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0. INTRODUCTION 

Let G be a collineation group of a finite projective plane IZf, whose order is 
n. We shall call G a B-group if all its non-trivial elements are Baer 
collineations of n and (I GI, n) = 1. 

All known B-groups G are planar, i.e., their fixed elements form a 
subplane of I& which we shall always denote by &. If n, is a Baer 
subplane and n is a translation plane then Foulser [3] implies G is cyclic. 
Using this fact Ostrom [lOI showed that if S is a B-group of exponent 2, 
acting on a translation plane of order n, then S is planar and l7, has order 
,I/lSl 

The object of this paper is to consider the problem of classifying those B- 
group G that act on the Cartesian and translation planes. Our main result, 
stated below, incorporates the theorems of Foulser and Ostrom mentioned 
above, and may be regarded as being a partial description of how B-groups 
act on translation planes. In particular, our result implies that G is planar 
and, more surprisingly, that if G is not of exponent 2, then n, is either a 
square root or a fourth root subplane of n. 

THEOREM A. Let 17 be a translation plane of order n admitting a B- 
group G. Then G is a planar group and one of the following cases must 
occur. 

(a) G is cyclic and ITo is a Baer subplane ofl7; 

(b) G is an elementary abelian 2-group and II, has order n”“’ ; 

(c) G E S, or G is dihedral and in both cases II, has order n’14. 

COROLLARY. An even order translation plane II admits a B-group G if 
and only if G is cyclic (and so 17, must be a Baer subplane). 
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Though we do not have counterexamples to the corollary, even when Ll 
has odd order, it seems quite likely that some presently known translation 
planes of odd admit dihedral B-groups (and possibly even A, and S,). 
However, none of the other non-cyclic groups listed in the theorem (viz., A,, 
S, or groups of type (2,2,..., 2)) are known to act as B-groups on any known 
projective plane. Such B-groups, if they exist, probably act on entirely new 
kinds of planes. 

We consider now how far we are able to extend Theorem A to arbitary 
finite Cartesian planes, i.e., those planes which are (P, 1) transitive for some 
incident point-line pair. In order to do so it will be convenient to introduce 
the following non-standard terminology. 

DEFINITION. A collineation group of a projective plane will be called 
locally cyclic if only its cyclic subgroups may fix Baer subplanes 
elementwise. 

(N.B. Cyclic subgroups of B-groups do in fact always fix some Baer 
subplane elementwise; moreover, as indicated earlier, Foulser [3] implies 
that B-groups of finite translation planes are always locally cyclic.) 

THEOREM A’. If a finite Cartesian plane I7 admits a planar locally cyclic 
B-group G then the conclusions of Theorem A apply to (l7, G). 

Remark. The theorem does not tell us whether there are finite groups 
that are categorically excluded from being B-groups of Cartesian planes. In 
fact, by Section 5, many Frobenius groups are of this type. 

We now outline some of the main steps involved in proving Theorems A 
and A’, in the case when the B-group G is non-solvable. It is easily seen 
(though we have delayed the proof until Section 6) that by a theorem of 
Brauer’ et al. ] 1 ] T, a Sylow 2subgroup of G, must be elementary abelian or 
dihedral. In the former case N = NJT) turns out to be a Frobenius group 
and so by Section 5 we find N r A, and 1 T/ = 4. Thus we need only consider 
the case when T is dihedral; but in Section 3, by considering elementary 
abelian B-groups, we find that the odd order Sylow subgroups of G are all 
cyclic. Hence by a theorem of Suzuki ]I1 ] G is closely related to some 
LF(2,p), where p is a prime >5. So G contains a metacyclic subgroup of 
order p(p - 1)/2. But the work on “Z -groups” in Section 4 now shows that 
(p - 1)/2 = 2, and so G is “approximately” LF(2, 5) 2 A,. A little more 
work shows that G g A, or S,. It remains to analyze the fixed points of G. 
This is done by considering the Wielandt polynomials for G. These 
polynomials play an important role throughout the paper, and the ones that 
we need are discussed in the next section. 

’ All the group theory used in this article predates the odd order paper. 
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For background on projective planes and spreads the reader should 
consult 17, Chaps. 5-71 and 19, Chap. 11. We shall also occasionally use the 
fact that B-groups of translation planes always lie in some translation 
complement. This follows immediately from the following simple remark. 

LEMMA 1. Let V be a finite vector space over the prime field GF(p). 
Suppose G is any pi-subgroup in Aut ‘u, where ‘u denotes the a@e space 
associated with V. Then G must jix a point of V. 

ProoJ Consider the action of G on the projective closure of VI. Now by 
Maschke’s theorem G fixes a point outside the hyperplane at infinity. The 
lemma follows. 

