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SUMMARY

Agrin, through its interaction with the receptor
tyrosine kinase MuSK, mediates accumulation
of acetylcholine receptors (AChR) at the devel-
oping neuromuscular junction. Agrin has also
been implicated in several functions in brain.
However, the mechanism by which agrin exerts
its effects in neural tissue is unknown. Here we
present biochemical evidence that agrin binds
to the a3 subunit of the Na+/K+-ATPase (NKA)
in CNS neurons. Colocalization with agrin bind-
ing sites at synapses supports the hypothesis
that the a3NKA is a neuronal agrin receptor.
Agrin inhibition of a3NKA activity results in
membrane depolarization and increased action
potential frequency in cortical neurons in cul-
ture and acute slice. An agrin fragment that
acts as a competitive antagonist depresses ac-
tion potential frequency, showing that endoge-
nous agrin regulates native a3NKA function.
These data demonstrate that, through its inter-
action with the a3NKA, agrin regulates activity-
dependent processes in neurons, providing a
molecular framework for agrin action in the CNS.

INTRODUCTION

Agrin, a heparan sulfate proteoglycan, was originally iso-

lated from the electric organs of marine rays based on its

ability to induce the formation of high-density clusters of

acetylcholine receptors (AChR) on the surface of cultured

muscle cells (Nitkin et al., 1987). It is present at the earliest

nerve-muscle contacts during development (Fallon et al.,

1985) and, in mature muscles, is localized to the synaptic

basal lamina that lies between the axon terminal and mus-

cle fiber (Reist et al., 1987). Agrin is synthesized by motor

neurons and antibodies against agrin block formation of

motor neuron-induced clusters of AChR on cultured mus-

cle cells (Reist et al., 1992). When expressed in muscle fi-

bers in vivo, agrin induces formation of ectopic postsynap-
tic structures (Cohen et al., 1997a), whereas mutation of

the Agrn gene blocks accumulation of AChR at developing

neuromuscular junctions (Gautam et al., 1996). Thus, agrin

is both sufficient and necessary for differentiation of the

postsynaptic apparatus of the neuromuscular junction.

Much of what is known about agrin function at the neu-

romuscular junction has come from studies of the cell sur-

face molecules with which it interacts. For example, a lam-

inin binding domain at agrin’s NH2 terminus anchors agrin

to the basal lamina (Denzer et al., 1997), while binding to

a-dystroglycan provides a structural link to the muscle-

fiber cytoskeleton that may stabilize the postsynaptic ap-

paratus (Cote et al., 1999). It is the receptor tyrosine kinase

MuSK, however, that is responsible for agrin-induced

clustering of AChR. MuSK is concentrated in the postsyn-

aptic muscle-fiber membrane (Valenzuela et al., 1995) and

is rapidly phosphorylated in the presence of ‘‘active’’

agrin, which includes either one or two alternatively

spliced exons at the z site (z+ agrin), but not the ‘‘inactive’’

isoform, which lacks a z site insert. Inhibition of MuSK

phosphorylation blocks agrin-induced AChR clustering

(Herbst and Burden, 2000), and mice lacking a functional

MuSK gene display a phenotype similar to that of the agrin

mutant (DeChiara et al., 1996).

Several lines of evidence suggest that agrin is also im-

portant for brain development. It is expressed by all pop-

ulations of neurons in brain (O’Connor et al., 1994) and is

concentrated at interneuronal synapses (Mann and Krö-

ger, 1996; Hoover et al., 2003). Moreover, the highest

levels of agrin expression in developing brain coincide

with periods of synapse formation (Cohen et al., 1997b;

Li et al., 1997). These observations suggest a function

analogous to its role at the neuromuscular junction, and,

consistent with this hypothesis, synapse formation be-

tween cultured hippocampal neurons is disrupted when

either agrin expression or function is suppressed (Ferreira,

1999; Böse et al., 2000). However, the mechanism by

which agrin exerts its effects in neurons must differ from

that at the neuromuscular junction. First, MuSK expres-

sion is below detection in mammalian brain (Valenzuela

et al., 1995). Second, mutation of the Agrn gene that

blocks expression of z+ agrin and disrupts neuromuscular

synapse formation has no effect on neuron-neuron synap-

togenesis (Li et al., 1999; Serpinskaya et al., 1999).
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Figure 1. Agrin Binds to and Induces

Tyrosine Phosphorylation of a �110 kDa

Protein on Neuron Surface Membranes

(A) Immunoblot of cultured cortical cells cross-

linked with BS3 in the presence of either C-

Ag208 or C-Ag15 probed with an antibody to

a myc tag on the agrin fragments, showing

agrin adducts of 130 and 125 kDa in neurons

but not nonneuronal cells.

(B) Agrin adducts were immunoprecipitated

with either an agrin antiserum (Agrin) or an

anti-phosphotyrosine monoclonal antibody

(PY) and then analyzed by immunoblotting for

the myc tag. Crosslinking to C-Ag208 or C-

Ag15 alone results in the appearance of the ap-

propriately sized bands, but only the 125 kDa

band was present when C-Ag208 was cross-

linked in the presence of an excess of C-

Ag15. Phosphorylation of the crosslinked com-

plex is induced by C-Ag208 but not C-Ag15.

Consistent with the competition studies, C-

Ag208-induced phosphorylation of the agrin

adduct is blocked by C-Ag15.
However, agrin mutant neurons are resistant to excito-

toxic injury, and heterozygous agrin mutant mice are

less sensitive to systemic treatment with kainic acid (Hil-

genberg et al., 2002), consistent with agrin regulating

some aspect of neuronal activity.

