The neighborhood union of independent sets and hamiltonicity of graphs

Guantao Chena, b, 1, Xuechao Lic, Zhengsheng Wud, Xingping Xue

aGeorgia State University, Atlanta, GA 30303, USA
bCentral China Normal University, Wuhan, China
cUniversity of Georgia, Athens, GA 30609, USA
dNanjing Normal University, Nanjing, China
eJiangsu Institute of Education, Nanjing, China

Received 21 February 2002; received in revised form 25 September 2006; accepted 25 October 2006
Available online 31 December 2006

Abstract

Let G be a graph, $N(u)$ the neighborhood of u for each $u \in V(G)$, and $N(U) = \bigcup_{u \in U} N(u)$ for each $U \subseteq V(G)$. For any two positive integers s and t, we prove that there exists a least positive integer $N(s, t)$ such that every $(s + t)$-connected graph G of order $n \geq N(s, t)$ is hamiltonian if $|N(S)| + |N(T)| \geq n$ for every two disjoint independent vertex sets S, T with $|S| = s$ and $|T| = t$.

© 2007 Published by Elsevier B.V.

Keywords: Hamiltonian; Vertex insertion; The neighborhood union

1. Introduction

All graphs considered in this paper are finite simple graphs. We will generally follow the terminology and notation of Bondy and Murty in [3]. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For any $v \in V(G)$, let $N(v) := \{w : vw \in E(G)\}$ and $d(v) := |N(v)|$, where $N(v)$ is called the neighborhood of v and $d(v)$ is called the degree of v, respectively. More generally, for any $U \subseteq V(G)$, let $N(U) = \bigcup_{u \in U} N(u)$ and $d(U) = |N(U)|$. Further, $N(U)$ is called the neighborhood of U while $d(U)$ is the degree of U. Let $\delta(G)$ be the minimum degree of G and $\sigma_2 := \min\{d(u) + d(v) | uv \notin E(G)\}$. Two classic sufficient degree conditions for hamiltonian graphs are obtained by Dirac and Ore, respectively.

Theorem 1.1 (Dirac [8]). Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$ then G is hamiltonian.

Theorem 1.2 (Ore [14]). Let G be a graph of order $n \geq 3$. If $\sigma_2(G) \geq n$ then G is hamiltonian.

1Partially supported by NSA Grant H98230-04-1-0300 and NSF Grant DMS-0500951.
A natural generalization of the above results is to replace the degree of each vertex by the degree of a set of vertices. Let G be a graph and k, s, and t be three positive integers. We define

$$
\delta_k(G) := \min\{d(U) : U \subseteq V(G) \text{ is an independent set of } k \text{ vertices}\},
$$

$$
\delta^*_k(G) := \min\{d(U) : U \subseteq V(G) \text{ and } |U| = k\},
$$

$$
\sigma_{s,t} := \min\{d(S) + d(T) : |S| = s, |T| = t, S \cap T = \emptyset, \text{ and } S \cup T \text{ is an independent set of } G\}.
$$

Clearly, $\delta_k^*(G) \leq \delta_k(G) \leq \sigma_{s,t}(G)$ if $s + t = k$, $\delta(G) = \delta_1(G)$, and $\sigma_{1,1}(G) = \sigma_2(G)$. A natural question is that under what circumstances we can replace $\delta(G)$ in Theorem 1.1 by $\delta_k(G)$ and $\sigma_2(G)$ by $\sigma_{s,t}(G)$. For $k = 2$, Faudree et al. obtained the following result.

Theorem 1.3 (Faudree et al. [10]). Let G be a 2-connected graph of order $n \geq 3$. If $\delta_2(G) \geq (2n - 1)/3$ then G is hamiltonian.

The graph $K_2 + 3K_p$ illustrates that the lower bound $(2n - 1)/3$ in Theorem 1.3 is best possible. However, the following three theorems show that the $(2n - 1)/3$ can be reduced considerably under some circumstances.

Theorem 1.4 (Faudree et al. [9]). If G is a 2-connected graph of sufficiently large order n such that $\delta^*_2(G) \geq n/2$ then G is hamiltonian.