1. WIELANDT POLYNOMIALS 

Let G be a subgroup of Aut H, where H is any finite group such that 
(IGI, IHI) = 1. Also choose a family [= (G,): of n distinct subgroups of Gi 
and write fi for 1 Fix(G 

Wielandt has given a technique for computing polynomial relationships 
between thefi that do not depend on the choice of H; e.g., the well-known 4- 
group formula of Brauer may be deduced using Wielandt’s technique. Our 
interest in Wielandt’s polynomials stems from the fact that if G happens to 
be a B-group of a Cartesian plane then usually some “y-axis” of the plane 
may be identified with an additive group (C, +), such that G lies in 
Aut(C, +). 

The object of this section is to compute some Wielandt polynomials that 
will be needed later on. We begin with a matrix theoretic description of 
Wielandt’s technique. 

Let y r ,..., ym be a set of elements in G such that every element of G is 
conjugate with (at least) one of the yi)s. Now define W(c), or simply W, to 
be the matrix 11 wiiJI of order m x n such that 

wij = # conjugates of yi in Gj. 

Now let (k, ,..., k,,)’ be any solution for x in the matrix equation Wx = 0. 

1. THEOREM (Wielandt 112, Hauptsatz 2.21). Let gi = IGil. Then 

i=l 

We call any polynomial of the above type a Wielandt polynomial for G. It 
will now be convenient to introduce the following more graphic notation for 
Wielandt polynomials. 

481/8811-4 
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Conventions. Suppose A is a subgroup of G z Aut H. Then JJ denotes 
1 Fix(A)1 and, when A = (a), we write f, for f, . Also, f0 denotes /HI. 

Wielandt has shown that a Wielandt polynomial for dihedral groups 
coincides with the 4-group formula of Brauer [ 12, Item 3.11. 

Result 2 (Brauer, Wielandt). Let G = (a,/?), where a, p are distinct 
involutions and write y = ap. Then a Wielandt polynomial for G is 

Wielandt has also given a Wielandt polynomial for groups of prime 
exponent [ 12, Item 3.21; in particular, the following holds. 

Result 3. Let G=Z,@Z,, where p is prime. Then a Wielandt 
polynomial for G is 

P+l 
fof”G= n f;: 

i=l 

where (G,):’ ’ is the set of distinct subgroups of G with order p and 
fi = 1 Fix( for all i. 

Now we compute a Wielandt polynomial of a Frobenius group G with 
elementary abelian kernal K and cyclic complement H. We shall restrict 
ourselves to the (essentially unique) polynomial that arises from the family 
of subgroups [ = (0,) K, H, G). Now by elementary properties of Frobenius 
groups 14, Theorems 7.6 and 7.7, Chap. 21, and the fact that H, K are 
abelian, we find that W can be chosen to be the inner rectangle of the 
following diagram. 

0, K H G 

0, 1 1 1 1 

kEK* 0 IHI 0 IHI 

hEH* 0 0 1 IKI 

Now Theorem 1 easily gives the following result. 

LEMMA 4. Let G = KH be a Frobenius group of the above type. Then a 
Wielandt polynomial for G is 

f,f hH’ =f,f LH’. 

We shall also require Wielandt polynomials arising from finite groups 
whose Sylow subgroups are all cyclic. Such groups have been classified by 
Zassenhaus 15, Theorem 9.4.31 and are often called Z-groups. Basically, if G 
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is a non-cyclic Z-group then G’ is cyclic with a cyclic complement H such 
that (IHI, 1 G’l) = 1. The Z-groups that we shall be interested in satisfy the 
following further condition, which makes their polynomials easier to 
compute. 

DEFINITION 5. A finite Z-group G is a strict Z-group if it is non-cyclic 
and futhermore: 

gEG*lglIlG’I or I 41 IG: G’l- 

The following lemma is a straightforward consequence of the fact that in a 
strict Z-group no non-trivial element of G’ can normalize any subgroup 
whose order divides [G: G’ 1. 

LEMMA 6. Let G be a strict Z-group. Then the following conditions all 
hold. 

(a) G = (a)(b), where G’ = (a) and (/al, lbl) = 1; 

(b) (b)g n (b) = (O,} whenever g E G\(b); 

(c) if a E (a)\((O,) then a is conjugate to exactly I bl elements of G 
(and they all lie in G’). 

With the aid of the above lemma it is straightforward to check the 
following result. 

LEMMA 1. Let G be a strict Z-group as described in the lemma above. 
Then 

fof g’ =f,f Lb’ 

is a Wielandt polynomial for G. 

2. B-GROUP CONVENTIONS 

For the rest of this article we shall restrict ourselves to the study of B- 
groups acting on finite Cartesian planes. Given this objective, the following 
lemma allows us to make some convenient conventions. 

LEMMA 1. Let 17 be a Cartesian plane that admits a B-group G. Then, up 
to duality, either 

(a) IT is a translation plane and G leaves invariant a translation axis 
(even when II is desarguesian); or 
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(b) IZ is (P, f) transitive, relative to a unique flag (P, I), which must 
therefore be G-invariant. 