Molecular identification of the receptor that mediates

agrin’s effects in neurons would greatly enhance our un-

derstanding of agrin function in the CNS. Evidence that

such a receptor exists comes from biochemical studies

showing that agrin induces expression of c-fos in cortical

and other CNS neurons (Hilgenberg et al., 1999). Interest-

ingly, signaling by the neuronal agrin receptor shares

some similarity with agrin-induced AChR clustering in

muscle, most notably its Ca2+ dependence and sensitivity

to inhibition of tyrosine kinase activity. However, in con-

trast to AChR clustering, where only z+ agrin is active, z+

and z� agrin isoforms are equally potent agonists of the

neuronal agrin receptor (Hilgenberg et al., 1999; Hilgen-

berg and Smith, 2004), evidence that the neuronal recep-

tor is distinct from MuSK. Activation of the agrin receptor

leads to a rapid increase in intracellular Ca2+, which serves

as the initiating event for many of agrin’s effects on neu-

rons (Hilgenberg and Smith, 2004). Consistent with a func-

tion regulating neuronal activity, recent studies using min-

imal fragments of agrin as affinity probes have shown that

a receptor for agrin is concentrated at synaptic sites (Hoo-

ver et al., 2003). Here we show that this neuronal agrin re-

ceptor is a member of the Na+/K+-ATPase (NKA) family of

ion pumps and that agrin binding inhibits pump activity,

modulating membrane potential and action potential fre-

quencies of cortical neurons in vitro and in vivo.

RESULTS

Agrin Binds the a3NKA on Cortical Neurons

Biochemical and Ca2+ imaging studies have provided

evidence for an agrin receptor in cortical and other CNS
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neurons, distinct from the MuSK/MASC receptor complex

responsible for agrin signaling in skeletal muscle (Hilgen-

berg et al., 1999; Hilgenberg and Smith, 2004). Recently,

we identified a minimal COOH-terminal region of agrin,

C-Ag20, sufficient to activate the neuronal receptor and

a smaller fragment, C-Ag15, which acts as an agrin antag-

onist (Hoover et al., 2003). As a first step toward identifying

the binding site responsible for agrin activity in neurons,

we used the membrane-impermeant bifunctional reagent

bis[sulfosuccinimidyl] suberate (BS3) to chemically cross-

link agrin fragments to components present on the surface

of cells cultured from cerebral cortex. Cell membranes

were then isolated and analyzed by immunoblotting with

a monoclonal antibody (9E10.2, Invitrogen) against a

COOH-terminal myc tag on the recombinant agrin frag-

ments. Crosslinking C-Ag208 or C-Ag15 to cortical neu-

rons resulted in the appearance of clear anti-myc immu-

noreactive bands with apparent molecular weights of

�130 and 125 kDa, respectively, much larger than the ex-

pected mass of the agrin fragments (Figure 1A). Agrin nei-

ther binds to nor activates nonneuronal cells (Hilgenberg

et al., 1999; Hoover et al., 2003; Hilgenberg and Smith,

2004). Consistent with this observation, no specific label-

ing with the myc antibody was observed in blots of non-

neuronal cells (Figure 1A). Similar results were obtained

with a second crosslinking agent, dimethyl adipimidate

(DMA), whose reactive groups are more closely spaced

than BS3 (8.6 Å versus 11.4 Å; data not shown). Taking

into account the mass of the agrin fragments and assum-

ing a 1:1 stoichiometry, the results suggest that agrin

associates with a single class of sites, with an apparent

molecular weight of �110 kDa, present on neuron cell

membranes.

Ligand-induced phosphorylation is a common first step

in membrane receptor activation, and inhibition of tyrosine

kinase activity blocks agrin signaling in CNS neurons (Hil-

genberg et al., 1999; Hilgenberg and Smith, 2004). To



determine whether agrin induces phosphorylation of the

putative agrin receptor, membranes from neurons cross-

linked to C-Ag208 or C-Ag15, either alone or in combina-

tion, were dissolved in a detergent-containing buffer,

and aliquots were immunoprecipitated with either an agrin

antiserum (Hoover et al., 2003) or anti-phosphotyrosine

monoclonal antibody (mAb4G10; Upstate). Immunopre-

cipitated proteins were analyzed by immunoblotting for

the COOH-terminal myc tag on the agrin fragments. In

line with our initial results, anti-agrin immunoprecipitates

probed for myc tagged C-Ag208 or C-Ag15 revealed two

adducts of the expected molecular weight (Figure 1B).

However, only the 130 kDa band crosslinked to C-Ag208

was phosphorylated. Even when used at a 10-fold higher

concentration than C-Ag208, C-Ag15 did not induce phos-

phorylation of the crosslinked complex. C-Ag15 was,

however, an effective inhibitor of C-Ag208, blocking both

binding and phosphorylation by the larger agrin fragment

(Figure 1B), consistent with its ability to antagonize agrin

signaling.

The properties of the agrin adducts suggest that they

represent a complex of an agrin fragment and a receptor

that mediates responses to agrin in CNS neurons (Hilgen-

berg et al., 1999, 2002; Hoover et al., 2003; Hilgenberg

and Smith, 2004). To determine the molecular identity of

this putative agrin receptor, C-Ag208 adducts, crosslinked

with either BS3 or DMA, were affinity purified, and the

identity of the component proteins was determined by

mass spectrometry of their tryptic digests (Proteomic Re-

search Services, Inc.). In addition to the expected peptide

sequences for agrin, 4 to 12 peptides were present in each

sample that matched the a3 subunit of the NKA. Similar re-

sults were also obtained when C-Ag908 (R&D Systems),

a larger COOH-terminal fragment more commonly used

in studies of agrin function, was used in place of C-

Ag208. Combined, the data for the three samples repre-

sented 17% coverage of the a3 subunit amino acid

sequence overall.

