([c, d]) is satisfied for a < ¢ << d < b,
there exists a solution y(t) of (2) emanating from Z, and terminating in Z, which
satisfies \(2) << yO(2) << f¢) for tea, bl and £ = 0,...,n — 2.

Proof. Suppose there is no solution ¥(¢) of (2) from Z; to Z, which
satisfies #~2(1) < y-3() < J*(¢t) fort € [, b]. Then THZ) N Z, = &,
and we have

TH(Z,) = [(TH(Z1) 0 B)) U (TH(Zy) N E)] V [(TH(Zy) N By) VU (TH(Zy) N By)]

is a separation of TH(Z)).

Now T'+(Z,) C S by Lemma 4.1 and the fact that £ C S. By Lemmas 2.1
and 2.2 there is a solution y(¢) of (2) emanating from Z; with ¢"=2(z) <
() < H72(2) on its right maximal interval of existence with respect to
R! x R By hypothesis H([a, b]), this situation is impossible.

Then there is a solution y(z) of (2) from Z, to Z, with ¢®—23(¢) < 3"2(z) <
$n-2(t) for € [a, b]. It follows that ¢ () < y'(#) < H'9(2) for £ €[a, b]
and 7 = 0,...,n — 2. Q.E.D.
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5. AN ExampLE

To illustrate how the above theorems can be applied, we consider the
following equation from boundary-layer theory:

yw — _yylf - )\(_’)"'2 — 1) ()\ > 0) (10)

First, let us specify the boundary conditions y(a) = B° 3'(a) == B,
y'(b) = 8%, where g, b, B°% B, &' are real numbers with g << b, f* > —1, and
& = —1. Let C; > max{l, £, 8} and —1 << C; < min{l, §, §}. Define
H(t) = Cit + B — Cia and ¢(f) = Cyt -+ B — Coa. Then

P = 0 < NG — 1) = p"() = AP — 1)
and
¢7() =0 = NCP — 1) = —y¢"(t) + A$™(t) — 1),
so  and ¢ satisfy (4) and (5), respectively, for
f3,9,9") = —w" 4+ Ay% — 1.

Also, (a) = §(a) = B '(a) = B* = 4'(a), and §'(b) = & = 4'(h).
Next, we show that H({a, b]) is satisfied for (10). Let y(z) be a solution of
(10) with maximal interval of existence | with respect to [, 8] X RS,
Suppose that | y'(¢)] < R for t € J. Note that

AL <Ty iy IT+A21% -1 <Oy |+ AR+ 1) = Sy ),

where (' is a positive number such that Q > R(b — a) + | ¥(¢,)|, where
;& J. Now
[“’ s ds J'w sds

e T ostaarrn

so by Lemma 5.1 of [4, p. 428], there is an M such that | v"(t)] < M forze J.
By Theorem 3.1, there is a solution y(¢) of (10) such that y(a) = g9,
y@) =B, y(b) =8, Ct+f— Cua < (1) < Oyt + §' — Cya, and
C, <y'(t) < C, for te]a, b].
Now consider the following modification of (10):

3 =y [y | Ay — 1) (A= 0). (11

Let a, f°cR! and define (z) =t + B° — a, ¢(f) = B° Then 4 and ¢
satisfy (8) and (9), respectively, and the right-hand side of (11) is non-
increasing in y for fixed values of ¥”, 3", and A. We can apply Theorems 4.1,
4.2, and 4.3 to obtain the following results (a), (b), and (c), respectively.
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(2) Suppose 0 < 8! < 1. There is a solution y(t) of (11) which exists
for all ¢t >> a and satisfies y(a) =% y'(a) =5 PO <y(f) <t + B —a
and 0 < y'(2) < 1 foralit > a.

(b) Suppose Cg3 > 0 and 0 < C, << 1. There is a solution y(#) of (11)
which exists for all z > a and satisfies y(a) = g°, y'(a) — C3y"(a) = C,,
<y <t+B —aand 0 <y () < lfort = a

(c) Suppose C, and C, are as above, 0 << 8* << 1 and & > a. There is a
solution y(t) of (11) such that y(a) = p° v'(a) — Csy"(a) = C4, y'(6) = &,
B<yty<<t+B—aand 0 <y (@) <1 for t&fa, b].

Suppose y(t) is a solution of (11) with y(a) = 0 and 0 < 3'(¢) < 1 for all
t > a. Assume y"(¢,) << 0 for some £, > a. Now y(t) = 0 for ¢ > a, so
y'(t) <0 for t = a. For t =1, v'(t) < y"(t) <0, so y'(¢) = 0 for all
t > a is impossible. Hence, y"(¢) = 0 for all # >> a4, and y(2) is a solution of
(10). Thus, if 8° == 0, we may replace (11) by (10) in (a) and (b) above.

If, in addition, A > 0, we can reason as follows: Since y"(t) = 0, ¥'(¢)
is nondecreasing, so y'(¢) approaches a finite limit as £ — co. Now »”(#) <
A(y'3(#) — 1) and ¥"(2) is bounded; hence, it follows that y'(£) — 1 as £ — co.
Thus, for A > 0, 8° > 0, we can assert in (a) and (b) that y'(¢) — 1 as ¢ — co.
Then result (a) contains the classical boundary conditions for (10): ¥(0) = 0,
¥'(0y = 0, and y'(c0) = 1 (see [3, p. 23]).

Remark. There are a number of interesting possibilities for the boundary
sets Z; and Z; in Theorems 4.2 and 4.3. In (b) and (c) above, we have made
the simplest choices. One could substitute, for example, y'(b) + C;3"(d) =
Cy for ¥'(b) = 6 in (c), where C; > 0and 0 << Cy < 1.
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