Theorem 1.5 (Jackson [12]). Let G be a 3-connected graph of order n. If $\delta_2(G) \geq (n + 1)/2$ then G is hamiltonian.

Theorem 1.6 (Broersma et al. [4]). Let G be a 3-connected graph of order n. If $\delta_2(G) \geq n/2$ then G is either hamiltonian or the Petersen graph.

In general, Fraisse obtained the following result.

Theorem 1.7 (Fraisse [11]). Let G be a k-connected graph of order n. If $\delta_k(G) > k(n - 1)/(k + 1)$ then G is hamiltonian.

The graph $K_k + (k + 1)K_p$ illustrates that the above result is best possible. However, $k(n - 1)/(k + 1)$ is much bigger than $n/2$ when n is large. Let $G = (V, E)$ be a k-connected graph of order n. For $S \subseteq V$, let $J(S) = \{u \notin S | N(u) \supseteq S\}$ if $|S| \geq 2$ and $J(S) = \emptyset$ otherwise. Ainouche generalized Fraisse’s result as follows.

Theorem 1.8 (Ainouche [1]). Let G be a k-connected graph of order n. Suppose there exists some s, $1 < s < k$, such that for every independent set $X \subseteq V$ of cardinality $s + 1$ there is a vertex $x \in X$ such that

$$
d(X \setminus \{x\}) + |N(x) \cup J(X \setminus \{x\})| \geq n.
$$

Then G has a hamiltonian cycle.

By increasing the connectivity, Chen and Liu obtained the following result.

Theorem 1.9 (Chen and Liu [5]). Let k be a positive integer and G be a $4(k - 1)$-connected graph of order n. If $\delta_k(G) \geq n/2$ then G is hamiltonian.

Note that $4(k - 1) = 0$ when $k = 1$. Thus, connectivity $4(k - 1)$ imposes no constraints for the case $k = 1$. The well-known Petersen graph shows that $4(k - 1) = 4$ is best possible in some sense for the case $k = 2$. However, when $k \geq 3$, the lower bound $4(k - 1)$ may not be the best possible. The following result improves Theorem 1.9 in terms of connectivity although it requires that n is much larger than k.

Theorem 1.10 (Chen et al. [6]). Let k be a positive integer and let G be a $(2k - 1)$-connected graph of order $n \geq 16k^3$. If $\delta_k \geq n/2$ then G is hamiltonian.
In the same paper, the following conjecture was posted.

Conjecture 1.11 (Chen et al. [6]). Let \(k \) be a positive integer and let \(G \) be a \((2k - 1)\)-connected graph of order \(n \). If \(\delta_k \geq n/2 \) then \(G \) is a hamiltonian graph except \(G \) is the Petersen graph.

The purpose of this article is to generalize Theorem 1.2 in terms of \(d(S) + d(T) \) for any two disjoint sets \(S \) and \(T \) such that \(S \cup T \) is an independent set. When \(|S| = |T| \), the following result, stronger than Theorem 1.9 is obtained.

Theorem 1.12 (Chen and Liu [5]). Let \(k \) be a positive integer and \(G \) be a \((4k - 1)\)-connected graph of order \(n \geq 3 \). If \(\sigma_{k,k} \geq n \) then \(G \) is hamiltonian.

Only case \(d(S) + d(T) \) with \(|S| = |T| \) are considered in the above results. In this paper, we generalize the results to include the case \(|S| \neq |T| \) as follows.

Theorem 1.13. Let \(s \) and \(t \) be two positive integers and let \(G \) be a \((2s + t)\)-connected graph of order \(n \). If \(\sigma_{s,t}(G) \geq n \) then \(G \) is hamiltonian.

We strongly believe that the connectivity \(s + t \) can be reduced to \(s + t - 1 \) with some exceptions.

Conjecture 1.15. Let \(s \) and \(t \) be two positive integers and let \(G \) be a \((s + t - 1)\)-connected graph of order \(n \). If \(\sigma_{s,t}(G) \geq n \) then \(G \) is hamiltonian unless \(G \) is isomorphic to the Petersen graph.