To confirm the results of the mass spectrometry, we

tested the ability of different NKA a subunit antibodies

to recognize the putative agrin-a3NKA complex. When

probed with an anti-a3 subunit monoclonal antibody

(XVIF9-G10; Novus Biologicals), immunoblots of cultured

cortical neurons treated with BS3 alone contained a major

110 kDa band corresponding to the a3 subunit (Figure 2A).

Crosslinking in the presence of C-Ag15, C-Ag200, or C-

Ag908 resulted in a3-positive bands at 125, 130, and

200 kDa, respectively, consistent with agrin binding to

the a3 subunit of the NKA. No molecular-weight shift

was apparent when the same cell extracts were probed

with an antibody to the closely related a1NKA (9A-5;

Sigma), showing that agrin binding is specific for the a3

subunit (Figure 2A).

Previous studies have shown that the a3NKA is distrib-

uted in a nonuniform fashion over the soma and processes

of cultured hippocampal neurons (Juhaszova and Blaus-

tein, 1997), reminiscent of the pattern of labeling observed

using short agrin fragments as histochemical probes for
agrin receptors on cultured cortical neurons (Hoover

et al., 2003). Double labeling with the a3 subunit monoclo-

nal antibody and C-Ag208 revealed extensive overlap

between the a3NKA and agrin binding sites on cultured

cortical neurons (Figure 2B). Consistent with our earlier

studies (Hoover et al., 2003), double labeling for synapto-

physin and the a3NKA shows agrin receptors diffusely

distributed over the neuronal soma but concentrated at

synapses (Figure 2C). Together with the results of the bio-

chemical studies, these observations provide strong evi-

dence that the a3NKA is a neuronal receptor for agrin.

Agrin Inhibits Activity of the a3NKA

NKAs are heteromeric proteins composed of a and b sub-

units. Multiple isoforms of each subunit are encoded by

different genes that exhibit cell-specific patterns of ex-

pression. Expression of the a3 subunit in the CNS is neu-

ron specific (Kaplan, 2002). Neurons but not nonneuronal

Figure 2. Agrin Binds Specifically to the a3NKA on CNS

Neurons

(A) Blots of naive control cultured cortical neurons (C) and neurons

crosslinked to the indicated agrin fragments (C-Ag15, C-Ag200, and

C-Ag908) were probed with monoclonal antibodies against either the

a3- or a1NKA. Only the a3NKA shows the predicted increases in mo-

lecular weight.

(B) Cortical neurons were double labeled for a3NKA and C-Ag208 bind-

ing sites. Consistent with the biochemical analysis, agrin binding sites

and a3NKA are colocalized, appearing as small puncta distributed

over the surface of the neuron soma and neurites.

(C) Double labeling with synaptophysin reveals a3NKA concentrated

at synapses. Scale bars = 10 mm.
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Figure 3. Agrin Inhibits a3NKA Function

(A) Pseudocolor images of cells loaded with the Na+-sensitive dye SBFI-AM, before (Control) and 90 s after exposure to C-Ag208. Na+ levels increase

in the neurons (arrows), but not in nonneuronal cells (arrowheads), following agrin treatment. Scale bar = 20 mm.

(B) Treatment with C-Ag208 triggers a rapid increase in neuronal intracellular Na+ (solid line, arrow in [A]) that returns to initial resting level upon being

washed in normal saline solution (S). The small response in the nonneuronal cell (broken line, arrowhead in [A]) is due to fine neurites traversing the

sampled region.

(C) Neuronal Na+ levels are unchanged following treatment with C-Ag15 alone, but C-Ag15 blocks the large increase induced by C-Ag200.

(D) Treatment with a saturating concentration of either C-Ag20 isoform or C-Ag908 resulted in a significant increase in intracellular Na+ concentration,

expressed as a percent of the maximal response to gramicidin, that could be blocked by coincubation with C-Ag15.

(E) The increase in neuronal Na+ levels induced by 3 mM ouabain was significantly reduced by coincubation with C-Ag15.

(F) Whole-cell current-clamp record showing reversible membrane depolarization produced in a neuron by treatment with C-Ag208.

(G) Treatment with C-Ag15 resulted in a small hyperpolarization and blocked the change in membrane potential induced by C-Ag200.

(H) Treatment with ‘‘active’’ fragments of agrin causes membrane depolarization, whereas the membrane potentials of cells exposed to C-Ag200 or

C-Ag208 in the presence of C-Ag15 were indistinguishable from their normal resting membrane potentials obtained before treatment (data for

C-Ag200 and C-Ag208 were not different and have been pooled).

(I) Ouabain-induced neuron membrane depolarization is also blocked by C-Ag15. Bars show mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001; paired

Student’s t test.
cells respond to treatment with agrin, suggesting a role for

agrin in modulating the function of a3 subunit-containing

Na+/K+ pumps. To test this hypothesis, Na+ imaging was

used to determine the effect of agrin on cytoplasmic Na+

levels in cultured cortical cells.

Treatment with C-Ag208, in the presence of tetrodotoxin

(TTX;1 mM),6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX;

10 mM), DL-2-amino-5-phosphonovaleric acid (APV; 50

mM), bicuculline methochloride (BMC; 10 mM), and d-tubo-

curare (dTbC; 100 mM), to block action potentials and syn-

aptic transmission caused a rapid increase in neuronal
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cytoplasmic Na+. The response to agrin was reversible

and cell specific in that nonneuronal cells were unaffected

by the treatment (Figures 3A and 3B). Consistent with its

ability to bind but not activate the receptor, C-Ag15 alone

had no significant effect on resting Na+ levels but blocked

the increase induced by the larger agrin fragments

(Figure 3C). Quantitative comparison of the effects of dif-

ferent agrin fragments showed that treatment with either

of the alternatively spliced C-Ag20 isoforms or C-Ag908 re-

sulted in a significant increase in neuronal intracellular Na+

(Figure 3D). In contrast, C-Ag15 alone had no effect on



resting Na+ levels but blocked the increase normally in-

duced by each of the active agrin fragments.

