
Improving program analyses by structure
untuplingq

Michael Codisha,*, Kim Marriottb, Cohavit Tabocha

a Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, P.O. Box 653,

84105 Beer-Sheva, Israel
b School of Computer Science and Software Engineering, Monash University, Clayton, Victoria, Australia

Received 11 January 1999; received in revised form 6 September 1999; accepted 13 October 1999

Abstract

It is well-known that adding structural information to an analysis domain can increase the

precision of the analysis with respect to the original domain. This paper presents a program

transformation based on untupling and specialisation which can be applied to upgrade (logic)

program analysis by providing additional structural information. It can be applied to (almost)

any type of analysis and in conjunction with (almost) any analysis framework for logic pro-

grams. The approach is an attractive alternative to the more complex Pat�R� construction

which automatically enhances an abstract domain R (in the context of abstract interpretation)

with structural information. Ó 2000 Elsevier Science Inc. All rights reserved.

Keywords: Program analysis; Structure information

1. Introduction

The practical utility of enhancing an abstract domain to include structural infor-
mation has long been recognised. One reason is that structural information is of in-
trinsic interest. More usually, it is because such information has the potential to
increase the precision of many other types of analysis. In the context of logic pro-
gramming, precision can be improved for two reasons.

The ®rst reason is related to pruning. A logic program analysis which tracks struc-
tural information (in addition to information about some property of interest) can
ignore clauses whose heads are not compatible with the structural information in
a particular call pattern. By ignoring these ``irrelevant'' clauses, precision may be

The Journal of Logic Programming 43 (2000) 251±263
www.elsevier.com/locate/jlpr

q This work was carried out while the ®rst author was visiting the Department of Computer Science and

Engineering at the University of Melbourne.
* Corresponding author. Tel.: +61-3-9287-9100; fax: +61-3-9348-1184.

E-mail addresses: mcodish@cs.bgu.ac.il (M. Codish), marriott@cs.monash.edu.au (K. Marriott).

0743-1066/00/$ - see front matter Ó 2000 Elsevier Science Inc. All rights reserved.

PII: S 0 7 4 3 - 1 0 6 6 (9 9) 0 0 0 7 9 - 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82228421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

improved with respect to the property of interest. The second reason is related to
sub-structure information and is more subtle. When data entities are passed around
inside structures they are described collectively. However, if the structure of the (run
time) data entities corresponding to a syntactic program point is invariant under all
possible executions then program analysis can provide more detailed information for
this point in terms of the invariant sub-structures. A common example is the analysis
of logic programs involving di�erence lists. To provide reasonable precision, an anal-
ysis will typically need to ®nd a description which focuses separately on the head and
on the tail of a di�erence list. We shall elaborate on this in Example 1 (below).

One straightforward technique for adding structural information to an abstract
domain R is to consider its cross product with a description domain for structural
information, such as the depth�k� domain described in Ref. [17]. Analyses in the
new domain will give information about structure and allow pruning, but it will
not provide sub-structure information since descriptions from R will still apply only
to procedure arguments.

A more sophisticated approach in which an abstract domain R is enhanced with
structural information to give a new abstract domain Pat�R� is proposed in Ref. [7]
and further investigated in Ref. [1]. An analysis in Pat�R� provides structural infor-
mation and improves the precision of R information in both of the ways described
above. The main contribution of Pat�R� (and the main di�culty) is in the way it ad-
dresses the second point: providing enhanced R information about sub-structures in
argument positions. Essentially it does this by introducing a pattern component to
descriptions and maintaining R information on all sub-structures of this component.
This is not an easy task as it requires a high level and abstract speci®cation of pattern
information which is general enough to interact with any domain R and its opera-
tions. The advantage of the Pat�R� approach is that it is generic: once the domain
R has been de®ned and implemented (and supports a certain set of operations) no
further design e�ort is required to provide an analyser for Pat�R�. Another contri-
bution of the work described in Ref. [7] is the experimental evaluation which dem-
onstrates how keeping structural information can improve precision of program
analyses.

