

Available online at www.sciencedirect.com SCIENCE \overrightarrow{a} DIRECT[.]

Journal of Algebra 283 (2005) 711–722

www.elsevier.com/locate/jalgebra

n-Star modules and *n*-tilting modules

Wei Jiaqun

Department of Mathematics, Nanjing Normal University, Nanjing 210097, PR China Received 14 January 2004 Available online 7 December 2004 Communicated by Kent R. Fuller

Abstract

We give some characterizations of (not necessarily selfsmall) *n*-star modules and prove that (not necessarily finitely generated) *n*-tilting modules are precisely (not necessarily selfsmall) *n*-star modules *n*-presenting all the injectives. 2004 Elsevier Inc. All rights reserved.

Keywords: Star modules; Tilting modules; Quasi-projective

1. Introduction

The classical tilting modules (simply, finitely 1-tilting modules) were first considered in the early eighties by Brenner–Butler [4], Bongartz [3] and Happel and Ringel [9] etc. Beginning with Miyashita [10], the defining conditions for a classical tilting module were extended to arbitrary rings by many authors, Wakamatsu [13], Colby and Fuller [5], Colpi and Trlifaj [8], and recently, Angeleri Hügel and Coelho [1], Bazzoni [2] and Wei [14]. Among them, Miyashita [10] considered tilting modules of finitely generated projective dimension $\leq n$ (simply, finitely *n*-tilting modules), Colpi and Triliaj [8] investigated (not necessarily finitely generated) tilting modules of projective dimension ≤ 1 (simply, 1-tilting modules) and then, Angeleri Hügel and Coelho [1] and Bazzoni [2] considered (not

E-mail address: weijiaqun@njnu.edu.cn.

^{0021-8693/\$ –} see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2004.09.032

necessarily finitely generated) tilting modules of projective dimension $\leq n$ (simply, *n*-tilting modules).

One important result in the theory of finitely tilting modules is the famous Brenner– Butler Theorem which shows that a finitely tilting module induces some equivalences between certain subcategories. In this sense, ∗-modules (i.e., selfsmall 1-star modules, see Section 3 for the detailed definition) investigated by Menini and Orsatti [11] and Colpi [6] etc., as well as ∗*n*-modules (i.e., selfsmall *n*-star modules) considered in [16], are also generalizations of the classical tilting modules. In fact, the classical tilting modules are just ∗-modules which generate all the injectives [7] and finitely *n*-tilting modules are just ∗*n*-modules which admit a finitely generated projective resolution and which *n*-present all the injectives [2,16].

Note that ∗-modules and ∗*n*-modules considered above are selfsmall. In particular, ∗-modules are always finitely generated [12] (while it is still an open question whether ∗*n*-modules are finitely generated). So (not necessarily finitely generated) *n*-tilting modules cannot be characterized as a subclass of these selfsmall *n*-star modules. From this point of view, it is natural to consider *n*-star modules which are not necessarily selfsmall and to study the relations between them and (not necessarily finitely generated) *n*-tilting modules.

This rises the problem of characterizing *n*-star modules in the general setting. The techniques used in the literature to study selfsmall *n*-star modules do not work here because they heavily depended on the property 'selfsmall' (see [6,16]). Hence we adopt a new method in this paper, and successfully, obtain the desired results.

We now state the main result of this paper.

Theorem. *Let T be an R-module. Then T is an n-tilting module if and only if T is an n-star module which n-presents all the injectives.*

Throughout this paper, *R* will be an associative ring with nonzero identity and *T* will be a left *R*-module. Let *R*-Mod be the class of left *R*-modules. If $f: X \to Y$ and $g: Y \to Z$ are homomorphisms, we denote by *fg* the composition of *f* and *g*.

Given an *R*-module *T*, we denote by $T^{\perp_{1\leq i\leq n}} := \{M \in R\text{-Mod} \mid \text{Ext}_R^i(T, M) = 0 \text{ for }$ all $1 \leq i \leq n$. $T^{\perp_{i\geq 1}}$ and T^{\perp_1} are defined similarly.