Clearly, Ore’s theorem is the case when \(s = t = 1 \). In general, the case \(s = 1 \) is a corollary of Theorem 1.8. The graph \(G = K_{s+t-2} + \cup_{i=1}^{s+t-1} G_i \), where each \(G_i \) is a complete graph with \((n - (s + t - 2))/(s + t - 1)\) vertices, is \((s + t - 2)\)-connected with independence number \(\alpha(G) = s + t - 1 \). In addition, \(G \) does not contain disjoint vertex sets \(S \) and \(T \) such that \(|S| = s, |T| = t, \) and \(S \cup T \) is independent. Thus, \(\sigma_{s,t}(G) \geq n \). It is not difficult to check that \(G \) is not hamiltonian. So the connectivity condition \(s + t - 1 \) is best possible in Conjecture 1.15.

Let \(\alpha(G) \) denote the independent number of \(G \) and \(\kappa(G) \) denote the connectivity of \(G \).

Theorem 1.16 (Chvátal and Erdös [7]). If \(\alpha(G) \leq \kappa(G) \), then \(G \) is hamiltonian.

So \(\alpha(G) > s + t - 1 \) for each \((s + t - 1)\)-connected non-hamiltonian graph (see Fig. 1). Consequently, there exist \(S \subseteq V(G) \) and \(T \subseteq V(G) \) such that \(|S| = s, |T| = t, \) and \(S \cup T \) is independent.

![Fig. 1. An \((s + t - 2)\)-connected non-hamiltonian graph.](image)
Let \(Y \) be a vertex set of \(G \). For each \(i \in \{0, 1, 2, \ldots, |Y|\} \), let \(V_i(Y) := \{v \in V(G) : |N(v) \cap Y| = i\} \), i.e. each vertex in \(V_i(Y) \) is adjacent to exactly \(i \) vertices in \(Y \). Slightly abusing notation, we use \(H \subseteq G \) for a subgraph of \(G \) as well as for a vertex set \(H \) provided no ambiguity. For any \(A \subseteq G \) and \(B \subseteq G \), let \(N_B(A) := N(A) \cap B \).

2. Basic lemmas

In this section, we will state some lemmas regarding insertible vertices of a maximal cycle in a non-hamiltonian graph.

Let \(G \) be a graph. We assume that all cycles and paths of \(G \) are given with a fixed orientation. For a cycle (or a path) \(C \) of \(G \), we let \(\bar{C} \) denote \(C \) with the reverse orientation. For \(u, v \in V(C) \), let \(C[u, v] \) denote the subpath of \(C \) from \(u \) to \(v \). Let \(C(u, v) = C[u, v] - \{u\} \) and define \(C[u, v) \) and \(C(u, v) \) similarly. Let \(u^+ \) denote the successor of \(u \) along \(C \) and \(u^- \) denote the predecessor of \(u \) along \(C \). A \(uv \)-path of \(G \) is a path of \(G \) connecting \(u \) and \(v \) with the fixed orientation from \(u \) to \(v \). Let \(H \) be a connected subgraph of \(G \) and let \(u \) and \(v \) be two vertices of \(H \). Then \(uHv \) will denote a longest \(uv \)-path in \(H \). A bridge \(B[x_i, x_j] \) of \(H \) is a path such that all internal vertices are in \(G - V(H) \) except the two endvertices \(x_i \) and \(x_j \) which are in \(H \). A maximal cycle \(C \) of \(G \) is a cycle such that no other cycle in \(G \) contains all of vertices of \(C \) as a proper subset of vertices.

Let \(G \) be a non-hamiltonian graph of order \(n \), \(C \) be a maximal cycle of \(G \) with an orientation, \(H \) be an arbitrary component of \(G - V(C) \), and \(v_1, v_2, \ldots, v_h \) be \(h \) distinct vertices in \(N_C(H) \). We assume that \(u_i v_i \in E(G) \) where \(u_i \in H \) for \(1 \leq i \leq h \) and that \(v_1, v_2, \ldots, v_h \) are labeled in the order along the orientation of \(C \).

