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Abstract

We give some characterizations of (not necessarily selfsmall)n-star modules and prove that (n
necessarily finitely generated)n-tilting modules are precisely (not necessarily selfsmall)n-star mod-
ulesn-presenting all the injectives.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The classical tilting modules (simply, finitely 1-tilting modules) were first considered
in the early eighties by Brenner–Butler [4], Bongartz [3] and Happel and Ringel [9
Beginning with Miyashita [10], the defining conditions for a classical tilting module were
extended to arbitrary rings by many authors, Wakamatsu [13], Colby and Fuller [5],
and Trlifaj [8], and recently, Angeleri Hügel and Coelho [1], Bazzoni [2] and Wei [
Among them, Miyashita [10] considered tilting modules of finitely generated project
dimension� n (simply, finitely n-tilting modules), Colpi and Trlifaj [8] investigated (no
necessarily finitely generated) tilting modules of projective dimension� 1 (simply, 1-til-
ting modules) and then, Angeleri Hügel and Coelho [1] and Bazzoni [2] considered (n
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necessarily finitely generated) tilting modules of projective dimension� n (simply,n-til-
ting modules).

One important result in the theory of finitely tilting modules is the famous Brenne
Butler Theorem which shows that a finitely tilting module induces some equivalence
between certain subcategories. In this sense,∗-modules (i.e., selfsmall 1-star module
see Section 3 for the detailed definition) investigated by Menini and Orsatti [11] and
[6] etc., as well as∗n-modules (i.e., selfsmalln-star modules) considered in [16], are a
generalizations of the classical tilting modules. In fact, the classical tilting modules
just ∗-modules which generate all the injectives [7] and finitelyn-tilting modulesare just
∗n-modules which admit a finitely generated projective resolution and whichn-present all
the injectives [2,16].

Note that∗-modules and∗n-modules considered above are selfsmall. In particu
∗-modules are always finitely generated [12](while it is still an open question whethe
∗n-modules are finitely generated). So (not necessarily finitely generated)n-tilting mod-
ules cannot be characterized as a subclass of these selfsmalln-star modules. From thi
point of view, it is natural to considern-star modules which are not necessarily selfsm
and to study the relations between them and (not necessarily finitely generated)n-tilting
modules.

This rises the problem of characterizingn-star modules in the general setting. The te
niques used in the literature to study selfsmalln-star modules do not work here becau
they heavily depended on the property ‘selfsmall’ (see [6,16]). Hence we adopt a ne
method in this paper, and successfully, obtain the desired results.

We now state the main result of this paper.

Theorem. Let T be an R-module. Then T is an n-tilting module if and only if T is an
n-star module which n-presents all the injectives.

Throughout this paper,R will be an associative ring with nonzero identity andT will be
a left R-module. LetR-Mod be the class of leftR-modules. Iff :X → Y andg :Y → Z

are homomorphisms, we denote byfg the composition off andg.
Given anR-moduleT , we denote byT ⊥1�i�n := {M ∈ R-Mod | ExtiR(T ,M) = 0 for

all 1� i � n}. T ⊥i�1 andT ⊥1 are defined similarly.
For everyR-moduleT , we denote by AddT the class of modules isomorphic to dire

summands of direct sums of copies ofT and by Presn T := {M ∈ R-Mod | there exists
an exact sequenceTn → ·· · → T1 → M → 0 with Ti ∈ AddT }. Note that there is a clea
inclusion between categories: Presn+1 T ⊆ Presn T . Also note that Pres1 T was usually
denoted by GenT in the literature. Sometimes we also denote by Pres0 T := R-Mod.

2. n-Quasi-projective

Definition 2.1 (see also [16]). LetT be anR-module andn � 1. T is said to ben-quasi-
projective if for any exact sequence 0→ L → T0 → N → 0 with T0 ∈ AddT andL ∈
Presn−1 T , the induced sequence 0→ HomR(T ,L) → HomR(T ,T0) → HomR(T ,N) →
0 is also exact.
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We note that the notion of 2-quasi-projective was also known as w-Σ-quasi-projective
[6] and the notion of 1-quasi-projective was also known asΣ-quasi-projective.

It is easy to see that ifT is n-quasi-projective for somen then T is alsom-quasi-
projective for allm � n.

The following is the key lemma to obtain our results.

Lemma 2.2. Let K1, K2, T1, T2 and N be R-modules such that the following diagram is
commutative with exact rows:

0 K1
i1

f

T1
π1

g

N

1N

0

0 K2
i2

f ′

T2
π2

g′

N

1N

0

0 K1
i1

T1
π1

N 0

Then K1 ⊕ T2 ∼= K2 ⊕ T1.