For every *R*-module *T* , we denote by Add*T* the class of modules isomorphic to direct summands of direct sums of copies of *T* and by Pres^{*n*} *T* := { $M \in R$ -Mod | there exists an exact sequence $T_n \to \cdots \to T_1 \to M \to 0$ with $T_i \in \text{Add } T$. Note that there is a clear inclusion between categories: Presⁿ⁺¹ $T \subseteq \text{Pres}^n$ *T*. Also note that Pres¹ *T* was usually denoted by Gen *T* in the literature. Sometimes we also denote by $\text{Pres}^0 T := R \text{-Mod}$.

2. *n***-Quasi-projective**

Definition 2.1 (see also [16]). Let *T* be an *R*-module and $n \ge 1$. *T* is said to be *n*-quasiprojective if for any exact sequence $0 \to L \to T_0 \to N \to 0$ with $T_0 \in \text{Add } T$ and $L \in$ Pres^{*n*−1} *T*, the induced sequence $0 \to \text{Hom}_R(T, L) \to \text{Hom}_R(T, T_0) \to \text{Hom}_R(T, N) \to$ 0 is also exact.

We note that the notion of 2-quasi-projective was also known as w-*Σ*-quasi-projective [6] and the notion of 1-quasi-projective was also known as *Σ*-quasi-projective.

It is easy to see that if T is *n*-quasi-projective for some n then T is also m -quasiprojective for all $m \ge n$.

The following is the key lemma to obtain our results.

Lemma 2.2. *Let K*1*, K*2*, T*1*, T*² *and N be R-modules such that the following diagram is commutative with exact rows*:

Then $K_1 \oplus T_2 \cong K_2 \oplus T_1$.

Proof. Consider the following diagram:

$$
0 \longrightarrow K_1 \xrightarrow{\theta} \begin{cases} T_1 \\ \downarrow 1_{T_1 - g g'} \\ \downarrow 1_{T_1 - g g'} \\ T_1 \xrightarrow{\pi_1} N \longrightarrow 0 \end{cases}
$$

Since $(1_{T_1} - gg')\pi_1 = \pi_1 - gg'\pi_1 = 0$ by assumption, $1_{T_1} - gg'$ factors through i_1 . Let θ : $T_1 \rightarrow K_1$ be a homomorphism such that $1_{T_1} - gg' = \theta i_1$. Then we check that $i_1 \theta i_1 =$ $i_1(1_{T_1} - gg') = i_1 - i_1gg' = i_1 - ff'i_1 = (1_{K_1} - ff')i_1$ by assumption. Since i_1 is a monomorphism, we deduce that $i_1\theta = 1_{K_1} - ff'$, or equivalently, $i_1\theta + ff' = 1_{K_1}$.

Now we consider the following diagram:

$$
0 \longrightarrow K_1 \xrightarrow{(f, -i_1)} K_2 \oplus T_1 \xrightarrow{\binom{i_2}{g}} T_2 \longrightarrow 0
$$

\n
$$
\downarrow 1_{K_1} \qquad \qquad \downarrow \qquad \downarrow
$$

It is straightforward that the above diagram is commutative with exact rows. Hence we obtain that $K_1 \oplus T_2 \cong K_2 \oplus T_1$. $□$

The preceding lemma yields the following result which turns out to be very useful.

Lemma 2.3. Let T be an R-module. Assume that $0 \rightarrow K_1 \rightarrow T_1 \rightarrow N \rightarrow 0$ and $0 \rightarrow$ $K_2 \rightarrow T_2 \rightarrow N \rightarrow 0$ *are exact in R-Mod, where* $T_1, T_2 \in \text{Add } T$ *. If both sequences stay exact under the functor* $\text{Hom}_R(T, -)$ *, then*

$$
K_1 \oplus T_2 \cong K_2 \oplus T_1.
$$

Proof. Under our assumption, one can easily check that there is a diagram as in Lemma 2.2. Hence the conclusion holds. \Box

We now turn to a characterization of *n*-quasi-projective modules.