ProojI For non-desarguesian translation planes part (a) applies because 
of the uniqueness of the translation axis. If I7 is desarguesian we clearly have 
1 G) < 2 and so part (a) continues to be valid. On the other hand, if ZZ is 
neither a translation plane, nor its dual, then by the Lenz-Barlotti tables 12, 
pp. 126-1281, and with a little help from the Hering-Kantor theorem 161. IZ 
has a unique flag (P, I) relative to which it is transitive. The result follows. 

Because of the lemma, we may (up to duality) assume that G acts on an 
afine Cartesian plane I7’ such that 1 is the translation axis, whenever I7 is a 
translation plane. This assumption, and related conventions, are summarized 
in (*) below and will be tacitly invoked whenever convenient. 

(*) Conventions. (a) ZZ’ is an afftne plane of order n which is (Y, I) 
transitive for some Y on 1. Also, if ZI is a translation plane, I is its translation 
axis. 

(b) G denotes a B-group in Aut II such that G fixes Y when I7 is not a 
translation plane; (so we allow G to be fixed point free (fpf) on 1, if 17 is a 
translation plane). 

Remark. We emphasize that the conventions above have been introduced 
only to eliminate tedious details from proofs; we do not require the 
assumptions in (*) to be valid in any of the theorems proved. In particular, 
(*) plays no role in Sections 4 and 5. 

We shall frequently need the following result on autotopism groups i.e. 
collineation groups whose fixed sets include at least three non-collinear 
points. 

Result 2. Assume H is an autotopism group of the projective plane II 
such that H fixes a proper triangle OXY, where l7 is (Y, XY) transitive. Now 
coordinatize 17 so that 

0 = (to), Y=(a), x= (0) 

and let (C, +, .) be the resulting Cartesian group [7, Chap. 61. Also let 

r = ({(oYY):Y E CL +I 

be the additive group that is canonically isomorphic to (C, +). Then the 
restriction map H--t H 1 q is a group homomorphism from H into Aut( y, +). 
Also this homomorphism is injective if H contains no perspectivities. 

ProoJ: The fact that H is additive on (a, +) has been pointed out in [8, 
Lemma 2.21. Everything else is standard [7, Chap. 61. 
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Remark. There seems no reason to expect H to be additive on the “X- 
axis”; if this could be shown then many of our results could be considerably 
improved, e.g., the planarity hypothesis of Theorem A’ could be dropped. 

3. ELEMENTARY ABELIAN AND DIHEDRAL B-GROUPS 

In this section we consider mainly the action of a non-cyclic elementary 
abelian B-group E, acting on the Cartesian plane fl. We shall show that if E 
is planar, or l7 is a translation plane, then E must be a planar 2-group such 
that HE has order nl’lE’. Thus we shall be extending Jha [8, Theorem A], 
which in turn generalizes Ostrom [lo]. 

HYPOTHESIS (H). E is a subgroup of the B-group G such that 
E z Z, @ Z,, where p is a prime. 

LEMMA. Assume Hypothesis (H). Then, in the notation of convention (*), 
E fixes the triangle OXY, where 0 is an afJine point of l7’ and I= XY. 

Proof If 17 is not a translation plane then convention (*) implies that E 
fixes Y. Now simple counting gives the lemma. So consider the remaining 
viz. when n is a translation plane and 1 is its translation axis. So, to get a 
contradiction, we shall assume E is fpf on 1. Writing E = (a, 8) we now find 
that j3 leaves l7, n I invariant and is also fpf on this set. Thus p 1 \/ii + 1. 
But the semiregularity of /? on I\(1 n n,) shows that p ( n - fi and so 
p ]fi - 1. Thus p = 2 and p ] Lr, is now a homology or a planar element. 
Both possibilities are consistent with the lemma. 

We now prove the main facts about E, when p > 2. We continue with the 
terminology of the lemma above. 

PROPOSITION 1. Assume Hypothesis (H). Then for p > 2, all the 
following statements must be valid. 

(a) E is an autotopism group of l7 that fixes exactly n(p-““2p aflne 
points of iT’ that lie on the Y-axis OY. Apart from these points the only other 
points of lTfixed by E are the points X, Y on 1. 

(b) E is not a planar group. 

(c) lI is not a translation plane. 

Proof By the lemma above, and Result 2.2, we may regard the affine 
part of OY as being a group (C, +) such that E acts on OY so as to be a 
subgroup of Aut(C, +). Since E is a B-group, the Wielandt polynomial for E 
on C (Result 1.3) yields 

nf”, = (\/;;)p+‘. 
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Thus E fixes exactly n(p-“~2p affine points of OY. Next suppose, if 
possible, that E is a planar group. Thus ZI, has order n(p-““p < n I,” and so 
lIE is a proper subplane of ZZ,, whenever a is a Baer collineation of E. 
Hence the Baer condition for subplanes shows that 

(n 
(P- l)lZP)Z < nl/2 

and so we have the contradiction p = 2. Now part (b) follows and hence part 
(a) is also valid. Part (c) follows readily from part (a) if we note that we can 
interchange the roles of OX and OY, where n is a translation plane. Hence 
the proposition is proved. 

