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Abstract MicroRNAs are short non-coding RNAs that inhibit
translation of target genes by binding to their mRNAs, and have
been shown to play a central role in gene regulation in health and
disease. Sophisticated computer-based prediction approaches of
microRNAs and of their targets, and effective biological valida-
tion techniques for validating these predictions, now play a cen-
tral role in discovery of microRNAs and elucidating their
functions.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

MicroRNAs are short non-coding RNAs that suppress

translation of target genes by binding to their mRNAs, and

have been shown to play a central role in gene regulation in

health and disease [1–4]. MicroRNAs� function as post-tran-

scriptional inhibitors is based on a number of microRNAs,

the function of which has been demonstrated biologically.

Study of mutant phenotypes in worm led to the discovery of

the first microRNAs, lin-4 and let-7, which control develop-

mental timing, by regulating translation of their respective tar-

gets [5,6]. Similar mutant studies, showed that lsy-6 regulates

left–right asymmetry in the nervous system in worm [2] and

that bantam and miR-14 control apoptosis in fly [7,8]. Ectopic

expression of miR-181 led to hematopoietic differentiation [9],

and pancreatic-islet-specific miR-375 has been shown to regu-

late insulin secretion [4], in mouse.

Initially, most microRNAs were discovered by massive clon-

ing and sequencing efforts [10–14], with informatics playing a

limited role of verifying that the cloned sequences are part of

a hairpin structure, typical of microRNA precursors [15]. It

was apparent however, that these approaches are limited, espe-

cially in detecting low abundancy microRNAs, or ones which

are tissue-specific, especially in tissues which are difficult to ob-

tain and sequence. This led to development of increasingly

sophisticated bioinformatic approaches for prediction of novel

microRNAs, and sensitive biological validation techniques,

needed to validate such predictions. Similarly, several bioinfor-
*Fax: +972 3 5480153.
E-mail address: bentwich@rosettagenomics.com (I. Bentwich).

0014-5793/$30.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.09.040
matic approaches have evolved, which predict microRNA tar-

gets, and to a limited extent, methodologies which validate

such target predictions.

Prediction of microRNAs in plants relies on principles sim-

ilar to animal microRNA prediction, but takes into account

features that are unique to plant microRNAs, such as longer

and variable hairpin precursor length. Prediction of micr-

oRNA targets in plants is drastically simpler than in animals,

as plant microRNAs typically bind their targets with near per-

fect complementarity. Several effective algorithms have been

developed for prediction of microRNAs and their targets in

plants, which are based on take these unique feature, and are

not reviewed here.
2. MicroRNA prediction and validation

2.1. Principles of MicroRNA prediction

Bioinformatic prediction of microRNAs is based on ma-

chine learning techniques that use known microRNAs as a

�training-set�, in order to �train� a computer program, such that

it is capable of identifying postulated novel microRNA se-

quences. Since microRNAs are derived from short �60 nucle-

otide-long �hairpin-shaped� precursors, a large group of such

hairpin sequences randomly found in the genome, is typically

used as a �control group�. The vast majority of these randomly

found hairpins are assumed not to be microRNA precursors.

The training-set is then studied for common distinctive prop-

erties of the known microRNAs, which set them apart from

the control group of random hairpins. Once such distinctive

properties are found, a computer algorithm is constructed,

which scores sequences on their similarity to these distinctive

properties, and accordingly, on their probability to be valid

novel microRNAs. In general, distinctive properties include

structural features such as hairpin length, hairpin-loop length,

thermodynamic stability, base-pairing, bulge size and location,

and distance of the microRNA from the loop of its hairpin

precursor; and sequence features such as nucleotide content

and location, sequence complexity, repeat elements and inter-

nal and inverted sequence repeats (see Fig. 1).

The resulting �predictor� algorithm, is then iteratively

checked and improved by training it on a subset of known

microRNAs, and checking its scoring accuracy on a separate

subset of known microRNAs, against a control group of ran-

dom hairpins. The computer does not �know� this second sub-

set, and hence scores them as it would any unknown

sequences. These scores may therefore be assessed for their

sensitivity and specificity.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Machine learning prediction of microRNAs. Machine learning
algorithms are used to identify distinctive properties that differentiate
between a training set of known microRNAs and a control set of
genomic hairpins. Based on these, a predictor is used to identify
candidate microRNAs from genomic sequence data. Finally, biological
validation determines which of these candidates are valid novel
microRNAs.
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Most predictor algorithms depend on evolutionary conser-

vation of microRNA sequences between different species. Such

algorithms receive as input sequences that are homologous in

two species, and use various approaches to detect microRNAs

that are conserved in these two species. This approach allows

filtering out many of the false-positive candidates, but is obvi-

ously limited to detecting conserved microRNAs.