Proposition 2.4. *The following are equivalent for an R-module T .*

- (1) *T is n-quasi-projective.*
- (2) *If* $0 \rightarrow L \rightarrow T_0 \rightarrow N \rightarrow 0$ *is an exact sequence with* $T_0 \in \text{Add } T$ *and* $N \in \text{Pres}^n T$, *then* $L \in \text{Pres}^{n-1}T$ *if and only if the induced sequence* $0 \to \text{Hom}_R(T, L) \to$ $\text{Hom}_R(T, T_0) \to \text{Hom}_R(T, N) \to 0$ is exact.

Proof. (2) \Rightarrow (1) is easy.

(1) \Rightarrow (2). Given an exact sequence 0 \rightarrow *L* \rightarrow *T*₀ \rightarrow *N* \rightarrow 0 with *T*₀ ∈ Add *T*, if *L* ∈ Pres^{*n*-1} *T* then the induced sequence $0 \rightarrow \text{Hom}_R(T, L) \rightarrow \text{Hom}_R(T, T_0) \rightarrow$ $\text{Hom}_{R}(T, N) \rightarrow 0$ is clearly exact by Definition 2.1.

On the other hand, assume that $0 \to L \to T_0 \to N \to 0$ stays exact under the functor Hom_{*R*}(*T*, −). Since *N* \in Pres^{*n*} *T*, we have an exact sequence \rightarrow *L'* \rightarrow *T*₀^{\rightarrow} *N* \rightarrow 0 with $T'_0 \in \text{Add } T$ and $L' \in \text{Pres}^{n-1}$ *T*. Note that the last sequence stays exact under the functor Hom_{*R*}(*T*, −) by Definition 2.1, so we can apply Lemma 2.3 to obtain that $L' \oplus T_0 \cong$ $L \oplus T'_0$. It follows that $L \in \text{Pres}^{n-1}$ *T*. \square

3. *n***-Star modules**

Definition 3.1. An *R*-module *T* is said to be an *n*-star module if *T* is $(n + 1)$ -quasiprojective and Pres^{*n*} $T = \text{Pres}^{n+1} T$.

Selfsmall *n*-star modules are just ^{**n*}-modules investigated in [16], in particular, selfsmall 1-star modules are just ∗-modules investigated in [6] etc.

It is an easy corollary from the definition of the *n*-star module *T* that for any $N \in$ Pres^{*n*} *T* there is an infinite exact sequence $\cdots \rightarrow f^k$ $T_k \rightarrow \cdots \rightarrow f^1$ $T_1 \rightarrow N \rightarrow 0$ with $T_k \in$ Add *T* and Ker $f_k \in \text{Pres}^n$ *T* for all *k*.

Lemma 3.2. Let T be an *n*-star module. Assume that $0 \rightarrow L \rightarrow^{i} M \rightarrow^{\pi} N \rightarrow 0$ is exact *with* $L, M \in \text{Pres}^n$ *T*, *then* $N \in \text{Pres}^n$ *T*, *too.*

Proof. By assumption, $L, M \in \text{Pres}^n$ *T*, so we have exact sequences

$$
0 \to L' \to T_L \xrightarrow{\alpha} L \to 0 \quad \text{and} \quad 0 \to M_1 \to T_M \xrightarrow{\beta} M \to 0,
$$

where L' , $M_1 \in \text{Pres}^n T$ and T_L , $T_M \in \text{Add } T$. Now we construct the following exact commutative diagram:

Note that the sequence $0 \to M_1 \to T_M \to M \to 0$ stays exact under the functor Hom_{*R*}(*T*, −) since *T* is an *n*-star module, so the sequence $0 \rightarrow M' \rightarrow T_L \oplus T_M \rightarrow M \rightarrow 0$ stays exact under the functor $\text{Hom}_R(T, -)$ by the constructions. By Proposition 2.4, we obtain that *M'* ∈ Pres^{*n*} *T*, since *M* ∈ Pres^{*n*+1} *T* and *T* is $(n + 1)$ -quasi-projective by assumption.