Now recall that a finite p-group with a unique subgroup of order p is 
either cyclic or (generalized) quaternion [5, Theorem 12.5.21. Thus we 
immediately have the following corollaries, applied to a B-group G. 

COROLLARY 2. If II is a translation plane then the odd order Sylow 
subgroups of G are cyclic. In particular, if G has odd order then G is a Z- 
group. 

COROLLARY 3. Let G be a planar B-group acting on a Cartesian plane. 
Then G has odd order only if it is a Z-group. 

Both corollaries will be strengthened in the next section. The type of 
conclusion we get will be similar to the case when G is dihedral. The 
analysis of this case quickly leads to [8, Theorem A]. 

THEOREM 4. Let G be a dihedral B-group acting on a Cartesian plane of 
order n. Then G is planar and II, has order n114. 

(N.B. G is allowed to be a Klein group). 

ProoJ Let G = (a, /3), where a, /I are involutions and write y = ap. Now 
(y) 4 G and ~7 = a ] ny is certainly an autotopism, since ]E( < 2. But 
G = (a, r) now shows that G itself is an autotopism group. So one can 
assume, in accordance with conventions (*), that G fixes a triangle OXY, 
where I= XY is such that n is (Y, 1) transitive and 0 is an affine point of 17’. 
Again, looking at the Wielandt polynomial of G (Result 1.2) acting on OY 
(cf. Result 2.2) we find that 

nfi=\/Tlfi\/lf 

and so 
f, = n’14. (4 

Thus G fixes precisely n “4 affine points of the line OY. Now let us 
consider the restriction map E = a ] n,,. If E is a Baer involution then we are 
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done; if 5 = 1 we contradict (a); so assume E is a homology of IT,. Now by 
(a) the axis of 6 must be the Y-axis and so a, y both fix precisely the same 
set of points on OY and hence G fixes \/;; points of OY, again contradicting 
(a). Thus the theorem is valid. 

Now applying the theorem to the Klein group case and proceeding by 
induction, as in Ostrom [lo], we find that if G is an elementary abelian 2- 
group which acts as a B-group on the Cartesian plane ZZ, then G is planar 
and IT, has order n”“’ [8, Theorem A]. Combining with the corollaries 
above we now establish the following. 

THEOREM 5. Let G be a B-group of the Cartesian plane 17, whose order 
is n. Assume that G is elementary abelian. Then 

(a) if G is a 2-group then it must be planar and IT, has order n”“’ 
[8, Theorem A]; and 

(b) ifl7 is a translation or G is planar then either G is cyclic (and so 
fixes a Baer subplane elementwise) or G is a 2-group and part (a) applies. 

Before leaving this section it will be convenient to record the following 
simple corollary to the theorem. 

LEMMA 6. Let H be a non-cyclic B-group that acts on the Cartesian 
plane LT. Assume further that 

(i) H contains a cyclic subgroup (A) such that [H: (,I)] = 2; and 

(ii) H is “locally cyclic” in the sense of the introduction. 

Then H is dihedral and so the conclusions of Theorem 5 hold. 

Proof: Suppose a E H\(I). We claim that any such a must be an 
involution; for otherwise ZIa = IT,, = fl., and now condition (ii) yields the 
contradiction that H = (a, 1) is a cyclic group. Hence H is generated by the 
involutions a, a1 and so must be dihedral. The lemma follows. 

4. STRICT Z-GROUPS 

The following lemma shows the importance of strict Z-groups 
(Definition 1.5) in the study of B-groups. The proof is a variation of the 
previous lemma. 

LEMMA 1. Let H be a B-group acting on an arbitrary finite projective 
plane IT. Assume also that H is a Z-group. Then either 

(a) H is planar and 17, is a Baer subplane of II; or 

(b) H is a strict Z-group. 
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ProoJ Part (a) is obvious for cyclic groups so we shall assume that the 
Z-group H is non-cyclic. Thus by the classification of non-cyclic Z-groups 
(cf. Section 1 and Definition 1.5) the following conditions apply 

(i) 1 HI = mn, where (m, n) = 1 and m, n are both > 1; 

(ii) H’=(a) and lul=m; 

(iii) 3/? E H \H’ such that I/3/ = n. 

We shall now show that (a) occurs when H is not strict, i.e., 

(iv) 3h E H such that Jhl =m,n,, where m, / m, n,I n and m,, n, are 
both >l. 

First observe that h”l E (a)\ (1 } and so IT, = lThn, = IZ,,, since we are 
only dealing with Baer collineations. Next note that II”’ has a conjugate y in 
the Hall subgroup @). Now since Fix@““) = Fix(h) = Z7,, and (a) 4 H, we 
must have ITr = II,. However, we also have I7r = 17, and so H = (a, /3) fixes 
I7, (=I7,) identically. Thus part (a) and the lemma follow. 