The vertices \(v_1, v_2, \ldots, v_h \) divide the cycle \(C \) into \(h \) segments,

\[
Q_i := C(v_i, v_{i+1}) = w_{i1}w_{i2} \cdots w_{iq_i}v_{i+1} \quad \text{for} \quad 1 \leq i \leq h,
\]

where \(v_{i+1} := v_1 \). A vertex \(w_i \in Q_i \) is called an insertible vertex if there are a pair of consecutive vertices \(I(w_i) \) and \(I(w_i)^+ \in C - Q_i \) such that \(w_i I(w_i), w_i I(w_i)^+ \in E(G) \) (see Fig. 2).

Suppose that \(w_{i1}, w_{i2}, \ldots, w_{i\beta_i} \) are insertible vertices. Let \(\beta_1 \) be the largest integer in \([1, x] \) such that \(I(w_{i1}) = I(w_{i\beta_1}) \), and \(\beta_2 \) be the largest integer in \([\beta_1 + 1, x] \) such that \(I(w_{i\beta_1+1}) = I(w_{i\beta_2}) \). Then we insert the segment \(C[w_{i1}, w_{i\beta_1}] \) between \(I(w_{i1}) \) and \(I(w_{i1})^+ \), the segment \(C[w_{i\beta_1+1}, w_{i\beta_2}] \) between \(I(w_{i\beta_1+1}) \) and \(I(w_{i\beta_1+1})^+ \), \ldots, the segment \(C[w_{i\beta_2+1}, w_{i\beta_3}] \) between \(I(w_{i\beta_2+1}) \) and \(I(w_{i\beta_2+1})^+ \), to obtain a path \(P \) from \(w_{i\beta_2}^+ \) to \(v_i \) such that \(V(P) = V(C) \), as shown in Fig. 3. We name such an insertion the segment insertion and denote it as \(SI(C[w_{i1}, w_{i\beta}]) \).

The following lemmas are obtained in \([2,5,13,15]\).

Lemma 2.1. For each \(Q_i \) there is a non-insertible vertex in \(Q_i - \{v_{i+1}\} \).

For each \(1 \leq i \leq h \), let \(t_i \) be the smallest integer such that \(w_{it_i} \) is not an insertible vertex in \(Q_i \) and let \(S_i = \{w_{i1}, w_{i2}, \ldots, w_{it_i}\} \). Notice that from Lemma 2.1, \(S_i \cap N_C(H) = \emptyset \). Moreover, it is not difficult to verify the following lemmas hold.

![Fig. 2. An insertible vertex.](image-url)
Lemma 2.2. For each $i \neq j$, each $1 \leq s_i \leq t_i$, and each $1 \leq s_j \leq t_j$, the following two properties hold.

(i) There does not exist a bridge $B[w_{i_s}, w_{j_s}]$ of C.
(ii) For every $w \in C[w_{i_s}, w_{j_s}]$, if $ww_{i_s} \in E(G)$, then $w^-w_{j_s} \notin E(G)$. Similarly, for any $w \in C[w_{j_s}, w_{i_s}]$, if $ww_{j_s} \in E(G)$, then $w^-w_{i_s} \notin E(G)$.

Without confusion, let $w_i := w_{i_s}$ for $1 \leq i \leq h$ and let $W := \{w_1, w_2, \ldots, w_h\}$. By Lemma 2.2, W is an independent vertex set. Let $J_H := \bigcup_{q=1}^{h} C[w_q, v_{q+1}]$ and $K_H := V(G) \setminus J_H$. That is, K_H is the union of $\bigcup_{i=1}^{h} C(v_i, w_i)$ and all components of $G - V(C)$. The following lemma holds.

Lemma 2.3. $K_H \subseteq V_0(W) \cup V_1(W)$.

So, for any $S, T \subset W$, if $S \cap T = \emptyset$, then $N(S) \cap N(T) \cap K_H = \emptyset$.