Now by repeating the process to the exact sequence $0 \to L' \to M' \to N' \to 0$, where *L*['], *M*['] ∈ Pres^{*n*} *T* by the arguments above, and so on, we obtain that *N* ∈ Pres^{*n*} *T*, as desired. $\hfill \Box$

Proposition 3.3. Let T be an *n*-star module. Assume that the exact sequence $0 \rightarrow L \rightarrow i$ $M \to^{\pi} N \to 0$ *stays exact under the functor* $\text{Hom}_{R}(T, -)$ *. If two of the three terms L,M,N are in* Pres*ⁿ T , so is the third one.*

Proof. In case $L, M \in \text{Pres}^n$ *T*, the assertion follows from Proposition 3.2. Now assume that $L, N \in \text{Pres}^n$ *T*. Then we have exact sequences

$$
0 \to L' \to T_L \xrightarrow{\alpha} L \to 0 \quad \text{and} \quad 0 \to N' \to T_N \xrightarrow{\gamma} N \to 0,
$$

where L' , $N' \in \text{Pres}^n$ *T* and T_L , $T_N \in \text{Add } T$. Since the sequence $0 \to L \to^i M \to^{\pi} N \to^{\pi} N$ 0 stays exact under the functor $\text{Hom}_R(T, -)$, there is a homomorphism $\theta: T_N \to M$ such that $\theta \pi = \gamma$. Hence we can construct the following exact commutative diagram:

By applying the functor $\text{Hom}_R(T, -)$ to the diagram, we obtain that the upper row stays exact under the functor $\text{Hom}_R(T, -)$, since so do the middle row and the left column. Therefore, we can repeat our process to the upper row, and so on, we obtain that $M \in$ Pres*ⁿ T* .

In the last case, assume that $M, N \in \text{Pres}^n$ *T*. Then we have an exact sequence $0 \rightarrow$ $M' \to T_M \to^\beta M \to 0$ with $M' \in \text{Pres}^n T$ and $T_M \in \text{Add } T$. Now we consider the following pullback diagram:

Since the bottom row stays exact under the functor $\text{Hom}_R(T, -)$, as well as the middle column, by assumption and the constructions, we have that the induced homomorphism $\text{Hom}_R(T, T_M) \to \text{Hom}_R(T, N)$ is an epimorphism and consequently, the middle

row stays exact under the functor $\text{Hom}_R(T, -)$. Thanks to Proposition 2.4, we obtain that *Y* ∈ Pres^{*n*} *T*, since *N* ∈ Pres^{*n*+1} *T* and *T* is $(n + 1)$ -quasi-projective by assumption. Now we can use Lemma 3.2 to conclude that $L \in \text{Pres}^n T$. \Box

Proposition 3.4. *Let* T *be an n-star module. Then the functor* $\text{Hom}_R(T, -)$ *preserves short exact sequences in* Pres*ⁿ T .*

Proof. Assume that $0 \rightarrow L \rightarrow^{i} M \rightarrow^{i} N \rightarrow 0$ is exact in Pres^{*n*} *T*. So we have exact sequences $0 \to L' \to T_L \to^\alpha L \to 0$ and $0 \to M_1 \to T_M \to^\beta M \to 0$, where $L', M_1 \in$ Pres^{*n*} *T* and T_L , $T_M \in \text{Add } T$. As in the proof of Lemma 3.2, we construct the following exact commutative diagram:

As proved in Lemma 3.2, $N' \in \text{Pres}^n T$ and hence, the right column stays exact under the functor $\text{Hom}_R(T, -)$ since *T* is $(n + 1)$ -quasi-projective. Note that the middle row clearly stays exact under the functor $\text{Hom}_R(T, -)$, so we have that the induced homomorphism $\text{Hom}_R(T, M) \to^{\text{Hom}_R(T, \pi)} \text{Hom}_R(T, N)$ is an epimorphism. It follows that the sequence $0 \to L \to M \to N \to 0$ stays exact under the functor $\text{Hom}_R(T, -)$. \Box

We give now some characterizations of *n*-star modules.