Computerized identification of novel microRNAs is a diffi-

cult pattern-recognition challenge. No one property is suffi-

cient for accurately detecting microRNAs, and in most cases

rigid thresholds of property-values are also not sufficiently sen-

sitive. Rather, it is the combination of multiple properties, with

suitably different weighing of these different properties, that

provides a more desirable accuracy. This is typically achieved

by an iterative fine-tuning process, of and modifying the

weight given to various distinctive properties, and testing its

accuracy, as described above.

Finally, an attempt is made to validate expression of high-

scoring predicted microRNAs in various tissues and/or cell

cultures. This too is challenging, since failure to biologically

validate the expression of a predicted microRNA, not neces-

sarily implies that the bioinformatic prediction was incorrect:

It may be that the microRNA is not expressed in the exam-

ined tissues, or is expressed only in certain cell-phases, or is

expressed in low abundancy which escapes detection by the

technique used. This latter cause is especially problematic

with microRNAs, which are often very similar in sequence

to one another. Expression of an abundant microRNA

may therefore mask the expression of a rare one that is very

similar in sequence, especially when using PCR amplifica-

tion.

2.2. MicroRNA prediction algorithms

Several prominent computerized microRNA detection ap-

proaches have been developed and utilized. Lai et al. [16] iden-
tified 48 microRNA candidates in Drosophila, 24 of which

were validated, using a computational microRNA detection

program called miRseeker. This algorithm assesses the folding

patterns of RNA sequences conserved between two Drosophila

species using Mfold [17], in order to detect conserved hairpin

structures having a nucleotide divergence characteristic of

known microRNAs.

Lim et al. [3,18] identified 30 novel microRNAs in C. elegans

and 38 novel human microRNAs using a sophisticated algo-

rithm, called MirScan. This algorithm uses a different RNA

folding algorithm, RNAFold (also known as Vienna Package)

[19], to find hairpin structures in sequences that are evolution-

arily conserved. Each conserved hairpin, is considered as a po-

tential microRNA-precursor, and is then further assessed for

the location of the microRNA within it. This is done by pass-

ing a 21-nucelotide window along the hairpin, and scoring

each position for its similarity to known microRNAs. The

algorithm is based on a training-set of 50 published microR-

NAs from C. briggsae and C. elegans. This approach success-

fully identified conserved microRNAs within the large number

of conserved hairpins found in the genome (�35000 hairpins

conserved between C. briggsae and C. elegans; �15000 hair-

pins conserved between man, mouse and pufferfish). Grad

et al. [20] used a similar approach to detect and validate 14

microRNAs in C. elegans.

Berezikov et al. [21] identified 16 novel human microRNAs,

using a phylogenetic-based approach. Phylogenetic shadowing

is a powerful genomic-conservation assessment technique,

which determines the level of conservation of each nucleotide

in a the assessed sequence [22]. Using this approach, Berezikov

et al. found that nucleotides in the stem of microRNA hairpins

precursors are significantly more conserved than in sequences

flanking the hairpin, and in the hairpin�s loops. They then used

this distinctive property, in conjunction with other known

properties of microRNAs, as described above, to identify no-

vel microRNA candidates.

Recently, our group identified 89 novel human microR-

NAs, including 54 primate-specific microRNAs, using a novel

integrated microRNA detection approach [23]. Unlike other

techniques described above, this approach does not depend

on sequence conservation, and was therefore capable of

detecting a large number of microRNAs that seem to be un-

ique to primates. Our goal was to create a broad �funnel�
which would allow us to scan as many candidate microRNAs

as possible, and yet effectively �zoom-in� on and validate the

actual microRNA. We began by �folding� non-coding regions

of the entire human genome, using the RNAFold algorithm

[19], yielding �11 million hairpins. From these, we used

our algorithm, PalGrade, to select a set of 5300 high-scoring

candidates, which were subjected to microarray experiments

using a microarray technique we developed [24]. 359 of these

were shown to be expressed by microarray experiments, and

were subjected to a novel sequencing technique we reported,

yielding 89 novel validated human microRNA. This ap-

proach allowed detection of the largest cluster of microRNAs

discovered to date, comprising 54 new predicted microRNAs,

43 of which we have biologically validated. Interestingly,

while this cluster is located adjacent to three previously re-

ported micro-RNAs, it is not conserved beyond primates,

and so went undetected by other microRNA prediction algo-

rithms, all of which depend on sequence conservation (see

Fig. 2).