Cardiac glycosides, such as ouabain, specifically inhibit

NKA activity by binding to determinants present on the ex-

tracellular surface of the a subunit (Kaplan, 2002). The

short latency of the agrin response (t1/2 to peak = 19.7 ±

2.4 s) suggested that agrin might be inhibiting the

a3NKA in a similar manner. Supporting this hypothesis,

treatment with a low concentration of ouabain to inhibit

the high-affinity a3NKA resulted in an increase in neuronal

Na+ levels similar to that seen following treatment with

active agrin fragments (Figure 3E). Coincubation with

C-Ag15 at the same concentration that blocked binding

of the active agrin fragments also blocked the ouabain-

induced increase in neuronal Na+, providing strong evi-

dence that agrin-induced inhibition of the a3NKA is medi-

ated by binding directly to the a3 subunit.

The NKA expels three intracellular Na+ ions for every two

K+ ions taken up, directly affecting the membrane potential

of all animal cells. In line with the results of the Na+ imaging,

whole-cell current-clamp measurements showed that

agrin treatment, in the presence of drugs to block action

potentials and synaptic transmission, causes a rapid and

reversible depolarization of cultured cortical neurons (Fig-

ures 3F and 3H). Moreover, C-Ag15 was also effective in

blocking depolarization induced by the active agrin frag-

ments (Figures 3G and 3H). Interestingly, treatment with

C-Ag15 resulted in a small hyperpolarization (�1.0 ±

0.4 mV, p < 0.05; Figures 3G and 3H), suggesting displace-

ment of endogenous agrin. Consistent with the results of

the Na+ imaging, ouabain-induced membrane depolariza-

tion was blocked by C-Ag15 (Figure 3I), confirming that

agrin’s effect on neuron membrane potential is mediated

by its interaction with the a3Na+/K+ pump.

Expression of the a3 Subunit of the NKA Is Sufficient

for Agrin Binding and Agrin-Evoked Responses

Studies of MuSK, the receptor in skeletal muscle respon-

sible for agrin-induced clustering of AChR, have shown

that agrin-MuSK interaction requires a yet to be identified

accessory component expressed only in muscle called

MASC (Glass et al., 1996). To learn whether agrin interac-

tion with the a3NKA might exhibit a similar dependency on

cell context, we examined the properties of nonneuronal

cells transiently transfected with pRca3, a plasmid ex-

pressing the rat a3 subunit under control of the CMV pro-

moter.

Immunostaining with an antibody to the a3NKA showed

that nonneuronal cells transfected with pRca3, but not

cells transfected with the enhanced green fluorescent pro-

tein marker plasmid pEGFP-C1 alone, expressed the a3

subunit (data not shown). In line with these findings, agrin

binding was only observed on the surface membranes of

nonneuronal cells expressing pRca3 (Figure 4A). Immuno-

blots of agrin fragments crosslinked to nonneuronal cells

confirmed the interaction with the a3 subunit expressed

from the transfected plasmid (Figure 4B). Thus, expres-
sion of the a3 subunit of the NKA is sufficient for agrin

binding and is independent of cell context.

We next examined the physiological responses of non-

neuronal cells transfected with pRca3 to agrin. Treatment

of nonneuronal cells expressing the a3 subunit with either

C-Ag20 isoform or C-Ag908 triggered a rapid increase in

the concentration of intracellular Na+ ions that was not ev-

ident in normal cells or cells transfected with pEGFP-C1

alone (Figures 4C and 4D). Consistent with our earlier

results, Na+ levels were unaffected by treatment with

C-Ag15 alone, although C-Ag15 proved to be an effective

antagonist for the active agrin fragments (Figure 4D).

Parallel observations were obtained when whole-cell

current-clamp measurements were made to examine the

effects of agrin on the electrophysiological properties of

nonneuronal cells expressing the a3 construct (Figures

4E and 4F). The mean resting potential of nonneuronal

cells was higher and more variable than in neurons. Nev-

ertheless, nonneuronal cells expressing the rat a3NKA

subunit were reversibly depolarized (14.1 ± 1.7 mV) by

treatment with either of the C-Ag20 fragments. In contrast,

no change in the membrane potential was evident upon

agrin treatment of nontransfected nonneuronal cells or

cells transfected with pEGFP-C1 alone (Figure 4F), indi-

cating that the response to agrin was specific for the

pRca3 construct. Taken together, these findings provide

strong evidence that the a3 subunit of the NKA is the re-

ceptor responsible for agrin’s effects in cortical neurons.

Agrin-a3NKA Interactions Regulate

Neuronal Activity In Situ

The electrogenic activity of the NKA and its role in main-

taining gradients of counter-ions necessary for the func-

tion of other transport proteins suggest that changes in

a3NKA activity will have profound effects on neuronal

function and excitability. To test this hypothesis, we ex-

amined the effects of different agrin fragments on the firing

properties of cultured cortical neurons bathed in normal

external solution.

In line with our earlier observations, neurons were rapidly

depolarized by treatment with C-Ag200. However, in the

absence of TTX and neurotransmitter receptor antago-

nists, the agrin-induced depolarization was accompanied

by a significant and reversible increase in the frequency

of spontaneous action potentials (Figures 5A and 5B).