Theorem 3.5. *The following are equivalent for an R-module T* :

- (1) *T is an n-star module.*
- (2) *If* $0 \rightarrow L \rightarrow T_0 \rightarrow N \rightarrow 0$ *is an exact sequence with* $T_0 \in \text{Add } T$ *and* $N \in$ Presⁿ *T*, then $L \in \text{Pres}^n$ *T* if and only if the induced sequence $0 \to \text{Hom}_R(T, L) \to$ $\text{Hom}_R(T, T_0) \to \text{Hom}_R(T, N) \to 0$ is exact.
- (3) If $0 \to L \to M \to N \to 0$ is an exact sequence with $M, N \in \text{Pres}^n$ *T*, then $L \in$ Presⁿ *T* if and only if the induced sequence $0 \rightarrow \text{Hom}_R(T, L) \rightarrow \text{Hom}_R(T, M) \rightarrow$ $\text{Hom}_R(T, N) \to 0$ *is exact.*

Proof. (1) \Rightarrow (2). If *L* ∈ Pres^{*n*} *T* then the induced sequence 0 \rightarrow Hom_{*R*}(*T*, *L*) \rightarrow $\text{Hom}_R(T, T_0) \to \text{Hom}_R(T, N) \to 0$ is clearly exact since T is $(n + 1)$ -quasi-projective. On the other hand, since $N \in \text{Pres}^n T$ and T is an *n*-star module, $N \in \text{Pres}^{n+1} T$ too. Hence we obtain the converse implication from Proposition 2.4.

 $(2) \Rightarrow (3)$. The only-if-part follows from Proposition 3.4 and the if-part follows from Proposition 3.3.

(3) \Rightarrow (1). It is easy to see that *T* is (*n* + 1)-quasi-projective. It remains to show that Presⁿ $T \subseteq \text{Pres}^{n+1}$ *T*. Assume that $N \in \text{Pres}^{n}$ *T* and take $T_N := T^{(\text{Hom}_R(T,N))}$. Then we obtain an exact sequence $0 \to N' \to T_N \to N \to 0$ which stays exact under the functor $\text{Hom}_R(T, -)$. Hence we have that $N' \in \text{Pres}^n$ *T* by assumption. Therefore, *N* ∈ Pres^{*n*+1} *T* . $□$

The following result characterizes *n*-star modules T such that Pres^{*n*} T is closed under extensions.

Proposition 3.6. *The following are equivalent for an R-module T* :

(1) *T is an n-star module and* Pres*ⁿ T is closed under extensions.*

(2) Pres^{*n*} $T = \text{Pres}^{n+1} T \subseteq T^{\perp_1}$.

Proof. (1) \Rightarrow (2). It is sufficient to show that Pres^{*n*} *T* ⊂ *T*^{\perp}1. For any *X* ∈ Pres^{*n*} *T* and any extension of *T* by *X*: $0 \rightarrow X \rightarrow Y \rightarrow T \rightarrow 0$, we have that $Y \in \text{Pres}^n T$ since $\text{Pres}^n T$ is closed under extensions. By Proposition 3.4, the sequence stays exact under the functor Hom_{*R*}(*T*, −). Hence we obtain that the extension splits.

(2) \Rightarrow (1). Any exact sequence 0 \rightarrow *L* \rightarrow *T_N* \rightarrow *N* \rightarrow 0 with *L* ∈ Pres^{*n*} *T* and *T_N* ∈ Add *T* stays exact under the functor $\text{Hom}_R(T, -)$ since $\text{Ext}_R^1(T, L) = 0$ by assumption. It follows that *T* is $(n + 1)$ -quasi-projective. Since Pres^{*n*} *T* = Pres^{*n*+1} *T*, we obtain that *T* is an *n*-star module. Now for any extension $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of *N* by *L*, where $L, N \in \text{Pres}^n T$, we have that it stays exact under the functor $\text{Hom}_R(T, -)$ since $\text{Ext}^1_R(T, L) = 0$. Applying Proposition 3.3, we get that $M \in \text{Pres}^n T$. Hence Presⁿ *T* is closed under extensions. \square