Proof. Consider the following diagram:

T1

θ
1T1−gg′

0 K1
i1

T1
π1

N 0

Since(1T1 − gg′)π1 = π1 − gg′π1 = 0 by assumption, 1T1 − gg′ factors throughi1. Let
θ :T1 → K1 be a homomorphism such that 1T1 − gg′ = θi1. Then we check thati1θi1 =
i1(1T1 − gg′) = i1 − i1gg′ = i1 − ff ′i1 = (1K1 − ff ′)i1 by assumption. Sincei1 is a
monomorphism, we deduce thati1θ = 1K1 − ff ′, or equivalently,i1θ + ff ′ = 1K1.

Now we consider the following diagram:

0 K1
(f,−i1)

1K1

K2 ⊕ T1

(i2
g )

( f ′ i2−θ g

)

T2

1T2

0

0 K1
(1,0)

K1 ⊕ T2
(0

1)
T2 0

It is straightforward that the above diagram is commutative with exact rows. Hence w
obtain thatK1 ⊕ T2 ∼= K2 ⊕ T1. �

The preceding lemma yields the followingresult which turns out to be very useful.
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Lemma 2.3. Let T be an R-module. Assume that 0 → K1 → T1 → N → 0 and 0 →
K2 → T2 → N → 0 are exact in R-Mod, where T1, T2 ∈ AddT . If both sequences stay
exact under the functor HomR(T ,−), then

K1 ⊕ T2 ∼= K2 ⊕ T1.

Proof. Under our assumption, one can easily check that there is a diagram
Lemma 2.2. Hence the conclusion holds.�

We now turn to a characterization ofn-quasi-projective modules.

Proposition 2.4. The following are equivalent for an R-module T .

(1) T is n-quasi-projective.
(2) If 0 → L → T0 → N → 0 is an exact sequence with T0 ∈ AddT and N ∈ Presn T ,

then L ∈ Presn−1 T if and only if the induced sequence 0 → HomR(T ,L) →
HomR(T ,T0) → HomR(T ,N) → 0 is exact.

Proof. (2)⇒ (1) is easy.
(1)⇒ (2). Given an exact sequence 0→ L → T0 → N → 0 with T0 ∈ AddT ,

if L ∈ Presn−1 T then the induced sequence 0→ HomR(T ,L) → HomR(T ,T0) →
HomR(T ,N) → 0 is clearly exact by Definition 2.1.

On the other hand, assume that 0→ L → T0 → N → 0 stays exact under the funct
HomR(T ,−). SinceN ∈ Presn T , we have an exact sequence→ L′ → T ′

0 → N → 0 with
T ′

0 ∈ AddT andL′ ∈ Presn−1 T . Note that the last sequence stays exact under the fu
HomR(T ,−) by Definition 2.1, so we can apply Lemma 2.3 to obtain thatL′ ⊕ T0 ∼=
L ⊕ T ′

0. It follows thatL ∈ Presn−1 T . �

3. n-Star modules

Definition 3.1. An R-moduleT is said to be ann-star module ifT is (n + 1)-quasi-
projective and Presn T = Presn+1 T .

Selfsmalln-star modules are just∗n-modules investigated in [16], in particular, se
small 1-star modules are just∗-modules investigated in [6] etc.

It is an easy corollary from the definition of then-star moduleT that for anyN ∈
Presn T there is an infinite exact sequence· · · →fk Tk → ·· · →f1 T1 → N → 0 with Tk ∈
AddT and Kerfk ∈ Presn T for all k.

Lemma 3.2. Let T be an n-star module. Assume that 0 → L →i M →π N → 0 is exact
with L,M ∈ Presn T , then N ∈ Presn T , too.
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Proof. By assumption,L,M ∈ Presn T , so we have exact sequences

0 → L′ → TL
α→ L → 0 and 0→ M1 → TM

β→ M → 0,

whereL′,M1 ∈ Presn T andTL,TM ∈ AddT . Now we construct the following exact com
mutative diagram:

0 0 0

0 L′ M ′ N ′ 0

0 TL

α

(1,0)
TL ⊕ TM

(0
1)

(αi
β )

TM

βπ

0

0 L
i

M
π

N 0

0 0 0

Note that the sequence 0→ M1 → TM → M → 0 stays exact under the funct
HomR(T ,−) sinceT is ann-star module, so the sequence 0→ M ′ → TL ⊕TM → M → 0
stays exact under the functor HomR(T ,−) by the constructions. By Proposition 2.4, w
obtain thatM ′ ∈ Presn T , sinceM ∈ Presn+1 T andT is (n + 1)-quasi-projective by as
sumption.