Similar results were also obtained when neurons were

exposed to C-Ag208. Coincubation with C-Ag15 blocked

both the depolarization and increase in action potential

frequency induced by either C-Ag20 isoform (data not

shown).

The response to exogenously applied agrin prompted

us to ask whether the basal level of activity normally pres-

ent in cultured neurons might be dependent upon endog-

enous agrin-a3NKA interactions. To address this ques-

tion, we tested the effects of C-Ag15 on spontaneous

action potentials in cultured cortical neurons (Figures 5C

and 5D). In contrast to C-Ag20, C-Ag15 inhibited sponta-

neous activity in cortical neurons. The effect of C-Ag15
Cell 125, 359–369, April 21, 2006 ª2006 Elsevier Inc. 363



Figure 4. Expression of the a3 Subunit

of the NKA in Nonneuronal Cells Confers

Binding and Functional Response to

Agrin

(A) Transfected and nontransfected cells were

visualizedby postlabeling forGFAP.OnlyEGFP-

positive cells cotransfected with pEGFP-C1 and

pRca3 bind agrin (C-Ag200). Asterisks indicate

nontransfected cells. Scale bar = 10 mm.

(B) An immunoblot probed with an antibody to

the a3NKA. The a3 subunit is expressed in

transfected (T) but not sham-transfected (S)

control cells and can be crosslinked to agrin.

(C) The DIC image shows a pair of cells in which

only the lower cell has been transfected with

pRca3, indicated by expression of EGFP. The

pseudocolor images show that, compared to

saline control, treatment with C-Ag200 results

in a marked increase in intracellular Na+ con-

centration in the transfected but not the non-

transfected cell. Scale bar = 10 mm.

(D) Bar chart shows mean response to different

agrin fragments of nonneuronal cells trans-

fected with either pEGFP-C1 alone (filled bar)

or in combination with pRca3. Responses of

pEGFP-C1-transfected cells to C-Ag200 and

C-Ag208 have been pooled. Bars show

mean ± SEM. ***p < 0.001; ANOVA with Bonfer-

roni post hoc comparison to pEGFP-C1 control.

(E) pRca3 expression in nonneuronal cells con-

fers an agrin-inducible reversible membrane

depolarization that can be blocked by C-Ag15.

(F) Nonneuronal cells expressing the a3 subunit

of the NKA but not control (nontransfected or

pEGFP-C1-transfected) cells are consistently

depolarized (p < 0.001, paired Student’s t test)

by treatment with agrin.
was reversible in that the frequency of spontaneous action

potentials returned to basal levels upon washing with nor-

mal external solution (Figure 5C).

A simple explanation for the effect of C-Ag15 on neuro-

nal activity is that some a3NKAs are normally inhibited by

native agrin; competition by C-Ag15 removes this inhibi-

tion, decreasing the probability of firing. Consistent with

this hypothesis, pull-down experiments on detergent ex-

tracts of cultured neurons crosslinked with BS3 revealed

a protein complex with an apparent molecular weight of

R300 kDa recognized by both agrin and a3NKA anti-

bodies (Figure 6A). Moreover, formation of the endoge-

nous agrin-a3NKA complex was blocked by crosslinking

in the presence of C-Ag15, providing evidence that

endogenous agrin can be displaced from its receptor by

C-Ag15. Omission of the crosslinking step in control cul-

tures resulted in the appearance of a 110 kDa band char-

acteristic of the native a3NKA.

Similar results were obtained when the same experi-

mental paradigm was used to crosslink endogenous

agrin-a3NKA complexes in cortical slices prepared from

12-day-old mice (Figure 6A), providing evidence that agrin

might be regulating neuronal activity in vivo. To examine
364 Cell 125, 359–369, April 21, 2006 ª2006 Elsevier Inc.
this possibility, we tested the effects of C-Ag20 and

C-Ag15 on the electrophysiological properties of layer V

neurons in acute cortical slices prepared from 6- to

11-day-old mice. Only about 10% of neurons in the slice

preparations exhibited spontaneous action potentials.

Nevertheless, similar to its effects on cultured neurons,

bath application of C-Ag200 resulted in rapid depolariza-

tion (D9.6 ± 2.22 mV, p < 0.001, paired Student’s t test)

and appearance of high-frequency action potentials

(Figures 6B and 6C). In line with the results on cultured

neurons, the response to C-Ag200 was also blocked by

C-Ag15 (data not shown), arguing that the effect of agrin

is specifically mediated through inhibition of the a3NKA.

The low frequency of spontaneously active neurons in

the cortical slices limited our ability to examine the effects

of C-Ag15 on ongoing activity, but C-Ag15 reversibly in-

hibited action potentials in two neurons that were found

to be spontaneously active (data not shown). For a more

robust test of the role of endogenous agrin in regulating

neuronal activity, we examined the ability of C-Ag15 to in-

hibit action potentials induced by the glutamate-receptor

agonist kainic acid. As expected, treatment with kainic

acid (0.5 mM) induced a rapid depolarization accompanied



by the appearance of sustained high-frequency action po-

tentials in most neurons (Figures 6D and 6E). However,

within 10 min of the addition of C-Ag15, neuron membrane

potentials became increasingly more negative to a point

where they were comparable to normal resting membrane

potentials measured prior to kainic acid/C-Ag15 treatment

(�56.2 ± 1.3 mV in kainic acid versus �66.3 ± 1.8 mV in

kainic acid + C-Ag15, p < 0.01, paired Student’s t test;

�70.4 ± 1.6 mV in saline). Action potential frequency

also declined over a similar time course, from a mean of

0.6 ± 0.2 Hz in kainic acid to 0.01 ± 0.005 Hz in kainic

acid + C-Ag15. The fact that C-Ag15’s effects on mem-

brane potential and action potential frequency were re-

versible is evidence of the specificity of C-Ag15 action.