Recall that a class of R -modules C is said to be closed under n -images if for any exact sequence $C_n \to \cdots \to C_1 \to M \to 0$ in *R*-Mod with all C_i in C , there holds that $M \in \mathcal{C}$ [15]. The class Pres¹ *T* (i.e., Gen *T*) is clearly closed under 1-images (i.e., images). We do not know that whether or not Pres*ⁿ T* is closed under *n*-images in general. But if *T* is an *n*-star module such that Pres*ⁿ T* is closed under extensions, we have the following result.

Proposition 3.7. *Let T be an n-star module such that* Pres*ⁿ T is closed under extensions. Then* $\text{Pres}^k(\text{Pres}^n T) = \text{Pres}^k T$ *for all* $k \geq 1$ *, where* $\text{Pres}^k(\text{Pres}^n T)$ *denotes the class of R*-modules *M* such that there is an exact sequence $C_k \rightarrow \cdots \rightarrow C_1 \rightarrow M \rightarrow 0$ with all C_i *in* Pres*ⁿ T . In particular,* Pres*ⁿ T is closed under n-images.*

Proof. It is easy to see that Pres^k $T \subset \text{Pres}^k(\text{Pres}^n(T))$. We will show that $\text{Pres}^k(\text{Pres}^n(T)) \subset$ Pres^{k} *T*. We proceed it by induction on k .

In case $k = 1$, the conclusion is clear. So we assume now that $\text{Pres}^j(\text{Pres}^n T) = \text{Pres}^j T$ for all $1 \leq j \leq k$.

Let *M* be an *R*-module such that $C_{k+1} \to \cdots \to C_1 \to f^{\dagger}$ $M \to 0$ is exact with all C_i in Pres^{*n*} *T*. Denote by *M*₁ the kernel of *f*₁. Then *M*₁ ∈ Pres^{*k*} *T* by the induction assumption. Note that $C_1 \in \text{Pres}^n$ *T* and *T* is an *n*-star module, so there is an exact sequence $0 \to C' \to C'$ $T_1 \rightarrow C_1 \rightarrow 0$ with $T_1 \in \text{Add } T$ and $C' \in \text{Pres}^n$ *T*. Consider now the following pullback diagram:

Let $0 \to M'_1 \to T'_1 \to M_1 \to 0$ be exact with $M'_1 \in \text{Pres}^{k-1}T$ and $T'_1 \in \text{Add } T$. Then we also have the following pullback diagram:

By assumption, Pres^{*n*} *T* is closed under extensions, so we have that $X \in \text{Pres}^n T$ from the middle row. It follows that $Y \in \text{Pres}^k(\text{Pres}^n(T))$ and consequently, $Y \in \text{Pres}^k(T)$, by the

induction assumption. From the exact sequence $0 \to Y \to T_1 \to M \to 0$ we deduce that *M* ∈ Pres^{$k+1$} *T* . \Box

4. *n***-Tilting modules**

We recall the following definition of (not necessarily finitely generated) *n*-tilting modules [1,2].

Definition 4.1. An *R*-module *T* is said to be *n*-tilting if it satisfies the following conditions:

- (1) p.d. $T \le n$, here p.d. *T* denotes the projective dimension of *T*.
- (2) $\operatorname{Ext}^{i}_{R}(T, T^{(\lambda)}) = 0$ for all $i \geq 1$ and all cardinals λ .
- (3) There is an exact sequence $0 \to R \to T_0 \to \cdots \to T_n \to 0$, where T_i 's are isomorphic to direct summands of direct sums of copies of *T* .