Now by repeating the process to the exact sequence 0→ L′ → M ′ → N ′ → 0, where
L′,M ′ ∈ Presn T by the arguments above, and so on, we obtain thatN ∈ Presn T , as de-
sired. �
Proposition 3.3. Let T be an n-star module. Assume that the exact sequence 0 → L →i

M →π N → 0 stays exact under the functor HomR(T ,−). If two of the three terms
L,M,N are in Presn T , so is the third one.

Proof. In caseL,M ∈ Presn T , the assertion follows from Proposition 3.2.
Now assume thatL,N ∈ Presn T . Then we have exact sequences

0→ L′ → TL
α→ L → 0 and 0→ N ′ → TN

γ→ N → 0,
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whereL′,N ′ ∈ Presn T andTL,TN ∈ AddT . Since the sequence 0→ L →i M →π N →
0 stays exact under the functor HomR(T ,−), there is a homomorphismθ :TN → M such
thatθπ = γ . Hence we can construct the following exact commutative diagram:

0 0 0

0 L′ M ′ N ′ 0

0 TL

(1,0)

α

TL ⊕ TN

(0
1)

(αi
θ )

TN

γ

0

0 L
i

M
π

N 0

0 0 0

By applying the functor HomR(T ,−) to the diagram, we obtain that the upper row st
exact under the functor HomR(T ,−), since so do the middle row and the left colum
Therefore, we can repeat our process to the upper row, and so on, we obtain thaM ∈
Presn T .

In the last case, assume thatM,N ∈ Presn T . Then we have an exact sequence 0→
M ′ → TM →β M → 0 with M ′ ∈ Presn T andTM ∈ AddT . Now we consider the follow
ing pullback diagram:

0 0

M ′ M ′

0 Y TM N 0

0 L M N 0

0 0

Since the bottom row stays exact under the functor HomR(T ,−), as well as the mid
dle column, by assumption and the constructions, we have that the induced hom
phism HomR(T ,TM) → HomR(T ,N) is an epimorphism and consequently, the mid
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row stays exact under the functor HomR(T ,−). Thanks to Proposition 2.4, we obtain th
Y ∈ Presn T , sinceN ∈ Presn+1 T andT is (n + 1)-quasi-projective by assumption. No
we can use Lemma 3.2 to conclude thatL ∈ Presn T . �
Proposition 3.4. Let T be an n-star module. Then the functor HomR(T ,−) preserves short
exact sequences in Presn T .

Proof. Assume that 0→ L →i M →π N → 0 is exact in Presn T . So we have exac
sequences 0→ L′ → TL →α L → 0 and 0→ M1 → TM →β M → 0, whereL′,M1 ∈
Presn T andTL,TM ∈ AddT . As in the proof of Lemma 3.2, we construct the followi
exact commutative diagram:

0 0 0

0 L′ M ′ N ′ 0

0 TL

(1,0)

α

TL ⊕ TM

(0
1)

(αi
β )

TM

βπ

0

0 L
i

M
π

N 0

0 0 0

As proved in Lemma 3.2,N ′ ∈ Presn T and hence, the right column stays exact un
the functor HomR(T ,−) sinceT is (n + 1)-quasi-projective. Note that the middle ro
clearly stays exact under the functor HomR(T ,−), so we have that the induced hom
morphism HomR(T ,M) →HomR(T ,π) HomR(T ,N) is an epimorphism. It follows that th
sequence 0→ L → M → N → 0 stays exact under the functor HomR(T ,−). �

We give now some characterizations ofn-star modules.

Theorem 3.5. The following are equivalent for an R-module T :

(1) T is an n-star module.
(2) If 0 → L → T0 → N → 0 is an exact sequence with T0 ∈ AddT and N ∈

Presn T , then L ∈ Presn T if and only if the induced sequence 0 → HomR(T ,L) →
HomR(T ,T0) → HomR(T ,N) → 0 is exact.

(3) If 0 → L → M → N → 0 is an exact sequence with M,N ∈ Presn T , then L ∈
Presn T if and only if the induced sequence 0 → HomR(T ,L) → HomR(T ,M) →
HomR(T ,N) → 0 is exact.
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Proof. (1)⇒ (2). If L ∈ Presn T then the induced sequence 0→ HomR(T ,L) →
HomR(T ,T0) → HomR(T ,N) → 0 is clearly exact sinceT is (n + 1)-quasi-projective
On the other hand, sinceN ∈ Presn T and T is an n-star module,N ∈ Presn+1 T too.
Hence we obtain the converse implication from Proposition 2.4.