DISCUSSION

Agrin has been implicated in a wide range of functions in

central and peripheral neurons, including organization of

pre- and postsynaptic specializations, process growth,

calcium homeostasis, and now neuronal activity. How-

ever, a general mechanism of agrin action has been elu-

sive, in large part due to a lack of knowledge concerning

Figure 5. Frequency of Spontaneous Action Potentials in Cul-

tured Neurons Is Agrin Dependent

(A) A typical record showing the reversible membrane depolarization

and increased frequency of spontaneous action potentials in a neuron

treated with C-Ag200.

(B) Increase in mean frequency of spontaneous action potentials of

individual neurons in normal saline followed by C-Ag200 (p < 0.02,

Wilcoxon signed-rank test).

(C) Bath application of C-Ag15 results in a reversible decrease in the

frequency of spontaneous action potentials. Slight hyperpolarization

of the resting membrane potential is also apparent.

(D) The mean frequency of action potentials in individual neurons is

consistently reduced by treatment with C-Ag15 (p < 0.001, Wilcoxon

signed-rank test).
the identity of the receptor (or receptors) on neurons that

binds agrin. The results presented here show that agrin

acts as an endogenous ouabain-like molecule targeted

specifically to the a3NKA, a member of the NKA family se-

lectively expressed in neurons. NKAs are responsible for

Figure 6. Neuronal Activity In Vivo Is Regulated by Endoge-

nous Agrin-a3NKA Interactions

(A) Detergent-solubilized membranes of BS3-crosslinked cultured cor-

tical neurons or cortical slice were immunoprecipitated (IP) with anti-

bodies against either agrin (Ag) or the a3NKA (a3) and then immuno-

blotted for a3NKA. BS3 crosslinking of either cultured neurons or

cortex results in the formation of an �300 kDa adduct, indicative of

the presence of native agrin-a3NKA complexes. Endogenous agrin-

a3NKA interactions can be disrupted by incubation with C-Ag15, re-

sulting in the appearance of a 125 kDa C-Ag15-a3NKA band. For com-

parison, the 110 kDa a3NKA visualized by immunoprecipitation and

immunoblotting with the same a3NKA antibody in the absence of

crosslinking is shown.

(B) A whole-cell current-clamp record from layer V neuron in a slice of

motor cortex. Treatment with agrin results in reversible membrane de-

polarization and appearance of high-frequency action potentials.

(C) The mean action potential frequency of individual neurons was sig-

nificantly increased by treatment with C-Ag200 (p < 0.01, Wilcoxon

signed-rank test).

(D) A typical current-clamp record showing action potentials induced

by treatment with kainic acid (K). Addition of C-Ag15 results in revers-

ible membrane repolarization and blockade of action potentials.

(E) C-Ag15 consistently inhibited firing of kainate-induced action po-

tentials in individual neurons (p < 0.01, Wilcoxon signed-rank test).
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Figure 7. Model of Agrin Function at the Synapse

The resting Na+/K+ electrochemical gradient depends on activity of local a3NKAs; some a3NKAs are bound to and inhibited by agrin at rest. Further

inhibition of a3NKAs by agrin results in collapse of the Na+ gradient within a diffusion-restricted physiological space, leading to slowing or even

reversal of the NCX and a rapid rise in cytoplasmic Ca2+ concentration. Depolarization of synaptic membranes associated with the increase in intra-

cellular Na+ concentration following a3NKA inhibition also triggers Ca2+ influx through voltage-gated channels. Increased cytoplasmic Ca2+, aug-

mented by Ca2+-induced Ca2+ release from intracellular stores via ryanodine receptors (Hilgenberg and Smith, 2004), activates CaMKII and other

Ca2+ effectors known to regulate a variety of synaptic functions such as neurotransmitter release and neurotransmitter receptor turnover. Agrin

and the a3NKA are shown on both pre- and postsynaptic membranes; however their precise subcellular location remains to be determined.
maintaining the Na+/K+ ion gradient that underlies the

membrane potential and provides the driving force for a

variety of secondary cellular processes necessary for nor-

mal cell function. Whereas studies of a3NKA mutant mice

will be needed to determine whether additional agrin re-

ceptors are present in neural tissues, the results of these

experiments indicate that many of agrin’s effects in neu-

rons are driven by local and/or global changes in the

Na+/K+ ion gradient.

An early response to agrin is an increase in cytoplasmic

Ca2+, a composite of Ca2+ release from intracellular stores

and influx through voltage-gated channels (Hilgenberg

and Smith, 2004). The finding that agrin antagonizes the

a3NKA provides a simple explanation for these obser-

vations (see model, Figure 7). It is well known that the

plasma-membrane sodium/calcium exchanger (NCX)

plays a key role in Ca2+ homeostasis. However, because

of its dependence on the Na+ ion gradient, activity of the

NCX is largely governed by the NKA: Under normal condi-

tions, the pump operates in forward mode, transporting

Ca2+ ions out of the cell, but the direction of transport re-

verses as the Na+ ion gradient declines (Annunziato et al.,

2004). In neurons, the a3NKA and NCX colocalize within

plasma-membrane domains, juxtaposed by elements of

the endoplasmic reticulum, creating a diffusion-restricted
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cytoplasmic space that enhances the functional linkage

between them (Blaustein et al., 2002). Thus, one compo-

nent of the agrin-induced increase in intracellular Ca2+ is

likely to be due to changes in NCX activity driven by inhi-

bition of the a3NKA, a hypothesis that could be tested by

examining the agrin response of NCX mutant neurons.