Fig. 2. Predicted and validated microRNAs. The number of microR-
NAs discovered informatically, and validated biologically, by different
algorithmic approaches.
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2.3. MicroRNA validation techniques

Validating expression of bioinformatically predicted

microRNAs presents significant technical challenges. MicroR-

NAs are tiny in length (�22 nucleotides), are often expressed

in low concentration, and in many cases are highly similar in

sequence to other microRNAs. Traditional gene expression

techniques are therefore not always suitable and sufficiently

sensitive and specific, in identifying expression of rare, bioin-

formatically predicted microRNAs, especially ones that are

similar in sequence to one another. Fortunately, the past sev-

eral years have seen significant progress in development, imple-

mentation and refinement of several validation approaches,

which adequately address these challenges.

Sequencing. Cloning and sequencing provide the highest le-

vel of validation for predicted microRNAs. Several cloning

methodologies have been used, and are briefly described as

follows.

Random cloning and sequencing of size-fractionated RNA,

which has initially been the main approach for biological

detection of microRNAs [13], was later used as in conjunction

with informatic predictions, as an �indirect�means for their val-

idation [18]. According to this approach, informatic predic-

tions are carried out in parallel to random cloning and

sequencing, and the results are then compared. It does not

allow validation of rare, bioinformatically predicted

microRNAs.

Amplified partial sequencing is based on PCR amplification

of adaptor-ligated cDNA clones using a primer with partial

coverage of the predicted MIR sequence and an adaptor pri-

mer [18]. This method, in different variations, has been the

main method for sequencing predicted microRNAs, which

could not be found by random cloning and sequencing of micr-

oRNA enriched libraries. However, a major limitation of this

approach, is that it allows actual independent sequencing of

only a few nucleotides (typically 5–7 nucleotides), since the rest

of the microRNA is �fixated� by the primer. This is especially

problematic in view of the significant sequence similarity be-

tween microRNAs.

Sequence-specific cloning and sequencing is a novel approach

we have recently reported, which overcomes the abovemen-

tioned limitations and allows sequencing of full-length

microRNAs. Based on the sequence of a predicted microRNA,

a biotin-labeled oligonucleotide is designed and used to cap-

ture the homologous microRNA from a cDNA library en-

riched for small RNAs. The captured cDNA molecules are

then cloned and sequenced.
Hybridization. Different hybridization assays provide impor-

tant indirect validation for predicted microRNA sequences.

Northern blots are successfully used to validate predicted

microRNAs [25], and still are considered a golden standard.

However, it is now clear that Northern blots are not always suf-

ficiently sensitive and specific to validate expression of rare

microRNAs [24]. Other hybridization essays include RNase

protection [26], and a signal-amplifying ribozyme method [27].

High-throughput. Several high-throughput validation meth-

ods have been described, which may be used for validating pre-

dicted microRNAs. While methodologies listed below are

technically based on hybridization, they allow highthroughput

validation.

Membrane arrays using radioactive detection methods have

been used as an inexpensive, effective method for detection

of expression of microRNAs [28]. This method is probably less

suited for sensitively monitoring expression of a large number

of predicted microRNAs.

Microarrays have now been shown, by several independent

groups, to be an effective, sensitive and specific means of

high-throughput detection of expression microRNAs [24,29–

35]. While microarrays are usually used for profiling expres-

sion of known genes, they may be used successfully to validate

expression of postulated microRNAs, provided that the RNA

is properly size-fractionated [23,24].

Bead-based profiling is a novel approach for profiling expres-

sion of microRNAs, which is significantly less expensive than

traditional microarrays, is more flexible in its design, and

which, based on initial data, seems to be sensitive and specific

[36]. Capture probes that are complementary to the microR-

NAs of interest, are coupled to microscopic polystyrene beads

that are impregnated with a dye (this is in contrast to tradi-

tional microarrays where capture probes are fixated on a glass

slide). Multiple microRNAs (currently up to 100) may be tested

simultaneously, by assigning a different dye to each microRNA.

The beads are used to capture the microRNA from an ampli-

fied library, and flow cytometery is used to detect the type

(dye color) and amount of microRNAs in the sample. Mir-

MASA by Genaco, is another example of this approach [24].
3. MicroRNA target prediction and validation

Computational prediction of microRNA targets presents a

significant challenge: (a) Unlike microRNA prediction, there

does not exist a large enough group of known microRNA tar-

gets which can be used as a training set. (b) Validating micr-

oRNA target prediction is much more complex, no high

throughput means available, only a small number of predic-

tions have actually been validated [37].

Accordingly the approach taken with prediction microRNA

targets is different from that of microRNA prediction, in that

it is based on algorithms that are based on empiric evidence,

rather than on machine learning algorithms. A set of studies,

briefly reviewed below, have demonstrated different character-

istics of the microRNA binding to its targets. These �anecdotal�
features serve as the basis for the basis of the various micr-

oRNA target prediction algorithms, which are reviewed below.