Not necessarily finitely generated tilting modules of projective dimension ≤ 1 were already investigated by Colpi and Trlifaj in [8], and it was shown that they are characterized by the condition Pres¹ $T = T^{\perp_1}$. Not necessarily finitely generated tilting modules of projective dimension $\leq n$ were then studied by Angeleri Hügel and Coelho [1] and Bazzoni [2]. Generalizing the result in [8] and the result of [16], Bazzoni [2] showed that *T* is an *n*-tilting module if and only if Pres^{*n*} *T* = $T^{\perp_{i\geqslant 1}}$. In case *n* = 1, the condition is that Pres¹ $T = T^{\perp_{i\geqslant 1}}$, which is a little different from, but is equivalent to the condition that Pres¹ $T = T^{\perp_1}$. We will show that an *R*-module *T* is *n*-tilting if and only if Pres^{*n*} $T = T^{\perp_{1\leq i \leq n}}$, which completely coincides with the result in [8] in case $n = 1$.

Moreover, as promised before, we will extend characterizations of finitely *n*-tilting modules in term of ∗*n*-modules (see [7] and [16]) to the general case.

Lemma 4.2. *Let T be an n-star module such that* Pres*ⁿ T is closed under extensions. Assume that* $0 \to L \to M \to N \to 0$ *is exact with* $M, N \in \text{Pres}^n$ *T*. *Then* $L \in \text{Pres}^n$ *T if and only if* $L \in T^{\perp_1}$ *.*

Proof. The only-if-part follows from Proposition 3.6 and the if-part follows from Proposition 3.3. \Box

The following is our main result.

Theorem 4.3. *Denote by* I *the class of all injective R-modules. The following are equivalent for an R-module T .*

- (1) *T is an n-tilting module.*
- (2) Pres^{*n*} $T = T^{\perp_{1 \leq i \leq n}}$.
- (3) *T* is an *n*-star module and $\mathcal{I} \subseteq \text{Pres}^n T$.
- (4) $\mathcal{I} \subseteq \text{Pres}^n$ $T = \text{Pres}^{n+1}$ $T \subseteq T^{\perp_1}$.

Proof. (1) \Rightarrow (2). By [2], *T* is an *n*-tilting module if and only if Pres^{*n*} *T* = *T* ^{⊥_{*i*} $>$ *i*}. Since p.d. $T \le n$, we obtain that $\text{Pres}^n T = T^{\perp_{1 \le i \le n}}$.

(2) \Rightarrow (3). Clearly, *I* ⊆ Pres^{*n*} *T* by assumption. It remains to show that *T* is an *n*-star module. Let $0 \to L \to T_N \to N \to 0$ be exact with $T_N \in \text{Add } T$ and $N \in \text{Pres}^n T$. By applying the functor $\text{Hom}_R(T, -)$, we obtain that $L \in T^{\perp_{2 \le i \le n}}$ and the induced sequence $0 \to \text{Hom}_R(T, L) \to \text{Hom}_R(T, T_N) \to \text{Hom}_R(T, N) \to \text{Ext}^1_R(T, L) \to 0$ is exact, since Presⁿ $T = T^{\perp_{1 \le i \le n}}$ by assumption. Then the sequence $0 \to L \to T_N \to N \to 0$ stays exact under the functor $\text{Hom}_R(T, -)$ if and only if $L \in T^{\perp_1}$ if and only if $L \in T^{\perp_1 \leq i \leq n}$ Pres^{*n*} *T*. Now the conclusion follows from Theorem 3.5.

(3) \Rightarrow (4). By the definition of *n*-star modules, we need only to show that Pres^{*n*} *T* ⊆ *T*^{\perp}¹. For any *N* ∈ Pres^{*n*} *T*, let then 0 → *N* → *I_N* → *N'* → 0 be exact with *I_N* ∈ *T*. By assumption, $\mathcal{I} \subseteq \text{Pres}^n$ *T*, hence $N' \in \text{Pres}^n$ *T* by Lemma 3.2. It follows that the induced sequence $0 \to \text{Hom}_R(T, N) \to \text{Hom}_R(T, I_N) \to \text{Hom}_R(T, N') \to 0$ is exact by Proposition 3.4. Therefore $N \in T^{\perp_1}$, since I_N is an injective *R*-module.