Lemma 2.4. For any $S, T \subset W$, if $S \cap T = \emptyset$, then

$$|N(S) \cap K_H| + |N(T) \cap K_H| \leq |K_H| - |V(H)|.$$

For any $i = 1, 2, \ldots, h$, a segment $C[z_1, z_2] \subseteq C[w_i, w_{i+1}]$ is called an NE-segment if $C(z_1, z_2) \subseteq N(W)$, and $z_1 \notin N(W)$ and $z_2 \notin N(W)$. An NE-segment $C[z_1, z_2]$ is said to be trivial if $C[z_1, z_2] = \{z_1\}$. Clearly, each path $C[w_i, w_{i+1}]$ is divided into disjoint NE-segments. The following lemma is a direct consequence of Lemma 2.2 and the definition of insertible vertices.

Lemma 2.5. For each $i = 1, 2, \ldots, h$ and each NE-segment $C[z_1, z_2] \subseteq C[w_i, w_{i+1}]$, let $L_j = N(w_j) \cap C(z_1, z_2)$ ($j \in \{1, 2, \ldots, h\}$). Then

$L_i, L_{i-1}, \ldots, L_1, L_{h-1}, \ldots, L_{i+1}$

(some of them may be empty) form consecutive subpaths of $C[z_1, z_2]$ which can have only their endvertices in common. Moreover, $|L_j| \leq 1$ for all $j \neq i$.

3. Proof of Theorem 1.13

We prove the following result which is slightly stronger than Theorem 1.13.

Theorem 3.1. Let G be a non-hamiltonian graph of order n such that $\sigma_{s,t} \geq n$. Then $|N_C(H)| < 2(s + t)$ for any maximal cycle C and any component H of $G - V(C)$.
Proof. Suppose, to the contrary, there is a maximal cycle C of G and a component H of $G - V(C)$ such that $h = |N_C(H)| \geq 2(s + t)$. Following the notation of Section 2, let $N_C(H) = \{v_1, v_2, \ldots, v_h\}$, where v_1, v_2, \ldots, v_h are listed in the order along the orientation of C. Let w_i be the first non-insertible vertex of $C(v_i, v_{i+1})$ along the orientation of C.

Let

$$S_1 = \{w_1, w_2, \ldots, w_s\},$$

$$S_2 = \{w_{s+1}, w_{s+2}, \ldots, w_{2s}\},$$

$$T_1 = \{w_{2s+1}, w_{2s+2}, \ldots, w_{2s+t}\},$$

$$T_2 = \{w_{2s+t+1}, w_{2s+t+2}, \ldots, w_{2s+2t}\}.$$

Claim 3.1. For each $i = 1, 2, \ldots, h$ and each NE-segment $I = C[z_1, z_2] \subseteq C[w_i, w_{i+1}]$,

$$|N_I(S_1)| + |N_I(S_2)| + |N_I(T_1)| + |N_I(T_2)| \leq 2|I|.$$

Proof. If $|I| = 1$, i.e. $I = \{z_1\}$, then, by the definition of NE-segments,

$$N_I(S_1) = N_I(S_2) = N_I(T_1) = N_I(T_2) = N_I(W) = \emptyset.$$

Thus, $|N_I(S_1)| + |N_I(S_2)| + |N_I(T_1)| + |N_I(T_2)| = 0 \leq 2$.

If $|I| = 2$, let $I = \{z_1, z_2\}$. In this case, we have that

$$N_I(S_1) \cup N_I(S_2) \cup N_I(T_1) \cup N_I(T_2) \subseteq N_I(W) \subseteq \{z_1, z_2\}.$$

Therefore,

$$|N_I(S_1)| + |N_I(S_2)| + |N_I(T_1)| + |N_I(T_2)| \leq 4 = 2|I|.$$

Suppose that $|I| \geq 3$. Without loss of generality, we assume that $1 \leq i \leq s$. By Lemma 2.5, $C(z_1, z_2)$ is divided into five internal disjoint subpaths which are neighbors of S_1, T_2, T_1, S_2, and S_1, respectively. Thus,

$$|N_I(S_1)| + |N_I(S_2)| + |N_I(T_1)| + |N_I(T_2)| \leq |C(z_1, z_2)| + 4 = (|I| - 1) + 4 \leq 2|I|. \quad \square$$

Claim 3.2. The inequality $|N(S_1)| + |N(S_2)| + |N(T_1)| + |N(T_2)| \leq 2(n - |V(H)|)$ holds.