One disadvantage of Pat(R) is that its presentation is complex. Another draw-
back is that it is expensive. Results from [6] suggest that it slows down analysis times
for the abstract domain Pos by a factor of between 5 and 109 for the set of bench-
marks considered. This is especially distressing as the results indicate an improve-
ment in precision for only 2 of the 11 programs considered1. Perhaps for these
reasons, and in spite of the recognised importance of structural information, Pat(R)
is currently only implemented in the two analysis frameworks GAIA and China cor-
responding to Refs. [1,7], respectively.

This paper provides a new solution to the di�cult part of the problem, namely
how to use information about sub-structures to enhance an analysis over R. Rather
than enhancing the abstract domain R with pattern information, the program is en-
hanced. First, a pattern analysis is applied to the program. Then, a transformation
which portrays the derived information is applied. This involves two steps: special-

1 The experiments in Ref. [6] cover 12 programs, however two of these are slight variations of the same

program which behave exactly the same in a Pos analysis.

252 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

isation and untupling. Finally, the enhanced program is analysed over the original
domain R. The e�ect is an improvement in the precision of the R analysis similar
to that obtained in the comparable part of a Pat(R) analysis.

There are three main advantages to our approach. First, it is simple. Both in its
formal speci®cation as well as in its implementation. Second, it is e�cient. By sepa-
rating the pattern analysis from the R analysis we can focus on providing extra R
information only at those positions where sub-structures are invariant throughout
the entire analysis. In particular, when the pattern analysis does not detect any such
sub-structures then there is no untupling and we will pay no additional cost during
the subsequent R analysis. Finally, our approach is widely applicable. Since it is de-
scribed as a program transformation, there is little overhead associated with its inte-
gration within (almost) any program analysis framework.

The approach described in this paper is based on the notion of more speci®c logic
programs introduced in Refs. [13,14] where the authors also suggest its application to
program analysis (although they did not detail the untupling transformation). In this
approach, the clauses of a program are specialised with respect to the structures it
manipulates. The resulting program is often more e�cient than the original program
and preserves its success patterns. We are not concerned with the e�ciency of most
speci®c logic programs but rather view the transformation as a means to obtain more
precise analyses of success patterns for the original program. Although the trans-
formed program does not preserve the call patterns of the original program, it is
straightforward to provide improved call pattern analysis based on the improved
success pattern analysis. In Refs. [13,14], the authors are also concerned with the
preservation of the termination behaviour of a most speci®c logic program. We illus-
trate the application of these results to improve the precision of a termination anal-
ysis for logic programs.

2. Preliminaries

We assume a familiarity with the standard de®nitions and notation for logic pro-
grams [12] except that we make use of the non-ground s-semantics de®ned in Ref. [9].
We address the topic of program analysis but make no assumptions on a particular
framework of analysis. Instead our technique is speci®ed as a semantics preserving
program transformation. Analysing a transformed program gives results which
can then be interpreted with respect to the original program. We consider the anal-
ysis of success patterns, call patterns and termination behaviour. To clarify notion:

By a success pattern for the program P we mean an element of the set

SS�P � � #�p��x�� �x is a tuple of distinct variables
is a computed answer for p��x�
����� �

:

By a call pattern we mean a selected atom in an SLD derivation (for the sake of sim-
plicity we assume Prolog's leftmost selection rule); By termination we refer to univer-
sal termination (assuming Prolog's leftmost selection rule).

The transformation we propose relies on a simple program analysis for pattern
information which is best described as an abstract interpretation [8] of the s-seman-
tics [9]. This semantics is speci®ed as the least ®xed point of an immediate
consequences operator which manipulates sets of (equivalence classes of) possibly

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 253

non-ground atoms (modulo renaming). The s-semantics of a program P is (a bot-
tom-up speci®cation of) the set SS�P �.