(4) \Rightarrow (1). We need only to show that Pres^{*n*} $\overline{T} = T^{\perp_{i\geqslant 1}}$ by [2]. Note first that, by assumption and Proposition 3.6, *T* is an *n*-star module and Pres*ⁿ T* is closed under extensions.

Now for any $M \in \text{Pres}^n T$, letting $0 \to M \to I_1 \to g_1 \cdots \to I_k \to g_k \cdots$ be an injective resolution of *M*, we obtain that $M_i := \text{Im } g_i \in \text{Pres}^n T$ by Lemma 3.2, since $I_i \in \mathcal{I} \subset$ Pres^{*n*} *T*, for all *i* \geq 1. It follows that $M_i \in T^{\perp_1}$, for each *i*, by assumption. Therefore, we deduce that $\text{Ext}^j_R(T, M) \cong \text{Ext}^1_R(T, M_{j-1}) = 0$, for all $j \geq 1$, by the dimension shifting (setting $M_0 := \hat{M}$). Hence, Pres^{*n*} $T \subseteq T^{\perp_{i \geqslant 1}}$.

On the other hand, for any $M \in T^{\perp_{i\geqslant 1}}$, by taking again an injective resolution $0 \rightarrow$ $M \to I_1 \to^{g_1} \cdots \to I_k \to^{g_k} \cdots$ of *M*, we obtain that $M_i \in T^{\perp_{i\geqslant 1}}$ for all $i \geqslant 1$ by the dimension shifting. By Proposition 3.7, Pres^{*n*} T is closed under *n*-images. It follows that $M_n \in \text{Pres}^n$ *T*. Since $M_{n-1} \in T^{\perp_{i\geqslant 1}}$ and $I_n \in \mathcal{I} \subseteq \text{Pres}^n$ *T* too, we have that M_{n-1} ∈ Presⁿ *T* by Lemma 4.2. By repeating the process, and so on, we finally obtain that $M \in \text{Pres}^n$ *T*, as desired. \square

Acknowledgment

It is a pleasure to thank the referee for helpful suggestions and corrections.

References

- [1] L. Angeleri Hügel, F.U. Coelho, Infinitely generated tilting modules of finite projective dimension, Forum Math. 13 (2001) 239–250.
- [2] S. Bazzoni, A characterization of *n*-cotilting and *n*-tilting modules, J. Algebra 273 (1) (2004) 359–372.
- [3] K. Bongartz, Tilted algebras, in: Representations of Algebras, in: Lecture Notes in Math., vol. 903, Springer-Verlag, Berlin, 1981, pp. 26–38.
- [4] S. Brenner, M.C.R. Butler, Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors, in: Lecture Notes in Math., vol. 832, Springer, 1980, pp. 103–170.
- [5] R. Colby, K.R. Fuller, Tilting, cotilting and serially tilted rings, Comm. Algebra 25 (10) (1997) 3225–3237.
- [6] R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra 18 (1990) 1935– 1951.
- [7] R. Colpi, Tilting modules and ∗-modules, Comm. Algebra 21 (1993) 1095-1102.
- [8] R. Colpi, J. Trlifaj, Tilting modules and tilting torsion theories, J. Algebra 178 (1995) 614–634.
- [9] D. Happel, C.M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 174 (1982) 399–443.
- [10] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986) 113–146.
- [11] C. Menini, A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989) 203–231.
- [12] J. Trlifaj, *-modules are finitely generated, J. Algebra 169 (1994) 392-398.
- [13] T. Wakamatsu, Stable equivalence of self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990) 298–325.
- [14] J. Wei, Equivalences and the tilting theory, J. Algebra, in press.
- [15] J. Wei, (n, t) -quasi-projective and equivalences, Comm. Algebra, in press.
- [16] J. Wei, Z. Huang, W. Tong, J. Huang, Tilting modules of finite projective dimension and a generalization of ∗-modules, J. Algebra 268 (2003) 404–418.