Whereas we previously speculated that an agrin-induced

membrane conductance might be responsible for Ca2+

influx through voltage-gated channels, the model sug-

gests that opening of voltage-gated Ca2+ channels in re-

sponse to membrane depolarization associated with the

agrin-induced decline in a3NKA activity is more likely.

The present study provides strong evidence for a role for

agrin in regulating neuronal activity. Action potential fre-

quencies were dramatically increased by exogenous

agrin; more importantly, C-Ag15, an agrin fragment that

acts as an agrin antagonist, disrupted native agrin-

a3NKA interactions, blocking spontaneous action poten-

tials in both cultured neurons and acute-slice preparations.

Agrin behaves as an endogenous ouabain-like molecule,

and mechanisms of ouabain-induced hyperexcitability

have been studied in hippocampal neurons, where

changes in both intrinsic membrane properties and synap-

tic transmission are important (Vaillend et al., 2002). Neu-

rons express multiple NKA subunits, and, given agrin’s



exquisite specificity for the a3NKA, only a subset of the

effects attributed to ouabain may be agrin dependent.

Nevertheless, the observation that agrin and its receptor

are concentrated at synapses suggests the synapse is

an important site of agrin action. Neurotransmitter release

and/or spike threshold are both dependent on membrane

potential; functional coupling between the a3NKA and

NCX, which plays a role in vesicle cycling and neurotrans-

mitter release (Bouron and Reuter, 1996), may also be im-

portant. Consistent with the latter possibility, suppression

of agrin expression in cultured hippocampal neurons is as-

sociated with a decrease in synaptic vesicle cycling (Böse

et al., 2000). Not surprisingly, behavioral studies have

shown that ouabain inhibits memory formation (Gibbs

and Ng, 1978; Xia et al., 1997; Sato et al., 2004), while a de-

cline in NKA activity is responsible for a form of long-term

plasticity in hippocampal interneurons (Ross and Soltesz,

2001). Agrin expression is activity dependent (O’Connor

et al., 1995), and it is tempting to speculate that agrin reg-

ulation of the a3NKA might play a role in synaptic plasticity.

Given the functional link between the a3NKA and NCX,

studies showing enhanced learning and memory in mice

lacking NCX2 (Jeon et al., 2003) support this hypothesis.

Clearly, more detailed studies of the spatiotemporal

changes in agrin expression and the effects of conditional

knockouts of agrin and the a3NKA on learning and memory

are required.

Dysfunction of the a3NKA has been strongly linked with

pathological changes in the brain. Intraventricular infusion

of ouabain causes seizures (Davidson et al., 1978), and

loss of a3NKA activity potentiates excitotoxic injury and

neuronal-cell death (Brines et al., 1995; Xiao et al., 2002).

In addition, mutation of the a3NKA has been shown to be

responsible for rapid-onset dystonia parkinsonism, an au-

tosomal-dominant movement disorder in human (de Car-

valho Aguiar et al., 2004). Paralleling these observations,

heterozygous agrin-deficient mice are less sensitive to

kainic acid than their wild-type siblings, while agrin-defi-

cient neurons exhibit decreased responses to excitatory

stimuli and resistance to excitotoxic insult (Hilgenberg

et al., 2002). Interestingly, these effects of mutating the

Agrn gene are predicted by our model: Decreased agrin

expression, functionally equivalent to treatment with C-

Ag15, translates into an increase in total a3NKA activity

that lowers neuronal activity while enhancing the ability

to buffer potentially damaging increases in intracellular

Ca2+ ions by sustaining activity of the NCX. Together,

these studies suggest that dysregulation of agrin expres-

sion will have a significant impact on brain function. It is

noteworthy that agrin is concentrated in both amyloid

plaques and tangles characteristic of Alzheimer’s disease

(Verbeek et al., 1999) and Lewybodies found in Parkinson’s

disease (Liu et al., 2005) and may, therefore, contribute to

the etiology of these diseases. The ability of C-Ag15 to re-

lieve inhibition of the a3NKA by endogenous agrin sug-

gests that it will be a useful starting point for the develop-

ment of therapeutic agents that might alleviate or reverse

the progress of these and other diseases of the CNS.
Agrin was originally identified at the neuromuscular

junction, where it mediates the motor neuron-induced ac-

cumulation of AChR in the postsynaptic muscle-fiber

membrane. Curiously, agrin molecules present at the

junction are functionally heterogeneous and distinct in cel-

lular origin: Alternatively spliced z+ isoforms, equivalent to

C-Ag908 and C-Ag208, have high AChR clustering activity

and originate from motor neurons; z0 agrin, like C-Ag200,

has no AChR clustering activity and is synthesized by

muscle (Sanes and Lichtman, 2001). The function of z0

agrin is unclear, but its location and origin are consistent

with a role as a retrograde signal agent. The fact that the

a3NKA is expressed on motor neuron axon terminals

(Zahler et al., 1996) suggests it may be the target for mus-

cle agrin. Possible roles for this retrograde signal would in-

clude tuning neurotransmitter release to the muscle fiber’s

action potential threshold or matching growth of the axon

terminal to the muscle fiber. Further studies will be needed

to examine the effects of agrin on synaptic transmission at

the neuromuscular junction. However, guidance of devel-

oping axons is known to depend on translation of local

cues to changes in intracellular Ca2+ within the growth

cone (Zheng, 2000), which is also a site of a3NKA concen-

tration (Brines and Robbins, 1993). Thus, agrin regulation

of a3NKA provides an attractive explanation for the obser-

vation that motor neurons overgrow their target muscle in

agrin mutant mice (Gautam et al., 1996) and that z0 agrin

inhibits growth and stimulates axon-terminal differentia-

tion in cultured neurons (Campagna et al., 1997).