As an example program analysis, for which we illustrate an improvement when
using our technique, we consider the application of abstract interpretation for the
analysis of groundness dependencies using the abstract domain of positive Boolean
functions (Pos) [4,5,16,18]. In Pos a formula of the form X ! Y describes a pro-
gram state in which the variable Y is bound to a term which will become ground
if the variable X becomes bound to a ground term.

3. The untupling phase

If all of the (run time) calls to a predicate p/n in a logic program P are instances of
a given structure then P can be transformed by untupling that structure. The untup-
ling transformation enables improved analysis of sub-structures of the original pro-
gram because by moving them to arguments they can be better described.

A su�cient condition for the calls to a predicate to be an instance of a given struc-
ture is that all (syntactic) calls in the program are instances of that structure. As we
shall see, this simple condition, when combined with program specialisation, is quite
powerful.

De®nition 1 (untupling). Let P be a program such that all calls to a predicate p/n (in
the clause bodies and in the external calls) are instances of an atom p��s� and let �v be
the sequence of the k distinct variables in p��s� (in order of ®rst occurrence). Then the
untupling of p=n with respect to p��s� is de®ned as follows:
1. A new clause p��s� p0��v� where p0 is a fresh predicate symbol not occurring in P,

is introduced.
2. Each clause for p/n of the form p��t� body in the original program P is replaced

by a clause #�p0��v0� body� with # � mgu��s0;�t� where p��s0� p0��v0� is a fresh copy
of p��s� p0��v�. If # does not exist then the clause is redundant and is omitted
from the program.

3. All calls to p/n in the clauses of P are unfolded to corresponding calls to p0=k
(using the clause p��s� p0��v�).

The clauses introduced by Rule 1 of De®nition 1 (those of the form p��s� p0��v�)
are referred to as ``entry points''. They might seem redundant in the transformed
program. However, they are useful for interpreting the analysis of the transformed
program in terms of the original program.

The untupling transformation results in a new program which is equivalent in its
answers (for the original predicates) and has the same termination behaviour. This
follows because a resolution step for a call to p/n with a clause C in the original pro-
gram has the same a�ect as two resolution steps in the transformed program: the ®rst
using the entry point clause for p/n and the second using the transformed clause cor-
responding to C.

Example 1. Consider the following program which speci®es a preorder traversal on
the nodes of a binary tree using a di�erence list structure.

254 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

preorder�T ;Xs� preorder dl�T ;Xsÿ � ��.
preorder dl�nil;X ÿ X �:
preorder dl�tree�L;X ;R�; �X j Xs� ÿ Zs�

preorder dl�L;Xsÿ Ys�;
preorder dl�R; Ysÿ Zs�:

Assuming that there are no external calls to the predicate preorder dl=2, a simple
syntactic check reveals that all calls to the predicate preorder dl=2 are instances of
preorder dl�A;Bÿ C�. Hence untupling gives the following program:

%entry points
preorder�A;B� preorder0�A;B�:
preorder dl�A;Bÿ C� preorder dl0�A;B;C�.
%untupled clauses:
preorder0�T ;Xs� preorder dl0�T ;Xs; � ��:
preorder dl0�nil;X ;X �:
preorder dl0�tree�L;X ;R�; �X j Xs�; Zs�

preorder dl0�L;Xs; Ys�;
preorder dl0�R; Ys; Zs�:

To demonstrate the advantage of untupling for program analysis consider the fol-
lowing example.

Example 2. We consider a groundness analysis with the domain Pos for the
preorder=2 relation in Example 1 and its untupled version. A bottom-up Pos analysis
using the original program gives no useful groundness dependencies. However when
analysing the untupled version we obtain the following Pos description for the suc-
cess patterns of preorder=2:

preorder�A;B� A$ B:

It is already in the ®rst stage of the analysis, when describing the respective single
facts in the two programs, where a di�erence is made. With the original program,
the structure X ÿ X (in the fact) gives no Pos information, while in the untupled pro-
gram we specify a groundness dependency between the second and third arguments
of preorder dl0=3.