THEOREM 2. Suppose II is a finite Cartesian plane admitting a strict Z- 
group H such that H is a planar B-group. Then 

(a) there is a Baer chain 17 3 II,, 2 ll, ; and 

(b) [H:H’]=2andso 2jlIHl. 

Proof: Coordinatize lT, with axes in 17,, so that the corresponding PTR 
is a Cartesian group (C, +, a). Thus H may be identified with a subgroup of 
Aut(C, +), e.g., use Result 2.2. The Wielandt polynomial for H on (C, +) 
(Lemma 1.7) now becomes 

where p = [H: H’] and n, as usual, denotes the order of l7. 
Hence 

f ,  = n 
(6 I)/24 < n I/?. 

But this means IT, is a proper subplane of all the Baer collineations in H 
and so the Baer condition yields 

(n(B--1)/24)2 < nliz 

=+3=2 and f, = n’j4. 

The theorem follows. 
When l7 is a translation plane there is no need to assume that the Z-group 

H is planar, nor that it is strict. 
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THEOREM 3. Suppose L?’ is a finite aflne translation plane that admits a 
non-trivial B-group H. Assume that H is a Z-group. Then H is a planar 
group and one of the following cases must occur. 

(a) H is cyclic and IT, is a Baer subplane of LT. 

(b) 21lIHI, ,[H:H'l=2 and there is a Baer chain of planes 
l7317,,~17,. 

Moreover, H is a strict Z-group. 

Proof As mentioned in the introduction, part (a) follows from Foulser 
[3] if l7,, is a Baer subplane. Thus by Lemma 1 we may assume that the Z- 
group H is strict. Now if H is planar, Theorem 2 applies. So assume H is not 
planar. Also identify n’ with a spread (V, r) defined on the elementary 
abelian group (I’, +), whose order is n’; thus by Lemma 0.1, H lies in 
Aut(V, +) and permutes the elements of the component set r, among them- 
selves. So by Lemma 1.7 the Wielandt polynomial of H on V yields 

where H = (a)@), H’ = (a), and (1 al, IpI) = 1. 
Hence we have 

f, = n(b-Wb > 1 where b = [/?I. 

Since H is assumed non-planar, Fix(H) lies entirely in some component 
WE I-. But this means that each member of H\ {O} fixes exactly fi points 
of W while H itself fixes exactly nCb-‘)lb points of W. Now the Wielandt 
polynomial of H on W yields the contradiction 

0 (b-‘)‘b)b = fi (fi)“. 

So the theorem is valid. 
We now improve Corollaries 3.2 and 3.3. 

COROLLARY 4. Let IT be a Cartesian plane admitting a non-trivial B- 
group H, whose order is odd. Assume further that II is a translation plane or 
that H is a planar group. 

Then H is a Z-group only if it is planar and lT, is a Baer subplane; also, 
ifLl is a translation plane, then H is cyclic. 

Proof If n is a translation plane, use Theorem 3; otherwise use 
Lemma 1 and Theorem 2. 
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5. FROBENIUS B-GROUP 

HYPOTHESIS (F). r= Z(I) is a Frobenius group such that its 
complement (A) has odd order > 1 and its kernel C is a non-cyclic elementary 
abelian 2-group. 

As indicated in the introduction, the proofs of Theorems A and A’ require 
us to consider whether r can be a B-group of a Cartesian plane Zi’. Our main 
conclusion is that this is only possible if r = A, : in particular, this implies 
that many families of finite groups can never be B-groups of Cartesian 
planes. We first consider the case when, up to duality, 17 is not a translation 
plane. 

THEOREM 1. Assume r is a B-group of an afine Cartesian plane II’ of 
order n, such that II is (Y, 1) transitive relative to exactly one point Y on 1. 
Suppose also that r satisfies hypothesis (F). Then 

(i) rz A,; and 

(ii) rfixes precisely n ‘I4 points of an aflne line of 17’. 

ProoJ Z is a planar group such that II, is a plane of order nliS, where s 
denotes ICI (Theorem 3.5). So if we choose ,I, E (A) such that A, has prime 
order, then clearly I, fixes a proper triangle OXY in 17, such that XY = 1 
and 0 E I7’. Hence r also fixes OXY and so (cf. Result 2.2) OY may be 
identified with a group (C, +) such that r < Aut(C, +) and 1 Cl = n. Hence 
the Wielandt polynomial for r(Lemma 1.4) on (C, +) is 

f,f LA’ =f,f!;“. 

But we have just noted that f, = n”’ and so, writing 1 for 111, we have 

nf; = nllsnl!J? 

1/2-es-1,/s/ fr=n . 

But since r 3 I=, we also have fr < fr = n”‘. Hence (i) yields 

L>L-- S-l 
S ‘2 1s 

which may be rewritten 

++f 1-L >+. 
( 1 S 

(ii) 
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But since I > 3, we have 

313 

f+f l-j- 2; 
( ) 

and so s = 4. Hence (ii) forces I = 3 and therefore r= A,. Finally, Eq. (i) 
now shows that r fixes exactly n”’ afftne points of OY. 