Finally, because of its positive inotropic effect, the major

therapeutic use of ouabain and related compounds is in

the treatment of congestive heart failure. Although cardiac

muscle expresses multiple NKA isoforms, the low effec-

tive dose of ouabain suggests that its therapeutic effects

are mediated by the high-affinity a2- and a3NKAs (Glitsch,

2001). Agrin, which acts as an endogenous ouabain, is

also expressed in heart (Godfrey et al., 1988; Hoch

et al., 1993). While a role for agrin in heart function remains

to be determined, understanding the structural basis of

agrin’s specificity for a single member of a family of such

closely related proteins and the mechanisms by which it

regulates a3NKA function is likely to contribute to the un-

derstanding and development of improved therapies for

cardiac disease.

EXPERIMENTAL PROCEDURES

Cell Culture

Primary cultures of mouse 1- to 2-day postnatal cortical neurons were

prepared as described (Hilgenberg et al., 1999; Hilgenberg and Smith,

2004). Experiments were performed between 10 and 16 days in cul-

ture.

Nonneuronal cells were prepared by growing dissociated rat cortical

cells in minimal essential medium supplemented with 10% fetal bovine

serum. Contaminating neurons were removed by treating the cultures

briefly with 0.5% trypsin, and the cells were resuspended by trituration

followed by dilution and replating. No neurons were detectable follow-

ing two replatings, as indicated by staining with a MAP-2 antibody

(SMI-52, Sternberger Monoclonals).
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All handling and treatment of animals complied with the guidelines

of the Institutional Animal Care and Use Committee of the University

of California, Irvine.

Immunohistochemistry

Neuronal and nonneuronal cells were identified by double staining with

a mouse antibody directed against MAP-2 and a rabbit antibody

against GFAP (DAKO) as described (Hilgenberg et al., 1999). Agrin

binding sites and a3NKA were visualized by double labeling with

C-Ag208 (Hoover et al., 2003) and monoclonal antibody XVIF9-G10

(Novus Biologicals) against the a3NKA (see Supplemental Data for de-

tails). The concentration of agrin used here and in other parts of the

study was based on bioactivity determined by Ca2+ imaging of agrin-

induced increases in intracellular Ca2+ in cultured cortical neurons (Hil-

genberg and Smith, 2004).

Biochemistry

Membrane-impermeant chemical crosslinking agents BS3 and DMA

(Pierce) were used to stabilize the bond between agrin and its binding

sites on cell surface membranes. Cultured neurons were washed

briefly in phosphate-buffered saline (PBS) containing 10 mM EDTA fol-

lowed by preincubation with one or more agrin fragment in PBS con-

taining 1.8 mM Ca2+ for 30 min at room temperature and then cooled

on ice prior to addition of a 10� solution of crosslinking agent to a final

concentration of 0.1 mM. The crosslinking reaction was allowed to pro-

ceed for 30 min, after which any unreacted crosslinker was quenched

and removed by washing with ice-cold PBS2+ containing 50 mM eth-

anolamine. For immunoblot analysis, cells were scraped into ice-

cold TI buffer (20 mM Tris [pH 7.4], 10 mM EDTA, and protease inhib-

itors [Sigma, P8340]) and then Dounce homogenized, and membrane

fractions were recovered by centrifugation. For immunoprecipitation

studies, cells were scraped and homogenized in TI buffer containing

150 mM NaCl and 0.5% Triton X-100. Cell extracts were cleared by

centrifugation, and aliquots of the detergent-soluble fraction were

incubated with the appropriate antibody at 4ºC overnight. Antigen-

antibody complexes were precipitated with either protein A or protein

G and resuspended in SDS-PAGE sample buffer for immunoblot anal-

ysis.

Na+ Imaging

Intracellular Na+ was monitored by ratiometric imaging of the mem-

brane-permeant sodium binding fluorescent dye SBFI-AM (Molecular

Probes) by essentially the same methods described for Fura-2 imaging

of agrin-induced changes in neuronal Ca2+ (Hilgenberg and Smith,

2004). For quantitative analyses, responses of individual cells were

normalized to their maximal response to treatment with 5 mM gramici-

din, a potent ionophore.

Electrophysiology

Standard whole-cell current-clamp techniques were used to measure

membrane potentials and spontaneous action potentials in cortical

neurons in culture and acutely prepared slices (see Supplemental

Data for details). Only neurons with stable pretreatment resting poten-

tials of�55 mV or less that also exhibited a reversible response to agrin

or ouabain were accepted for analysis. Action potential frequency

measurements were performed on 3–5 min of data during each phase

(pretreatment, treatment, posttreatment) of the experiment. All record-

ings were carried out at room temperature.

Expression Studies

The plasmid pRca3-AAC (a generous gift of J. Lingrel and T. Pressley)

encodes an ouabain-insensitive rat a3 subunit of the NKA when ex-

pressed in eukaryotic cells. To generate a wild-type a3 expression

construct, an 805 bp SacII/Bsu36I restriction fragment was excised

from pRca3-AAC and replaced with the corresponding fragment iso-

lated by RT-PCR from rat brain RNA to form pRca3 used for expres-

sion of the native a3NKA subunit. Nonneuronal cells prepared from
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rat or mouse cortex were cotransfected with pRca3 and the enhanced

green fluorescent protein vector pEGFP-C1 (Clontech) to facilitate

identification of transfected cells using the Effectene reagent (QIAGEN)

according to the manufacturer’s instructions. Agrin responses of non-

neuronal cells were determined by Na+ imaging and whole-cell cur-

rent-clamp as for cultured neurons.

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures

and can be found with this article online at http://www.cell.com/cgi/

content/full/125/2/359/DC1/.
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