3.1. MicroRNA binding-site mechanics

Obligatory 5 0-end �seed�, conserved, often flanked by adeno-

sines. Elaborate single nucleotide mutation studies of several



I. Bentwich / FEBS Letters 579 (2005) 5904–5910 5907
known microRNAs have been used to investigate the binding

pattern of these microRNAs to their respective targets [38–41].

A clear conclusion from these different studies is the impor-

tance of the 5 0 end segment of the microRNA, frequently re-

ferred to as its �seed�. This seed, 6–8 nucleotides in length,

has been shown to be critical, and at least in some cases suffi-

cient, for microRNAs to suppress their targets. Its 5 0 end is

typically unpaired, or starts with a Uricil (i.e., its binding site

ends with an Adenosine), and preferably does not contain

G:U wobbles. A computerized analysis of conserved micr-

oRNA binding sites shows that the seed is often flanked by

adenosines [42].

Compensatory 3 0-end. While the 5 0-end seed is clearly of cen-

tral importance, there is significant evidence that the 3 0-end of

a microRNA�s may compensate for insufficient base-pairing of

its 5 0 seed [39–41,43]. Several studies suggest that there are two

types of microRNA binding-sites: 5 0 dominant sites (perfectly

binding 5 0 seed, with or without support of 3 0 binding) and

3 0 compensatory sites (3 0 binding compensates for imperfect

5 0 seed binding) [39,41]. Many microRNA binding sites have

bulges in their central or 3 0-end sections, which in some cases

have been demonstrated to be somewhat important for the

binding [43]. The significance of these bulges is still not fully

understood.

Multiple binding sites and their context. Mutation studies

have been used to explore the role of multiple binding sites

of microRNAs to the same mRNA target, and the context in

which these sites are found. Such studies show that microR-

NAs function may depend on binding to these multiple bind-

ing-sites [38,43]. MicroRNAs have been shown to be capable

of functioning in a collaborative, combinatorial manner: When

any one of the two let-7 binding-sites on its target lin-41 is re-

placed by a miR221 binding-site, then both microRNAs are

needed to inhibit this target [38]. There is currently contradict-

ing evidence as to the significance of the context of microRNA

binding-sites: modifying the 27 nucleotide sequence separating

the two let-7 binding sites in C. elegans blocked the function of

this microRNA [43], and yet a similar experiment by a different

group in Zebrafish got contradictory results, and further

showed that let-7 maintains functionality even when it binding

sites are moved including into coding regions [38].

Target mRNA structure. Recent studies suggest that the 2-

dimensional structure of microRNA binding-sites and their

immediate mRNA vicinity must be sufficiently unstable, so

as to be physically accessible to be bound by microRNA.

These studies analyzed 2-dimensional structures of the mRNA

of comprising known microRNA binding sites, observing fre-

quently appearing patterns: a seed region of the binding site

comprising a segment of at least three nucleotides, which is

not bound (e.g., is not in a stem formation) [44]. A region sur-

rounding a binding site that has low free energy, and does not

contain stabilizing structures (e.g., stems), and does contains

destabilizing structures [45].
3.2. MicroRNA target prediction algorithms

Stark et al. [46] used a target prediction algorithm to detect

Drosophila microRNA targets, six of which were biologically

validated. The algorithm is based on detecting complementary

sequences of the 5 0-end 8 nucleotide seed of the microRNA,

that are evolutionarily conserved (preferably across more than

two species), and uses MFold to calculate the thermodynamic
stability of the binding. Multiple binding sites are required in

order to achieve significant predictive power (targets having

single binding sites would require biological validation). It

does not filter out seeds containing G:U wobbles (which later

turned out to be weaken the binding). The algorithm recovered

and scored highly all previously known targets.

Rehmsmeier et al. [47] presented an improved RNA folding

algorithm, called RNAhybrid, which provides improved free-

energy assessment of hybridization of a short RNA to a long

RNA (e.g., a microRNA to its target), and used it to predict

Drosophila microRNA targets, thus overcoming a disadvan-

tage (at the time) of the Mfold and RNAFold. They used

the algorithm to seek microRNA targets in Drosophila, by

forcing a match of a 6-nucleotide seed starting from the 2nd

nucleotide from the 5 0 end of the microRNA. The algorithm

recovered some of the known targets, and suggested additional

postulated targets.