A slightly different argument is needed when n is a translation plane 
because now r may not fix any slopes. Also, this time we get a stronger 
conclusion, viz., r is planar. 

THEOREM 2. Suppose IZ’ is an aflne translation plane of order n 
admitting a B-group r such that r satisfies hypothesis (F). Then 

(.i) rg A,; and 

(ii) r is a planar group such that l7, has order n’l’. 

Proof: Lemma 0.1 allows us to regard r as being in the translation 
complement of n’. Thus, in terms of spreads, we have a vector space (V, +) 
of order n* equipped with a spread ,Y; also rG Aut(V, +) and r permutes 
the members of .9 among themselves. Since r is also a B-group one of its 
Wielandt polynomials (Lemma 1.4) on V yields 

But since we are working on the whole afline plane, 1, = n and 
Theorem 3.5 shows that fz = n*“. Hence 

fr = n 1-(2/I)((s--L)Is) G) 

But since n*” =f, >f, we again get (cf. Theorem 2) the inequality 

f+f 1-L >+, ( I S 
(ii) 

As in the Theorem 2, we now easily get r= A,; now Eq. (i) yields 
f, = n’/*. Hence if r is planar it has the correct order. So consider the alter- 
native, viz. Fix(T) c M, where M E 9. Now every non-trivial member of the 
B-group r fixes precisely n”* points of M and so these points must coincide 
with Fix(T). But this means that the plane ZI, has order n”*, contradicting 
Theorem 3.5, as 1x1 > 2. The theorem follows. 

6. PROOF OF THEOREMS A AND A’ 

In addition to conventions (*) of Section 2, we shall from now on assume 
that 
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Condition (A). ZZ is a translation plane (and so the B-group G is 
“locally cyclic”); or 

Condition (B). 17 is a Cartesian plane and G is a planar locally cyclic B- 
group. 

Note that conditions (A) and (B) correspond respectively to the 
hypotheses of Theorems A and A’. Thus we need to show that each 
condition leads to the conclusions of Theorem A. Usually we are able to 
consider both cases simultaneously. 

LEMMA 1. Maximal cyclic subgroups of G are pairwise disjoint. 

ProoJ Suppose (a), Q?) are maximal cyclic subgroups of G such that 

(a> n co> = (Y> f 1. 

Now we must have n, = 17, = nD. So the B-group (cr, /I) fixes ZI, 
elementwise. But since G is locally cyclic we see that (q/3) is cylcic. This 
contradicts the maximality of (a) or (j?) and so the lemma follows. 

DEFINITION. A finite group .q is of type-(S) if both the following 
conditions are satisfied: 

(I) Tr is of even order: 

(II) if ‘?I, b are two maximal cyclic subgroups of even order then 
2I=8 or ‘UnB= {l}. 

According to Brauer, Suzuki, and Wall 11, Theorem 1.F 1 the Sylow 2- 
subgroups of such .Y must be cyclic, elementary abelian or dihedral. Thus by 
Lemma 1 the same holds true for G, when 1 GI is even. Also, if 1 G( is odd, 
Corollary 4.4 and the fact that G is locally cyclic shows that G is cyclic. 
Hence we have established the following results. 

PROPOSITION 2. (a) Zf 1 GI is odd then G is cyclic; 

(b) If 1 GI is even then the Sylow 2-subgroups of G are cyclic, 
elementary abelian or dihedral. 

We shall consider in turn each of the three possibilities for the Sylow 2- 
subgroups of G. But first we mention a simple argument that will repeatedly 
be used. 

“KLEIN LEMMA". The centralizer of any Klein group in G is a 2-group. 

Proof. Suppose A# 1 is an element of odd order in G that centralizes a 
Klein group {a, j?, ap, 1 }. Then since (A, a), (A, p) are both cyclic we must 



BAERGROUPS 315 

have 17, = n,, = IT,. We now contradict Theorem 3.4 and so the lemma is 
valid. 

LEMMA. Suppose that T, a Sylow 2-subgroup of G, is elementary abelian 
and that T # G. Then 1 TI < 4. 

Proof: To get a contradiction assume 1 TI > 4. Now according to Brauer 
et al. [ 1, Theorem I.G] the group G, being of type-(S) must satisfy the 
following condition: 

C,(B) = T V8E T\(l). (t) 

Hence C,(T) = T. Next consider N = NG(T). We break up our argument 
into the following subcases. 

(i) N= T; 

(ii) N 9 T and [A, a] = 1, w  h ere a is some involution in T and ,I is 
some element of odd order in IV; 

(iii) N 9 T but [A, cz] # 1 whenever A# 1 has odd order and a is any 
involution. 

Case (i) N= T. Now by a theorem of Burnside [4, Theorem 4.3, p. 2521 
T has a normal 2-complement in G which must be cyclic (Proposition 2(a)). 
Hence an index 2 subgroup of T centralizes a group of odd prime order, 
contrary to the “Klein lemma.” Hence this case cannot occur. 