(2)⇒ (3). The only-if-part follows from Proposition 3.4 and the if-part follows from
Proposition 3.3.

(3)⇒ (1). It is easy to see thatT is (n + 1)-quasi-projective. It remains to sho
that Presn T ⊆ Presn+1 T . Assume thatN ∈ Presn T and takeTN := T (HomR(T ,N)).
Then we obtain an exact sequence 0→ N ′ → TN → N → 0 which stays exact unde
the functor HomR(T ,−). Hence we have thatN ′ ∈ Presn T by assumption. Therefore
N ∈ Presn+1 T . �

The following result characterizesn-star modulesT such that Presn T is closed unde
extensions.

Proposition 3.6. The following are equivalent for an R-module T :

(1) T is an n-star module and Presn T is closed under extensions.
(2) Presn T = Presn+1 T ⊆ T ⊥1 .

Proof. (1)⇒ (2). It is sufficient to show that Presn T ⊆ T ⊥1. For anyX ∈ Presn T and any
extension ofT by X: 0 → X → Y → T → 0, we have thatY ∈ Presn T since Presn T is
closed under extensions. By Proposition 3.4, the sequence stays exact under the fun
HomR(T ,−). Hence we obtain that the extension splits.

(2)⇒ (1). Any exact sequence 0→ L → TN → N → 0 with L ∈ Presn T andTN ∈
AddT stays exact under the functor HomR(T ,−) since Ext1R(T ,L) = 0 by assumption
It follows that T is (n + 1)-quasi-projective. Since Presn T = Presn+1 T , we obtain that
T is an n-star module. Now for any extension 0→ L → M → N → 0 of N by L,
whereL,N ∈ Presn T , we have that it stays exact under the functor HomR(T ,−) since
Ext1R(T ,L) = 0. Applying Proposition 3.3, we get thatM ∈ Presn T . Hence Presn T is
closed under extensions.�

Recall that a class ofR-modulesC is said to be closed undern-images if for any exac
sequenceCn → ·· · → C1 → M → 0 in R-Mod with all Ci in C, there holds thatM ∈ C
[15]. The class Pres1 T (i.e., GenT ) is clearly closed under 1-images (i.e., images). We
not know that whether or not Presn T is closed undern-images in general. But ifT is an
n-star module such that Presn T is closed under extensions, we have the following resu

Proposition 3.7. Let T be an n-star module such that Presn T is closed under extensions.
Then Presk(Presn T ) = Presk T for all k � 1, where Presk(Presn T ) denotes the class of
R-modules M such that there is an exact sequence Ck → ·· · → C1 → M → 0 with all Ci

in Presn T . In particular, Presn T is closed under n-images.

Proof. It is easy to see that Presk T ⊆ Presk(Presn T ). We will show that Presk(Presn T ) ⊆
Presk T . We proceed it by induction onk.
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In casek = 1, the conclusion is clear. So we assume now that Presj (Presn T ) = Presj T

for all 1 � j � k.
Let M be anR-module such thatCk+1 → ·· · → C1 →f1 M → 0 is exact with allCi in

Presn T . Denote byM1 the kernel off1. ThenM1 ∈ Presk T by the induction assumption
Note thatC1 ∈ Presn T andT is ann-star module, so there is an exact sequence 0→ C′ →
T1 → C1 → 0 with T1 ∈ AddT andC′ ∈ Presn T . Consider now the following pullbac
diagram:

0 0

C′ C′

0 Y T1 M 0

0 M1 C1 M 0

0 0

Let 0→ M ′
1 → T ′

1 → M1 → 0 be exact withM ′
1 ∈ Presk−1 T andT ′

1 ∈ AddT . Then
we also have the following pullback diagram:

0 0

M ′
1 M ′

1

0 C′ X T ′
1 0

0 C′ Y M1 0

0 0

By assumption, Presn T is closed under extensions, so we have thatX ∈ Presn T from
the middle row. It follows thatY ∈ Presk(Presn T ) and consequently,Y ∈ Presk T , by the
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induction assumption. From the exact sequence 0→ Y → T1 → M → 0 we deduce tha
M ∈ Presk+1 T . �

4. n-Tilting modules

We recall the following definition of (not necessarily finitely generated)n-tilting mod-
ules [1,2].

Definition 4.1. An R-moduleT is said to ben-tilting if it satisfies the following conditions

(1) p.d.T � n, here p.d.T denotes the projective dimension ofT .
(2) ExtiR(T ,T (λ)) = 0 for all i � 1 and all cardinalsλ.
(3) There is an exact sequence 0→ R → T0 → ·· · → Tn → 0, whereTi ’s are isomorphic

to direct summands of direct sums of copies ofT .