Unfortunately, it is rare for the syntactic calls to a predicate in a program to have
non-trivial shared structure. The following illustrates this point using a common
variant of the program from Example 1. We remove this limitation in the next sec-
tion.

Example 3. Consider the following variant of the program from Example 1 which
calls an explicit append dl=3 relation. Because the recursive calls to preorder dl=2
have a free variable in their second arguments, untupling cannot be directly used
to improve program analysis for this program.

preorder�T ;Xs� preorder dl�T ;Xsÿ � ��:
preorder dl�nil;X ÿ X �:

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 255

preorder dl�tree�L;X ;R�;DL�
preorder dl�L;DL1�;
append dl�DL1; �X j D� ÿ D;DL2�;
preorder dl�R;DL3�;
append dl�DL2;DL3;DL�:

append dl�Aÿ B;Bÿ C;Aÿ C�:

4. The specialisation phase

If all of the success patterns for a predicate p/n in a logic program P are instances
of a given structure then P can be specialised so that all of the calls to p/n are instanc-
es of that structure. This transformation is described in Ref. [13] where the resulting
program is termed a ``more specific'' version of P. In particular, the syntactic calls to
a predicate p/n in a more speci®c version of P may be more speci®c and so are more
likely to lead to non-trivial untupling hence, facilitating improved program analysis.

De®nition 2 (specialisation). Let C � h b1; . . . ; bn be a clause in a program P, let
a1; . . . ; an be atoms (renamed apart from each other and from C) such that for
i � 1::n any success pattern for bi is an instance of ai and let
� mgu�hb1; . . . ; bni; ha1; . . . ; ani�. Then C is replaced by #�C� to obtain a specialised
version of P. If mgu�hb1; . . . ; bni; ha1; . . . ; ani� does not exist or if for some 16 i6 n, bi

has no success patterns then C is redundant and does not occur in the specialised ver-
sion of P.

Example 4. Consider the program from Example 3 and notice that any success pat-
tern for this program is an instance of one of the following atoms:

preorder�A;B�:
preorder dl�A;Bÿ C�:
append dl�Aÿ B;Bÿ C;Aÿ C�:

Hence, the program can be specialised resulting in:

preorder�T ;Xs� preorder dl�T ;Xsÿ � ��:
preorder dl�nil;X ÿ X �:

preorder dl�tree�L;X ;R�;H ÿ T �
preorder dl�L;H ÿ �X j T 1��;
append dl�H ÿ �X j T 1�; �X j T 1� ÿ T 1;H ÿ T 1�;
preorder dl�R; T 1ÿ T �;
append dl�H ÿ T 1; T 1ÿ T ;H ÿ T �:

append dl�Aÿ B;Bÿ C;Aÿ C�:
This more speci®c version can now be usefully untupled for improved program anal-
ysis because of the additional structure in the recursive calls. Untupling results in the
following clauses (omitting the entry points for brevity):

preorder0�T ;Xs� preorder dl0�T ;Xs; � ��:
preorder dl0�nil;X ;X �:
preorder dl0�tree�L;X ;R�;H ; T �

256 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

preorder dl0�L;H ; �X j T 1��;
append dl0�H ; �X j T 1�; T 1�;
preorder dl0�R; T 1; T �;
append dl0�H ; T 1; T �:

append dl0�A;B;C�:
It is interesting to note that the calls to append dl=3 are now redundant and can

be removed.

As shown in Ref. [13] this type of specialisation preserves the success patterns of
the original program but not necessarily its calls and termination behaviour.

5. Deriving pattern information

The derivation of pattern information is easily described as an abstract interpr-
etation. In Refs. [13,15] Marriott et al., suggest several techniques to compute more
speci®c versions of a program. For our purposes, a modi®cation of the singleton ab-
straction scheme abstract interpretation of Ref. [15] su�ces. The di�erence is that in
our context it is appropriate to assume that the underlying semantics is the s-seman-
tics [9] instead of Fitting's more complex Kripke±Kleene semantics [10] used in Ref.
[15]. An advantage of our technique is its simplicity, although some of the other tech-
niques described in Ref. [13] will ®nd more speci®c versions of the program. Like
other methods, we cannot guarantee to ®nd the most speci®c logic program.