Case (ii). Now (a, A) is cyclic and so IT, = nl. But if p is any 
involution in T it certainly leaves 17, invariant and then 1’ fixes n,, 
identically. So, since G is locally cyclic, (A, ID) is a cyclic group and hence 
PE NAG)). B u since this is true for all /I in T, we have T(l) = T@ (A). t 
But the existence of these abelian groups contradict the Klein lemma. So 
case (ii) does not occur. 

Case (iii). Now T(I) is a Frobenius group if ,I (f 1) has odd order. 
Thus by Theorem 5.1 (for condition B) and Theorem 5.2 (for condition A) 
we have ) TI < 4. The lemma follows. 

Next consider the case when the Sylow 2-subgroups of G are cyclic (cf. 
Proposition 2(b)). Now by a well-known theorem of Burnside [4, 
Theorem 6.1, p. 2571, G still has a normal 2-complement which, for the usual 
reason, is a cyclic group (A). Thus G is a Z-group and so, by Theorem 4.3, 
when I7 is a translation plane, G contains a cyclic subgroup C such that 
[G: C] < 2. Also, Lemma 4.1 and Theorem 4.2 yield the same conclusion if 
we assume condition (B) of this section. Hence, combining with the previous 
lemma, we have now established the following 
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PROPOSITION 3. If G has elementary abelian or cyclic Sylow 2-sub- 
groups, then one of the following cases must occur: 

(i) G is a 2-group; 

(ii) G contains a cyclic subgroup C such that [G: Cl < 2; 

(iii) the Sylow 2-subgroups of G are Klein groups. 

We now turn to the remaining case of Proposition 2(b), viz., when the 
Sylow 2-subgroups of G are dihedral. Let us first consider what happens 
when G is non-solvable. Now finite non-solvable groups with dihedral 2- 
Sylow subgroups and only cyclic Sylow subgroups of odd order were 
classified long ago by Suzuki [ 111; when applied to G his results yield the 
following. 

LEMMA. Suppose the 2-Sylow subgroups of G are dihedral and that G is 
non-solvable. Then G contains a subgroup H such that 

(i) [G: H] < 2; and 

(ii) H = Z @ L, where Z is a Z-group and L z LF(2,p) for some 
prime p > 5. 

Let us further consider the group L z LF(2,p). It is easily seen that L 
contains a (strict) Z-group it4 of order p(p - 1)/2 such that (M’ 1 =p and 
[M: 44’1 = (p - 1)/2. N ow Theorem 4.3(b) (for condition (A)) and 
Theorem 4.2(b) (for condition (B)) forces us to conclude (p - 1)/2 = 2. This 
means that L = LF(2,5) g A 5. But we can go even further. 

PROPOSITION 4. If the B-group G is non-solvable then either G z A, or 
GrS,. 

ProoJ: By Propositions 2 and 3 the Sylow 2-subgroups of G must be 
dihedral and so the lemma above applies. Using the terminology of the 
lemma, we saw that L z A,. Now we claim 1 ZI = 1; otherwise we can 
assume that L = A, is centralized by a prime order element r3 E G. If (81= 5, 
then G contains Z, 0 Z, , contrary to Theorem 3.5. So we may conclude that 
(e, q) is cyclic whenever cp E L has order 5. But now we have 17, =17, 
Vq E L whenever 10 I= 5. This means that A, fixes n, elementwise, 
contradicting many things, e.g., Theorem 3.5. Thus Z = 1 and, more 
generally, L = A, has trivia1 centralizer in G. Moreover, returning to the 
lemma above, we have now shown that G g A, or [G: A,] = 2. But the latter 
case is only possible if G is S, since IC,(A,)( = 1. Hence the proposition is 
proved. 

We now examine the case when G is solvable and has dihedral Sylow 
2-subgroups. 
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PROPOSITION 5. Suppose T, a Sylow 2-subgroup of G, is dihedral and 
that G is solvable. Then one of the following cases must occur: 

(i) G=T; 

(ii) GrA, or S,; 

(iii) G contains a cyclic subgroup C such that [G: C] = 2. 

We now prove the proposition by using a series of lemmas. So for 
convenience we may assume G # T; also, by Proposition 2(a), G contains a 
cyclic Hall 2’-subgroup (A), where II 1 > 1. 

LEMMA. If T is a Klein group then G z A, or G contains a cyclic 
subgroup C such that [G: C] = 2. 

Proof: Since G is solvable it contains a non-trivial normal elementary 
abelian subgroup E. We consider separately the three possibilities for E, viz., 
IEl=odd, ]E]=2, ]EI=4. 

If I E ( is odd, then E = (u), where p has prime order. Thus p is centralized 
by an involution 8 and so (,u, /3) is cyclic. Since ,U E (A) we now have 
17, = Z7, = nA ; this means, since G is “locally cyclic,” that (0, A) is a cyclic 
group of the required order. If I E I = 2 then G has a central involution and so 
again G contains an index 2 cyclic subgroup. Finally, consider the case when 
E is a 4-group, i.e., T CI G. Now the “Klein lemma” easily shows that 
G g A, since we are assuming G # T. Hence the lemma is valid. 