Lewis et al. [37,42] used a sophisticated algorithm, called

TargetScan, and its improved version TargetScanS, to identify

mammalian microRNA targets, and were impressively success-

ful in biologically validating 11 out of 15 predicted targets

tested. TargetScan seeks a strong 7-nucleotide seed, starting

from the 2nd nucleotide from the 5 0 end, uses RNAFold to cal-

culate the thermodynamic free-energy of the binding, and

scores both single binding site and multiple binding-sites. Tar-

getScanS is an improved algorithm that requires a shorter seed

(6-nucleotides), which is preceded by an adenosine, and is lo-

cated in a short �island� of conservation, the surrounding of

which are less conserved. It does not rely on free-energy calcu-

lation. The algorithm specifically recovers all known micr-

oRNA targets, and is estimated to have a 22–31% false

positive rate (for targets conserved in mammals vs. conserved

in mammals plus pufferfish, respectively).

Kiriakidou et al. [40] used an algorithm called DIANA-Mi-

croT, which is trained to identify microRNA targets having

a single binding-site, and have biologically validated 7 out of

7 such predicted human microRNA targets. This algorithm

takes a different approach from those of other algorithms de-

scribed above: (a) it focuses on single binding site targets,

and (b) it seeks binding sites that have a typical central bulge,

and require 3 0 binding, beyond the obligatory 5 0 seed. The

algorithm successfully recovered all previously known proto-

typical C. elegans microRNA targets.

Enright and John et al. [48,49] used an algorithm called miR-

anda to identify microRNA targets in Drosophila and man.

The algorithm uses a position-weighted matrix to emphasize

binding of the microRNA�s 5 0-end segment more than its 3 0-

end segment, uses RNAFold for free-energy calculation, and

relies on evolutionary conservation of the binding sites. The

algorithm correctly recovered 9 out of 10 previously validated

microRNA targets, and has an estimated 24–39% false positive

rate (corresponding to 4–2 binding sites per microRNA,

respectively).

Xie et al. [50] identified a large class of conserved, regulatory

8 nucleotide motifs, many of which are likely to be microRNA

targets. While not a formal microRNA target algorithm, the

authors report a large number of 3 0UTR motifs, many of

which are likely to be microRNA targets. The notion that

these motifs are indeed microRNA binding sites is supported

by the following striking differences between these motifs vs.

other motifs: (a) strong directional bias with respect to DNA

strand, (b) peak at 8-nucleotide length, and (c) end with an
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adenosine (i.e., an adenosine complementary to the 5 0-end of a

microRNA binding to that motif).

Krek and Grun et al. [51,52] used an advanced algorithm

called PicTar to identify microRNA targets in vertabrates,

C. elegans and Drosophila, and report extensive biological

and informatic validation of its predictions. This algorithm is

trained to identify both binding-sites targeted by a single micr-

oRNA, as well as those that are co-regulated by several

microRNAs in a coordinated manner. It utilizes sophisticated

pair-wise alignment to accurately filter for binding sites that

are conserved across many species (7 Drosophila species; 8 ver-

tebrates), and takes into account clustering and co-expression

of microRNAs, and ontological information (matching

microRNAs with potential targets that are expressed in the

same cells and developmental phase). The authors have biolog-

ically validated 7 out of 13 microRNA targets predicted by the

algorithm, and have further specifically recovered 8 out of 9

known targets with experimental in vivo evidence and 4 out

of 10 targets having conservation of only the primary binding

site. The algorithm is estimated to have �30% false positive

rate.

Using similar informatic methodologies to those described

above, our group has been seeking targets for the 89 novel

microRNAs which we have reported [23]. If we assume a signal

to noise ratio of 2:1, in accord with previous studies [42,51],

our initial data indicates that approximately 7250 genes are

targeted by microRNAs, representing 49% of our gene set.

These results are in accord with Lewis et al. [42] who estimated

that 148 conserved microRNAs target 30% of all genes. Since

genes are often regulated by multiple microRNAs [51], the

additional 200 novel microRNAs that we have checked are ex-

pected to contribute a significant, although not linear, increase

in the number of genes targeted by microRNAs.

3.3. MicroRNA target validation

Validating predictions of microRNA targets is much more

challenging than validating predicted microRNAs. At present

there does not exist a simple, high throughput method for bio-

logically validating microRNA targets. Validation of micr-

oRNA target prediction algorithms therefore relies on a

combination of informatic and biological validation strategies.

Informatic validation. MicroRNA target prediction algo-

rithms may be informatically validated by a combination of

two strategies. The first strategy is to evaluate an algorithm�s
success in correctly identifying known microRNA targets,

i.e., targets that have already been biologically validated, and

scoring them highly. The limitations of this strategy are two-

fold: (a) the number of validated targets is still small, and (b)

the target prediction algorithms are to some extent based on

these known targets.