We de®ne an abstract semantics operator T msg
P in terms of the non-ground imme-

diate consequences operator TP of the s-semantics. For any set of atoms I, our oper-
ator is given as

T msg
P �I� � tTP �I�;

where t is a least upper bound which combines the set of atoms for the predicate p/n,
replacing them by their (single) most speci®c generalisation.

It is straightforward to prove that the least ®xed point of this operator is ®nitely
computable and provides an approximation of the program's success patterns, in the
sense that any success pattern is an instance of an element of the approximation.

Example 5. Consider the program from Example 3. The analysis of its success pat-
terns results in the description

lfp�T msg
P � �

preorder�A;B�
preorder dl�A;Bÿ C�
append dl�Aÿ B;Bÿ C;Aÿ C�

8<:
9=;:

6. Combining the phases

A simple yet powerful technique to enhance almost any program analysis with struc-
tural information is obtained by combining the simple analysis for structure and the
two transformations described above. First, we specialise the program with respect
to the common structures in its success patterns. Next we untuple the calls in this more

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 257

speci®c version of the program. Finally, we perform the analysis of interest on this pro-
gram.While untupling on its own is of limited usefulness, what gives this combined
technique its strength is that common structures in the success patterns of the original
program are common patterns in the (syntactic) calls of its more speci®c version.

Since both specialisation and untupling preserve success patterns, the analysis of
the resulting program is correct with respect to the original program for success pat-
terns. There are a number of standard ways to enhance the technique to also provide
analysis of call patterns. In particular, in a bottom-up approach by applying the
technique in combination with Magic Sets (see for example Ref. [2]); or in a top-
down approach by using the improved success patterns (with the transformed pro-
gram) to derive improved call patterns (with the original program).

Another interesting application of the combined approach is to improve the re-
sults of termination analysis. This application must be considered with care as spe-
cialisation can cause an in®nite derivation in the original program to become a
failing derivation. In Ref. [13], the authors specify an in®nite derivation preserving
specialisation which must be used for this application.

As an example of a program where untupling improves termination analysis con-
sider the following.

Example 6. The following program checks if two binary trees have the same frontier
with an ``interleaved'' traversal of the two trees so that it fails as soon as the two
frontiers are in con¯ict.

sameleaves�Tree1;Tree2�
sameleaves forest��Tree1�; �Tree2��:

sameleaves forest�� �; � ��:
sameleaves forest�Trees1;Trees2�

getleaf�Trees1;Leaf ;NewTrees1�;
getleaf�Trees2;Leaf ;NewTrees2�;
sameleaves forest�NewTrees1;NewTrees2�:

getleaf��leaf�A� j Trees�;A;Trees�:
getleaf��tree�A;B� j Trees�; L;NewStack�

getleaf��A;B j Trees�; L;NewStack�:
Consider an attempt to prove termination for this program using a term-size norm

± for example using the analyser described in Ref. [3] (which is also available online
at http://www.cs.bgu.ac.il/~mcodish/TerminWeb). Termination is not detected
because in the recursive call to getleaf=3 the ®rst argument does not decrease in size.

The structure analysis described in this paper determines that all of the success
patterns for getleaf=3 are instances of the atom getleaf��A j B�;C;D�. Specialisation
and untupling give:

sameleaves0�Tree1;Tree2�
sameleaves forest0��Tree1�; �Tree2�.

sameleaves forest0�� �; � ��:
sameleaves forest0��X 0 j X 1�; �X 2 j X 3��

getleaf 0�X 0;X 1;Leaf ;NewTrees1�;

258 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

getleaf 0�X 2;X 3;Leaf ;NewTrees2�;
sameleaves forest0�NewTrees1;NewTrees2�:

getleaf 0�leaf�A�;Trees;A;Trees�:
getleaf 0�tree�A;B�;Trees; L;NewStack�

getleaf 0�A; �B j Trees�; L;NewStack�:
Observe that the size of the ®rst argument in the recursive call to getleaf 0=4 is

strictly smaller than the size of the corresponding ®rst argument in the head. This
makes the di�erence for termination analysis.

