ensure that each patient vignette was written in a manner that accurately reflected and depicted the health state being examined. Students were randomly assigned to evaluate each case using one of the four different utility assessment techniques. RESULTS: The utility values (Mean +/- SD) for each of the health states under consideration were as follows: Depression (0.66 +/- 0.16), Type 1 Diabetes (0.73 +/- 0.17), Rheumatoid Arthritis (0.48 +/- 0.17), and Hypertension (0.83 +/- 0.12). A consistent trend emerged for all four health states being evaluated where the student assigned average utility score was highest when using the SG technique, second highest using TTO, third highest when adopting the FT and lowest when using an untransformed VAS score. A statistically significant difference (p < 0.05) between utility scores as measured by the SG technique and the VAS was found for each of the four health states under investigation. There was no significant difference in health state utility value assignment based on either a students’ gender or age. CONCLUSION: Student assessment of health-related quality of life varied considerably as a function of the type of health state being evaluated and/or the utility assessment technique which was adopted.

PMCD41

MAPPING SF-12 TO EUROQOL EQ-5D PREFERENCE SCORES IN THE SPANISH-SPEAKING HISPANIC COMMUNITY IN THE UNITED STATES

Zarate V1, Chuang LH1, Kind P2

1Pontificia Universidad Católica de Chile, Santiago, RM, Chile, 2University of York, York, UK

OBJECTIVE: To generate an algorithm to map SF-12 scores to the Euroqol EQ-5D index based on responses of the U.S. Spanish-speaking Hispanics (SPHispanics). METHOD: Responses from 2386 SPHispanics who were eligible to answer the self-described model (p value into account, only age significantly contributed to the previously available. Given the significant amount of variance that is provide researchers in Latin America with a useful method to between observed and estimated EQ-5D INDEX was 0.076 in the possible compound terms between SF-12 scores. Validation of sample. Modelling was performed excluding (basic model) and (R2 < 0.001), but its effect on improving R2 was only marginal. Pearson correlation coefficient between observed and predicted EQ-5D INDEX was 0.77 for the best basic model in both the modelling and validating samples. MAE between observed and estimated EQ-5D INDEX was 0.076 in the validating sample. CONCLUSION: Findings confirm that reasonable estimates of the SPHispanic EQ-5D INDEX can be obtained from SF-12 based on a simple OLS model. This algorithm may provide researchers in Latin America with a useful method to obtained preferences-based scores when only SF-12 data is available. Given the significant amount of variance that is usually left unexplained in these types of models it would be highly recommendable to incorporate this uncertainty in sensitivity analyses.

PMCD43

USE OF BACK TRANSLATION REVIEW IN THE TRANSLATION OF PRO INSTRUMENTS—SOME EXAMPLES

Gordon-Stables R, Wild D

Oxford Outcomes Ltd, Oxford, UK

OBJECTIVE: Back translation is considered a vital step in the generally accepted methodology for the translation of PRO measures (Wild et al. 2005). However, critics question its use (e.g. McKenna et al. 2005). There is agreement that more research is needed. Before embarking on more detailed research, it would be helpful to consider how back translation is currently being used as a step in the methodology for the translation of PRO measures. METHODS: A review was undertaken of 50 back translation reports from 4 past projects at Oxford Outcomes. Examples of how back translation contributed to the translation process were gathered. Statistics were also gathered on how many items were questioned by the reviewer, and on how many of those items questioned were changed as a result. RESULTS: Reviewers use back translation review as an opportunity to question what is in the translation, but do not force changes on the investigator. Review of the back translations can catch important misunderstandings/errors in the translation. The back translations can show investigators that their translation may be open to misinterpretation. Fourteen percent of items within the sample were changed as a result of back translation review. Although there are differences of style with different reviewers (e.g. questioning more items), the rate of changed items is around 15%, suggesting that the differing styles do not unduly influence the outcome of the reviews. The structure of the translated language can cause reviewers to question items that are not incorrect. Reviewers question more items in languages that are from cultures that differ widely from their own (e.g. Indic languages). CONCLUSION: Whilst back translation undoubtedly has its weaknesses and strengths, its users are aware of them and can consequently use it as tool to improve the quality of the translations of PRO instruments.