The second strategy is to compare the number of postulated

binding-sites that an algorithm finds for a real microRNA,

with that found for a control group of artificially generated

�fictitious microRNAs�. In this approach, for each real micr-

oRNA tested, one or more artificial controls are created: arti-

ficial sequences in which the nucleotides of the microRNA

have been shuffled, and which resemble the tested microRNA

in various properties, such as frequency of appearance in the

genome, dinucleotide composition, etc. It is then possible to

compare the number of conserved binding-sites found for the

real microRNA to those found for the artificial control

sequences, and accordingly to calculate a signal to noise ratio,
and an estimated false-positive rate. An algorithm is consid-

ered successful if (a) it has successfully identified and gave high

scores to most of the known binding sites, and (b) has demon-

strated a significant signal to noise ratio. The signal to noise

ratio is useful in assessing the number of microRNA targets

found in the genome in general, and for assessing the specific-

ity of the algorithm�s predictions. One should bear in mind,

however, that this is a crude tool: the fact that a microRNA

is found to have fewer binding sites than the �noise� level, does
necessarily mean that these predicted binding sites are not real.

Biologic validation. While the ultimate validation of pre-

dicted microRNA targets is biologic validation, the current

biologic validation methodologies are still extremely labor

intensive, and do not allow high-throughput target validation.

The commonly used validation methodologies include: repor-

ter-gene constructs [37,40,51,53,54], mutation studies [38–

43,53], gene-silencing techniques [4,53,54], rescue assays [7],

and classic genetic studies [2,5–8,54]. Overall, some 30 animal

microRNA targets have been validated to date using these var-

ious techniques. The biological validation of predicted micr-

oRNA targets, albeit in small numbers, has nonetheless

confirmed that various target prediction engines are indeed

capable of identifying microRNA targets. Future development

of high throughput target validation techniques will be neces-

sary to raise the specificity and sensitivity of microRNA target

prediction algorithms.
4. Conclusions

Prediction of microRNAs and their targets have come a long

way in a few short years. From a secondary role, of checking

that short cloned sequences reside within hairpins, to a leading

role, of detecting hundreds of microRNAs that go undetected

by biological means, and prediction of their potential targets.

MicroRNA prediction algorithms, and validation techniques

used in conjunction with these algorithms, are opening a door

to an unfolding, previously unseen universe of gene regulation:

From initial estimates in 2003 that no more than 33 human

microRNAs remain to be detected [3], to two estimates earlier

this year of 129 and 300 microRNAs remaining to be detected

informatically (6 and 16 of which, respectively, were validated)

[21,50], to a recent estimate of at least 680 microRNAs await-

ing detection (89 of which were biologically validated) [23].

MicroRNA target prediction algorithms, while still in a matu-

ration phase, have already established the notion that microR-

NAs regulate at least 30% of all human genes, possibly many

more [42].

Prediction methods and validation techniques, of both

microRNAs and their targets, are co-dependent. Sensitive bio-

logical validation techniques are key in fine-tuning informatic

prediction algorithms. And yet, developing such biological

techniques often depends on effective prediction algorithms.

An integrated detection approach, which combines computa-

tional prediction together with high-throughput biological val-

idation, has been most effective in discovery of microRNAs

[23]. Arguably, development of a similarly integrated approach

for detection and high throughput validation of microRNA

targets could be instrumental.

Intriguing questions regarding microRNAs await further

investigation: Why does the body need all these microRNAs?

Why are they so heavily involved in differentiation and cancer?
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What causes many of them to be so well conserved throughout

evolution? I recently presented a theoretical model, which ar-

gues that microRNAs may be part of a genomic �language� that
participates in encoding cellular differentiation [55]. Effective

methodologies for prediction and validation of microRNAs

and their targets will be key in broadening our understanding

of the roles and functions of this extraordinary group of genes.

Acknowledgements: I thank Eilon Sharon, Omer Barad, Ranit Aharo-
nov, Ori Inbar and Shlomit Gilad, for input and help in preparing
this mini-review, and the entire Rosetta Genomics team, whose crea-
tivity, dedication, support and friendship has made our microRNA
discovery journey successful and enjoyable. I pray that the fruits of
the scientific work on microRNAs be put to good use for the benefit
of all being.
References

[1] Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mecha-
nism, and function. Cell 116, 281–379.

[2] Johnston, R.J. and Hobert, O. (2003) A microRNA controlling
left/right neuronal asymmetry in Caenorhabditis elegans. Nature
426, 845–849.

[3] Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. and Bartel, D.P.
(2003) Vertebrate microRNA genes. Science 299, 1540.

[4] Poy, M.N. et al. (2004) A pancreatic islet-specific microRNA
regulates insulin secretion. Nature 432, 226–230.

[5] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans
heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell 75, 843–854.

[6] Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bett-
inger, J.C., Rougvie, A.E., Horvitz, H.R. and Ruvkun, G. (2000)
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature 403, 901–906.