So to prove Proposition 5 it is now legitimate for us to assume the 
following: 

HYPOTHESIS (T). ] T] > 4 and (a) is the unique cyclic stem of T, in 
particular ] a I > 4 and [T: (a)] = 2. 

Remark. If G normalizes a non-trivial subgroup of (A) then (A) 4 G. 

Proox Otherwise 3g E G such that (A) # (Ag) and (A) n (Ag) # 1. But 
this means n, = n, g and so, since G is locally cyclic, (A, Ag) is a cyclic 
group. The remark follows. 

LEMMA. If G has a cyclic normal subgroup (f 1) then an index 2 
subgroup of G is cyclic. 

Proof: Consider first the case when G normalizes a non-trivial cyclic 
group of odd order. Now by the remark above (A) a G and so by 
hypothesis (T) above we find that G contains a Z-group (a)(A), where (a) is 
the stem of T. Now by the Z-group section (Theorems 4.2 and 4.3) we find 
that (a)(A) is cyclic or Ial = 2. However, the latter condition contradicts 
hypothesis (T). 
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It remains to consider the case when G normalizes a cyclic subgroup of 
even order. Now G centralizes an involution 8 which must lie in the stem (a) 
of T, since otherwise T would be abelian. Hence H., = H, = H7, and so (A, a) 
is cyclic of order 1 G]/2. The lemma follows. 

LEMMA. Suppose G has no index 2 cyclic subgroup and that hypothesis 
(T) holds. Then G z A, or S,. 

Proof: The solvable group G has a normal elementary abelian group 
K # 1. By the previous lemma we have a contradiction unless K is a Klein 
group; also, of course, KC T. 

Consider the representation w of G on K via conjugation and let 
C = Ker ly. By the “Klein lemma” C is a (clearly non-trivial) 2-group, 
normal in G. But since Im w c S,, it is clear that Cc T such that 
[T: Z] = 2. Now let us consider in turn the two possibilities for C, viz., 
]C]=4 and ]C] >4. 

If /Cl = 4 then the Klein lemma shows that the 2’-subgroups of G have 
order 3 and that G 2 A, 1 C. But [T: C] = 2 now further implies that ] G ( I24 
and hence G = A., , S, or G = Z, @ A,. But the final case leads to an easy 
contradiction (e.g., argue as in the proof of Proposition 2.4). It now remains 
to consider the case when ]Z] > 4. Now C contains a unique cyclic subgroup 
F of order 4 (which is inside C n (a)). But now F must be normal in G and 
the previous lemma leads to a contradiction. This completes the proof of the 
lemma. 

Looking back at the above lemmas one finds that Proposition 5 has now 
been proved. Moreover, Propositions 2 to 5 and Lemma 3.6 now show that G 
must be one of the groups listed in Theorems A and A’. So all that remains 
to be done is to verify that G is a planar group such that the plane H, has 
the correct order. This also has already been done in Sections 3 to 5 in all 
but the following cases: 

We now consider each of these cases in turn. 

LEMMA. If G z S, then G is a planar group and l7, has order n ‘14. 

Proof: NowG=(a,H)whereH~A,,]a]=4anda*EH.Butwehave 
already accepted that H is a planar and HH has order n’14. Since 
Fix(a) = Fix(a*) 3 Fix(H) the lemma follows immediately. 

The same argument prove the following. 

LEMMA. Suppose G g S, and that H g A, is a planar subgroup such that 
II” has order nL14. Then G itself is planar and lIc also has order n’14. 
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So to complete the proofs of Theorems A and A’ it is now sufficient to 
verify the following. 

LEMMA. Suppose G z A,. Then G is a planar group and II& has order 
,I/4 

Proof. On systematically computing all the Wielandt polynomials for A, 
one notices the following polynomial. 

f,*f :o =f4f :o (V 

where the subscripts refer to the orders of the subgroups of G involved. 
Let us now apply (W) to the case when Z7 is not a translation plane: this 

is legitimate since by condition (B), G is planar and Result 2.2 applies. Now 
f4, fro, fi2 are all of order n1’4 (when we think of G as acting on the “Y- 
axis”), cf. Results 3.5, 4.2, and 5.1. Hence& is also n”4. 

It remains to consider the case when 17’ is an affine translation plane. So 
by Lemma 0.1, G c Aut(V, +) such that G permutes the components of r, 
the spread on V associated with J7’. This time Eq. (W) shows that 
F = Fix(G) is a subgroup of V such that IFI = n”*, as 1 V( = n’. So either G 
is a planar group of the required type or F c M, where M is some 
component of r. But by Theorem 3.5 any 4-group K in G fixes precisely n1’4 
points of M and so we contradict 1 FI = n I’* Hence the lemma must be valid. . 
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