Proof. Since C is union of disjoint NE-segments, applying Claim 3.1 to all NE-segments, we obtain

$$|N_C(S_1)| + |N_C(S_2)| + |N_C(T_1)| + |N_C(T_2)| \leq 2|V(C)|. \quad (1)$$

By Lemma 2.3, $N_{G-V(C)}(S_1), N_{G-V(C)}(S_2), N_{G-V(C)}(T_1), N_{G-V(C)}(T_2)$ are pairwise disjoint. Since $N_C(H) \cap W = \emptyset, V(H) \cap (N(S_1) \cup N(S_2) \cup N(T_1) \cup N(T_2)) = \emptyset$. Combining these two statements together, we have the following:

$$|N_{G-V(C)}(S_1)| + |N_{G-V(C)}(S_2)| + |N_{G-V(C)}(T_1)| + |N_{G-V(C)}(T_2)| \leq n - |V(C)| - |V(H)|. \quad (2)$$

Combining inequalities (1) and (2), we have

$$d(S_1) + d(S_2) + d(T_1) + d(T_2) \leq n + |V(C)| - |V(H)| \leq 2(n - |V(H)|). \quad (3)$$

On the other hand,

$$d(S_1) + d(T_1) + d(S_2) + d(T_2) + 2s_{s,t} \geq 2n,$$

which is a contradiction to (3). \quad \square
4. Proof of Theorem 1.14

By contradiction, suppose that G is an $(s + t)$-connected non-hamiltonian graph of order n satisfying $\sigma_{s+t} \geq n$. Let $L = \{v : d(v) < n/(s + t)\}$, and (L) denotes the subgraph induced by L. Since G is an $(s + t)$-connected graph and $s + t \geq 2$, G contains a cycle. Let C be a cycle of G satisfying

1. $|V(C) \cap L|$ is maximum, and
2. subject to above, $|V(C)|$ is maximum.

Claim 4.1. $\alpha((L)) < s + t$ where $\alpha((L))$ is the independence number of (L).

Proof. Suppose, to the contrary, $\alpha((L)) \geq s + t$. Let $X \subseteq L$ be an independent set of $s + t$ vertices and let $S \cup T$ be an arbitrary partition of X with $|S| = s$, $|T| = t$. Then,

$$d(S) + d(T) \leq \sum_{x \in X} d(x) < \frac{n}{s + t} (s + t) = n,$$

a contradiction. □

Claim 4.2. $L \subset V(C)$.

Proof. Suppose, to the contrary, that there exists an $v_0 \in L - V(C)$. Since G is $(s+t)$-connected, there are $(s+t)$ vertex-disjoint paths (except v_0) $P_1(v_0, v_1)$, $P_2(v_0, v_2)$, ..., $P_{s+t}(v_0, v_{s+t})$ from v_0 to C. We assume that $v_1, v_2, ..., v_{s+t}$ occur on C in the order of along the orientation of C. For each $i \in \{1, 2, ..., s + t\}$, we claim that $C(v_i, v_{i+1}) \cap L \neq \emptyset$. Otherwise, the cycle $C' = P_{i+1}(v_0, v_{i+1})C[v_{i+1}, v_i]P_i(v_i, v_0)$ contains more vertices of L than C does, a contradiction.