[7] Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. and
Cohen, S.M. (2003) Bantam encodes a developmentally
regulated microRNA that controls cell proliferation and
regulates the proapoptotic gene hid in Drosophila. Cell 113,
25–36.

[8] Xu, P., Vernooy, S.Y., Guo, M. and Hay, B.A. (2003) The
Drosophila microRNA Mir-14 suppresses cell death and is
required for normal fat metabolism. Curr. Biol. 13, 790–795.

[9] Chen, C.Z., Li, L., Lodish, H.F. and Bartel, D.P. (2004)
MicroRNAs modulate hematopoietic lineage differentiation. Sci-
ence 303, 83–86.

[10] Lau, N.C., Lim, L.P., Weinstein, E.G. and Bartel, D.P. (2001) An
abundant class of tiny RNAs with probable regulatory roles in
Caenorhabditis elegans. Science 294, 858–862.

[11] Lee, R.C. and Ambros, V. (2001) An extensive class of small
RNAs in Caenorhabditis elegans. Science 294, 862–864.

[12] Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T.
(2001) Identification of novel genes coding for small expressed
RNAs. Science 294, 853–858.

[13] Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendec-
kel, W. and Tuschl, T. (2002) Identification of tissue-specific
MicroRNAs from mouse. Curr. Biol. 12, 735–739.

[14] Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. and
Tuschl, T. (2003) New microRNAs from mouse and human.
RNA 9, 175–179.

[15] Ambros, V. et al. (2003) A uniform system for microRNA
annotation. RNA 9, 277–279.

[16] Lai, E.C., Tomancak, P., Williams, R.W. and Rubin, G.M. (2003)
Computational identification of Drosophila microRNA genes.
Genome Biol. 4, R42.

[17] Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H. (1999)
Expanded sequence dependence of thermodynamic parameters
improves prediction of RNA secondary structure. J. Mol. Biol.
288, 911–940.

[18] Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A.,
Yekta, S., Rhoades, M.W., Burge, C.B. and Bartel, D.P.
(2003) The microRNAs of Caenorhabditis elegans. Genes
Dev 17, 991–1008.
[19] Hofacker, I.L. (2003) Vienna RNA secondary structure server.
Nucleic Acids Res. 31, 3429–3431.

[20] Grad, Y., Aach, J., Hayes, G.D., Reinhart, B.J., Church, G.M.,
Ruvkun, G. and Kim, J. (2003) Computational and experimental
identification of C. elegans microRNAs. Mol. Cell 11, 1253–1263.

[21] Berezikov, E., Guryev, V., van de, B.J., Wienholds, E., Plasterk,
R.H. and Cuppen, E. (2005) Phylogenetic shadowing and
computational identification of human microRNA genes. Cell
120, 21–24.

[22] Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D.,
Ovcharenko, I., Pachter, L. and Rubin, E.M. (2003) Phylogenetic
shadowing of primate sequences to find functional regions of the
human genome. Science 299, 1391–1394.

[23] Bentwich, I. et al. (2005) Identification of hundreds of conserved
and nonconserved human microRNAs. Nat. Genet. 37, 766–770.

[24] Barad, O. et al. (2004) MicroRNA expression detected by
oligonucleotide microarrays: system establishment and expression
profiling in human tissues. Genome Res. 14, 2486–2494.

[25] Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmit-
rovsky, E. and Ambros, V. (2004) Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed
microRNAs with possible roles in murine and human neuronal
differentiation. Genome Biol. 5, R13.

[26] Lee, Y., Jeon, K., Lee, J.T., Kim, S. and Kim, V.N. (2002)
MicroRNA maturation: stepwise processing and subcellular
localization. EMBO J. 21, 4663–4670.

[27] Hartig, J.S., Grune, I., Najafi-Shoushtari, S.H. and Famulok, M.
(2004) Sequence-specific detection of MicroRNAs by signal-
amplifying ribozymes. J. Am. Chem. Soc. 126, 722–723.

[28] Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K. and
Kosik, K.S. (2003) A microRNA array reveals extensive regula-
tion of microRNAs during brain development. RNA 9, 1274–
1281.

[29] Baskerville, S. and Bartel, D.P. (2005) Microarray profiling of
microRNAs reveals frequent coexpression with neighboring
miRNAs and host genes. RNA 11, 241–247.

[30] Liu, C.G. et al. (2004) An oligonucleotide microchip for genome-
wide microRNA profiling in human and mouse tissues. PNAS
101, 9740–9744.

[31] Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A.,
Sestan, N., Rakic, P., Constantine-Paton, M. and Horvitz, H.R.
(2004) Microarray analysis of microRNA expression in the
developing mammalian brain. Genome Biol. 5, R68.