7. Comparison with Pat�R�

As far as we are aware, Pat�R�, is the ®rst generic approach for enhancing an
analysis domain R with structural information. Pat�R� was introduced in Ref. [7].
Further details on the implementation can be found in Ref. [11] (Appendix B) while
performance results for Pat�R� are given in Ref. [6]. Additional insight into the
Pat�R� domain and its analysis can be found in Ref. [1].

The essential idea behind Pat�R� is to describe a tuple of terms (the arguments
to a procedure) as a tuple of ``patterns'' augmented with additional information. A
pattern is a description of the structures in a term. It is similar to a depth�k� de-
scription [17], however, there is no ®xed k. In principle, a pattern for a term can
simply be viewed as a generalisation of the term and with that view a pattern de-
scribes its set of instances. A least upper bound operation on tuples is de®ned as
their most speci®c generalisation. The additional information augmenting a Pat�R�
description consists of an enhanced R component which describes the sub-struc-
tures in the tuple of patterns (rather than describing the arguments of the tuple)
and a same-values component which speci®es when certain sub-structures are
equal.

Like Pat(R), our approach is generic in the sense that it may be used with any
analysis domain. However in contrast to Pat�R�, as it is expressed in terms of a pro-
gram transformation, our technique can be applied within (almost) any analysis
framework and for (almost) any type of analysis which relies on the approximation
of success and/or call patterns.There is also a disadvantage in basing the analysis on
a program transformation. It implies that the technique will not apply to analyses
which assume more detailed notions of observables (such as how structures are
shared on the heap in the implementation). This is true also of the Pat�R� analysis
described by Bagnara [1].

There are many similarities between the two approaches. Both enhance the anal-
ysis of information expressed in R through pattern information without burdening
the designer of the analysis with the need to implement new operations. Both ap-
proaches provide R information about sub-structures in a tuple of terms as well
as the usual R information about the terms in the tuple.

In general, Pat(R) is more powerful than untupling since in most cases the struc-
tural information required for clause pruning is not found in the untupling ap-
proach. The following example illustrates how pruning can lead to more precise R
information.

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 259

Example 7. Consider the goal r�X � and the program:

r�X � p�b;X �: p�a; a�:
r�X � p�a;X �: p�b; b�:

p�c; �:

Analysis with Pat(Pos) will use pattern information about the ®rst argument of p/2
to ignore the contribution of the non-matching clauses in the analysis. Thus, it will
determine that X is ground at the end of both clauses for r/1 and hence that the goal
r�X � grounds X. Analysis with our untupling approach cannot determine this: The
specialisation and untupling transformations leave the program unchanged and sub-
sequent analysis with Pos will not determine that X is ground because of the contri-
bution of the program's last clause.

However, the extra precision of Pat�R� comes at a potentially high price: the new
operations manipulate R descriptions for every sub-structure in the patterns of the
current description. This can be prohibitive, especially for a domain such as Pat(Pos)
where the worst-case complexity of the Pos operations is exponential in the number
of variables. In many cases, the extra R precision does not actually lead to better
analysis information since it is lost during subsequent analysis. When (two) succes-
sive Pat(R) approximations for a given program point contain di�erent patterns in
matching positions, these are generalised by the least upper bound operation and R
information is maintained only for the sub-structures which are consistent in the
(two) approximations. Thus, by the end of the analysis, R information is provided
only for the sub-structures in patterns which are invariant throughout the computa-
tion.

The main advantage of the untupling approach is that by performing a simple pat-
tern analysis before applying the R analysis, it is possible to identify these invariant
patterns in the descriptions of a predicate's calls and returns. The subsequent pat-
tern-enhanced R analysis will focus only on the sub-structures in these patterns.