Let w_i be the first vertex of L along the segment $C(v_i, v_{i+1})$, for each $i \in \{1, 2, ..., s + t\}$. If $w_iw_j \in E(G)$, for some $i \neq j \in \{1, 2, ..., s + t\}$, then the cycle $C'' = P_i[v_0, v_i]C[v_i, v_j]C[w_i, v_j]P_j(v_j, v_0)$ contains more vertices of L than C does, a contradiction. Thus, $w_1, w_2, ..., w_{s+t}$ is an independent set, a contradiction to Claim 4.1. □

Claim 4.3. For any component H of $G - V(C)$, we have

$$|V(H)| \geq \frac{n}{s + t} - (2s + 2t - 1) > (s + t - 1)(s + t).$$

Proof. By Claim 4.2, we have $d(v_0) \geq n/(s + t)$ for every vertex $v_0 \in V(H)$. By Theorem 3.1, $|N_C(v_0)| \leq |N_C(H)| \leq 2(s + t) - 1$. Thus,

$$|V(H)| \geq d_H(v_0) \geq \frac{n}{s + t} - 2(s + t) + 1 > (s + t - 1)(s + t).$$

The second inequality comes from the fact that $n \geq (s + t)^2(s + t + 1)$. □

Since G is $(s + t)$-connected and $|V(H)| > (s + t - 1)(s + t) \geq s + t$, there are $s + t$ independent edges $u_1v_1, u_2v_2, ..., u_{s+t}v_{s+t}$ such that $u_i \in V(H)$ and $v_i \in V(C)$ for each $i = 1, 2, ..., s + t$. Let $S = \{w_1, w_2, ..., w_s\}$ and $T = \{w_{s+1}, w_{s+2}, ..., w_{s+t}\}$. For convenience, we let $w_{s+t+1} = v_1$ and $w_{s+t+1} = w_1$. For each $i \in \{1, 2, ..., s + t\}$, let w_i be the first non-insertible vertex in $C(v_i, v_{i+1})$. By Lemma 2.1, such w_i exists for each i. Let $W = \{w_1, w_2, ..., w_{s+t}\}$. Then $C = \bigcup_{i=1}^{s+t} C[w_i, w_{i+1}]$ and each segment $C[w_i, w_{i+1}]$ is the union of disjoint NE-segments with respect to W. A vertex $v \in V(C)$ is called a connector if there are two distinct non-insertible vertices w_i and w_j such that $v \in C(w_i, w_j)$ and $v^-w_j \in E(G)$ and $v^+w_i \in E(G)$, as shown in Fig. 4.

Claim 4.4. If v is a connector, then $v \in L$.

Proof. Assume $v \notin L$. Let w_i and $w_j \in W$ such that $v \in C(w_i, w_j)$ and $w_jv^- \in E(G)$ and $w_iv^+ \in E(G)$. By Lemma 2.2(ii), no vertices of $C(v_i, w_i)$ and $C(v_j, w_j)$ are adjacent to v.

Therefore, without loss of generality, assume that 1. Proof.

Suppose, to the contrary, there are two bad connectors P and Q.

Claim 4.5. For each $q = 1, 2, \ldots, s + t$ and each NE-segment $I = C[z_1, z_2] \subseteq C[w_q, w_{q+1}]$,

$$|N_I(S) \cap N_I(T)| \leq \begin{cases} 2 & \text{if } q \in \{1, 2, \ldots, s + t\} \setminus \{s, s + t\}; \\ 1 & \text{if } q = s \text{ or } s + t. \end{cases}$$

Therefore,

$$|N_I(S)| + |N_I(T)| \leq |I| - 1 + |N_I(S) \cap N_I(T)| \leq \begin{cases} |I| + 1 & \text{if } |N_I(S) \cap N_I(T)| = 2, \\ |I| & \text{if } |N_I(S) \cap N_I(T)| \leq 1. \end{cases}$$

Furthermore, if $1 \leq q \leq s - 1$ and $|N_I(S)| + |N_I(T)| = |I| + 1$, then $z_2 \hat{w}_i \in E(G)$ for some $i = q, q + 1, \ldots, s - 1$; if $s + 1 \leq q \leq s + t - 1$ and $|N_I(S)| + |N_I(T)| = |I| + 1$, then $z_2 \hat{w}_i \in E(G)$ for some $i = q, q + 1, \ldots, s + t - 1$.