[32] Thomson, J.M., Parker, J., Perou, C.M. and Hammond, S.M.
(2004) A custom microarray platform for analysis of microRNA
gene expression. Nature Meth. 1, 47–53.

[33] Nelson, P.T., Baldwin, D.A., Scearce, L.M., Oberholtzer, J.C.,
Tobias, J.W. and Mourelatos, Z. (2004) Microarray-based, high-
throughput gene expression profiling of microRNAs. Nature
Meth. 1, 155–161.

[34] Babak, T., Zhang, W., Morris, Q., Blencowe, B.J. and Hughes,
T.R. (2004) Probing microRNAs with microarrays: tissue spec-
ificity and functional inference. RNA 10, 1813–1819.

[35] Lim, L.P. et al. (2005) Microarray analysis shows that some
microRNAs downregulate large numbers of target mRNAs.
Nature 433 (7027), 769–773.

[36] Lu, J. et al. (2005) MicroRNA expression profiles classify human
cancers. Nature 435, 834–838.

[37] Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. and
Burge, C.B. (2003) Prediction of mammalian microRNA targets.
Cell 115, 787–798.

[38] Kloosterman, W.P., Wienholds, E., Ketting, R.F. and Plasterk,
R.H. (2004) Substrate requirements for let-7 function in the
developing zebrafish embryo. Nucleic Acids Res. 32, 6284–6291.

[39] Brennecke, J., Stark, A., Russell, R.B. and Cohen, S.M. (2005)
Principles of MicroRNA-target recognition. PLoS. Biol. 3, e85.

[40] Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bou-
yioukos, C., Mourelatos, Z. and Hatzigeorgiou, A. (2004) A
combined computational experimental approach predicts human
microRNA targets. Genes Dev. 18, 1165–1178.

[41] Doench,J.G.andSharp,P.A.(2004)SpecificityofmicroRNAtarget
selectionintranslationalrepression.GenesDev.18,504–511.

[42] Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved seed
pairing, often flanked by adenosines, indicates that thousands of
human genes are MicroRNA targets. Cell 120, 15–20.



5910 I. Bentwich / FEBS Letters 579 (2005) 5904–5910
[43] Vella, M.C., Reinert, K. and Slack, F.J. (2004) Architecture of a
validated microRNA:target interaction. Chem. Biol. 11, 1619–1623.

[44] Robins, H., Li, Y. and Padgett, R.W. (2005) Incorporating
structure to predict microRNA targets. PNAS 102, 4006–4009.

[45] Zhao, Y., Samal, E. and Srivastava, D. (2005) Serum response
factor regulates a muscle-specific microRNA that targets Hand2
during cardiogenesis. Nature 436, 214–220.

[46] Stark, A., Brennecke, J., Russell, R.B. and Cohen, S.M. (2003)
Identification ofDrosophilaMicroRNAtargets. PLoS.Biol. 1, E60.

[47] Rehmsmeier, M., Steffen, P., Hochsmann, M. and Giegerich, R.
(2004) Fast and effective prediction of microRNA/target duplexes.
RNA 10, 1507–1517.

[48] Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C. and
Marks, D.S. (2003) MicroRNA targets in Drosophila. Genome
Biol 5, R1.

[49] John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. and
Marks, D.S. (2004) HumanMicroRNA targets. PLoS. Biol. 2, e363.
[50] Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V.,
Lindblad-Toh, K., Lander, E.S. and Kellis, M. (2005) Systematic
discovery of regulatory motifs in human promoters and 3 0 UTRs
by comparison of several mammals. Nature 434, 338–345.

[51] Krek, A. et al. (2005) Combinatorial microRNA target predic-
tions. Nature Genet. 37, 495–500.

[52] Grun, D., Wang, Y., Langenberger, D., Gunsalus, K. and
Rajewsky, N. (2005) microRNA Target predictions across seven
Drosophila species and comparison to mammalian targets. PLoS.
Comput. Biol. 1, e13.

[53] O�Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. and
Mendell, J.T. (2005) c-Myc-regulated microRNAs modulate
E2F1 expression. Nature 435, 839–843.

[54] Johnson, S.M. et al. (2005) RAS Is Regulated by the let-7
MicroRNA Family. Cell 120, 635–647.

[55] Bentwich, I. (2005) A postulated role for microRNA in cellular
differentiation. FASEB J. 19, 875–879.


	Prediction and validation of microRNAs and their targets
	Introduction
	MicroRNA prediction and validation
	Principles of MicroRNA prediction
	MicroRNA prediction algorithms
	MicroRNA validation techniques

	MicroRNA target prediction and validation
	MicroRNA binding-site mechanics
	MicroRNA target prediction algorithms
	MicroRNA target validation

	Conclusions
	Acknowledgements
	References