Not necessarily finitely generatedtilting modules ofprojective dimension� 1 were
already investigated by Colpi and Trlifaj in [8], and it was shown that they are charact
ized by the condition Pres1 T = T ⊥1. Not necessarily finitely generated tilting modu
of projective dimension� n were then studied by Angeleri Hügel and Coelho [1] a
Bazzoni [2]. Generalizing the result in [8] and the result of [16], Bazzoni [2] showed
T is an n-tilting module if and only if Presn T = T ⊥i�1. In casen = 1, the condition
is that Pres1 T = T ⊥i�1, which is a little different from,but is equivalent to the cond
tion that Pres1 T = T ⊥1. We will show that anR-moduleT is n-tilting if and only if
Presn T = T ⊥1�i�n , which completely coincides with the result in [8] in casen = 1.

Moreover, as promised before, we willextend characterizations of finitelyn-tilting mod-
ules in term of∗n-modules (see [7] and [16]) to the general case.

Lemma 4.2. Let T be an n-star module such that Presn T is closed under extensions.
Assume that 0 → L → M → N → 0 is exact with M,N ∈ Presn T . Then L ∈ Presn T if
and only if L ∈ T ⊥1 .

Proof. The only-if-part follows from Proposition 3.6 and the if-part follows from Propo
sition 3.3. �

The following is our main result.

Theorem 4.3. Denote by I the class of all injective R-modules. The following are equiva-
lent for an R-module T .

(1) T is an n-tilting module.
(2) Presn T = T ⊥1�i�n .
(3) T is an n-star module and I ⊆ Presn T .
(4) I ⊆ Presn T = Presn+1 T ⊆ T ⊥1 .
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Proof. (1)⇒ (2). By [2], T is ann-tilting module if and only if Presn T = T ⊥i�1. Since
p.d.T � n, we obtain that Presn T = T ⊥1�i�n .

(2)⇒ (3). Clearly,I ⊆ Presn T by assumption. It remains to show thatT is ann-star
module. Let 0→ L → TN → N → 0 be exact withTN ∈ AddT andN ∈ Presn T . By
applying the functor HomR(T ,−), we obtain thatL ∈ T ⊥2�i�n and the induced sequen
0 → HomR(T ,L) → HomR(T ,TN) → HomR(T ,N) → Ext1R(T ,L) → 0 is exact, since
Presn T = T ⊥1�i�n by assumption. Then the sequence 0→ L → TN → N → 0 stays ex-
act under the functor HomR(T ,−) if and only if L ∈ T ⊥1 if and only if L ∈ T ⊥1�i�n =
Presn T . Now the conclusion follows from Theorem 3.5.

(3)⇒ (4). By the definition ofn-star modules, we need only to show that Presn T ⊆
T ⊥1. For anyN ∈ Presn T , let then 0→ N → IN → N ′ → 0 be exact withIN ∈ I. By
assumption,I ⊆ Presn T , henceN ′ ∈ Presn T by Lemma 3.2. It follows that the induce
sequence 0→ HomR(T ,N) → HomR(T , IN) → HomR(T ,N ′) → 0 is exact by Proposi
tion 3.4. ThereforeN ∈ T ⊥1, sinceIN is an injectiveR-module.

(4)⇒ (1). We need only to show that Presn T = T ⊥i�1 by [2]. Note first that, by assump
tion and Proposition 3.6,T is ann-star module and Presn T is closed under extensions.

Now for anyM ∈ Presn T , letting 0→ M → I1 →g1 · · · → Ik →gk · · · be an injective
resolution ofM, we obtain thatMi := Imgi ∈ Presn T by Lemma 3.2, sinceIi ∈ I ⊆
Presn T , for all i � 1. It follows thatMi ∈ T ⊥1, for eachi, by assumption. Therefore, w
deduce that Extj

R(T ,M) ∼= Ext1R(T ,Mj−1) = 0, for all j � 1, by the dimension shifting
(settingM0 := M). Hence, Presn T ⊆ T ⊥i�1.

On the other hand, for anyM ∈ T ⊥i�1, by taking again an injective resolution 0→
M → I1 →g1 · · · → Ik →gk · · · of M, we obtain thatMi ∈ T ⊥i�1 for all i � 1 by
the dimension shifting. By Proposition 3.7, Presn T is closed undern-images. It fol-
lows thatMn ∈ Presn T . SinceMn−1 ∈ T ⊥i�1 and In ∈ I ⊆ Presn T too, we have tha
Mn−1 ∈ Presn T by Lemma 4.2. By repeating the process, and so on, we finally obtain
M ∈ Presn T , as desired. �
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