Proof. Without loss of generality, assume that $1 \leq q \leq s$. If $q = s$, then $C(z_1, z_2)$ is a union of two segments P_1 and P_2 such that $P_1 \subseteq N(S)$ and $P_2 \subseteq N(T)$. If $1 \leq q \leq s - 1$, then $C(z_1, z_2)$ is a union of three disjoint segments $P_1, P_2,$ and P_3 such that $P_1 \subseteq N((w_q, w_{q-1}, \ldots, w_1)), P_2 \subseteq N(T), P_3 \subseteq N((w_s, w_{s-1}, \ldots, w_{q+1}))$. Moreover, $P_1, P_2,$ and P_3 are listed in the order along the orientation of C. So Claim 4.5 follows. \(\Box\)

Claim 4.6. Let $q = 1, 2, \ldots, s$ and let $I = C[z_1, z]$ and $J = C[z, z_2] \subseteq C[w_q, w_{q+1}]$ be two consecutive NE-segments in $C[w_q, w_{q+1}]$. Suppose $|N_I(S) \cap N_I(T)| = 2$.

(i) If $N_J(S) \cap N_J(T) = \emptyset$, then

$$|N_{I \cup J}(S)| + |N_{I \cup J}(T)| \leq (I - 1) + 2 + (J - 1) = |I| + |J|.$$

(ii) If $|N_J(S) \cap N_J(T)| \neq 0$, then there exists $i \in \{q, q - 1, \ldots, 1, s + t, s + t - 1, \ldots, s + 1\}$, such that $w_i z^+ \in E(G)$.

Similar result holds for $s \leq q \leq s + t - 1$.

If (ii) of Claim 4.6 happens, we call z a bad connector. It is obvious a bad connector is a connector. Let B denote the set of all bad connectors and $\eta = |B|$. Let $B_q = B \cap C(w_q, w_{q+1})$ for $q \in \{1, 2, \ldots, s + t\} \setminus \{s, s + t\}$. Clearly, $B = \bigcup_{q=1}^{s+t+1} B_q$ where $B_s = B_{s+t} = \emptyset$.

Claim 4.7. B_q is an independent vertex set for each $q \in \{1, 2, \ldots, s + t\} \setminus \{s, s + t\}$.

Proof. Suppose, to the contrary, there are two bad connectors y and z in $C(w_q, w_{q+1})$ such that $yz \in E(G)$. Without loss of generality, we assume that $z \in C(y, v_{q+1})$. Note that $q \neq s, s + t$. Without loss of generality, assume that
Thus, Claim 4.8 holds by combining (4) and (5).

Proof. Note

Claim 4.8. \(d(S) + d(T) \leq n - |V(H)| + \eta + s + t - 2. \)

Proof. Note C is a union of disjoint NE-segments I. By Claim 4.5, we have that

\[|N_I(S)| + |N_I(T)| \leq |I| + 1 \]

for each NE-segment \(I = C[z_1, z_2] \) where \(I \subseteq C[w_q, w_{q+1}] \). Moreover, if the equality holds, we have that \(q \neq s, s + t \). By Claim 4.6, we have that

\[|N_C(S)| + |N_C(T)| \leq |V(C)| + \eta + (s + t) - 2, \]

where \(s + t - 2 \) comes from the NE-segments \(C[z_1, z_2] \) with \(z_1 = w_i \) for some \(i \in \{1, 2, \ldots, s + t\} \setminus [s, s + t] \). By Lemma 2.2(i),

\[|N_{G-V(C)}(S)| + |N_{G-V(C)}(T)| \leq n - |V(C)| - |V(H)|. \]

Thus, Claim 4.8 holds by combining (4) and (5). □

By Claim 4.8 and \(d(S) + d(T) \geq n \), we have that

\[\eta \geq |V(H)| - (s + t) + 2 \geq (s + t - 1)(s + t) - (s + t) + 2 > (s + t)(s + t - 2). \]

Since \(B = \bigcup_{q=1}^{s+t} B_q \) where \(B_s = B_{s+t} = \emptyset \). By the Pigeonhole Principle, there exists an integer \(q \) such that \(|B_q| \geq s + t \). By Claim 4.7, \(B_q \) is an independent set. By Claim 4.4, \(B_q \subseteq L \). Thus, \(\alpha(L) \geq s + t \), which contradicts that \(\alpha(L) < s + t \). □

References