Thus we claim that the untupling approach is inherently more e�cient than
Pat(R). The same work performed in the initial pattern analysis of the untupling ap-
proach is performed also in the pattern component of the Pat(R) analysis. The pro-
gram transformation applied in the untupling approach (specialisation and
untupling) is linear in the size of the program and in practice fast. Finally, the work
involved in the R analysis of the untupled program focuses only on the invariant
sub-structures identi®ed also in the Pat(R) analysis.

To provide further insight on the tradeo� between precision and e�ciency be-
tween the two approaches, we take a closer look at analysis results using the two.
Unfortunately, we did not have access to a Pat(R) analyser. Our comparison is
based on the results described in Ref. [6] and on several Pat(R) analyses which we
have performed manually based on the formal speci®cations given in Refs. [6,7].

The experiments described in Ref. [6] indicate that a Pat(Pos) analysis is be-
tween 5 and 109 times slower than a corresponding Pos analysis for a collec-
tion of 11 benchmarks. An improvement in precision is obtained for only 2 of
the these 11 benchmarks: press.pl and read.pl. The Pat (Pos) analyses for these
programs are respectively 5.75 and 109.68 times slower than the corresponding Pos
analyses.

260 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

Working through the Pat (Pos) analyses for these two programs it becomes
apparent that the only predicate for which the enhanced Pos information in Pat(Pos)
makes a di�erence in precision in the ®nal result of the analysis is factorize/3 in
press.pl. This is also the only predicate among the 200 de®ned in these two pro-
grams which involves the use of di�erence lists. All of the other enhanced Pos infor-
mation for sub-structures is either lost because sub-structures at corresponding
positions in the Pat(Pos) descriptions are not invariant or else because the corre-
sponding sub-structures are always passed around together. With the exception of
the factorize/3 predicate all of the gains in precision of Pos information in the
Pat(Pos) analysis for these two programs are due to the pruning of clauses based
on the pattern information.

We have also tested the untupling approach on the benchmarks described in Ref.
[6]. For press.pl there is an improvement over Pos for the predicate factorize/3

but the more precise information derived for this predicate does not propagate
through the analysis to other predicates due to the lack of pattern information which
enables Pat(Pos) to apply clause pruning. For all of the programs, the cost of the Pos
after untupling increases by at most 35%. In particular, with untupling, in many of
the cases where no additional Pos information is derived by a Pat(Pos) there is no
extra cost, aside from that related to the derivation of pattern information itself. This
is in contrast to the experience for Pat(Pos) where analysis times are considerably
slower even when there is no improvement in Pos precision.

In Ref. [7] the authors stress the major strength of Pat �R� as a technique to im-
prove the analysis of programs which manipulate di�erence lists. This is true also of
our approach. In our second experiment we apply Pos analysis with and without un-
tupling to analyse six programs involving di�erence lists. For all of these Pos with
untupling was more precise than Pos and gave the most accurate Pos information
possible. Thus, in this case untupling with Pos is as precise as Pat(Pos).

8. Conclusion

We have illustrated the application of untupling and more speci®c logic programs
to improve program analyses. The e�ect is similar to that obtained using the abstract
domain construction Pat(R) proposed in Ref. [7]. The idea to apply specialisation
and untupling to program analysis is mentioned in Refs. [13,14]. However the main
focus in that work is on the application of the technique as a program optimisation.
The technique has not previously been applied to the domain of program analysis
and, to the best of our knowledge, its relationship to Pat(R) has not been previously
observed.

Our approach is very simple and easy to implement. Our investigation has also
provided insight into the two di�erent ways that pattern information can improve
the results of an analysis over a domain R. Namely, through pruning and through
sub-structure information. This also clari®es the contribution of the Pat(R) domain.

Our approach is more e�cient than a Pat(R) analysis but may be less precise. It
may also be more di�cult to precisely handle non-logical built-ins such as var. Our
conclusion to this end is that pattern information is crucial to obtain the e�ects of
clause pruning but enhancing R information to focus on sub-structure should be re-
stricted to positions which maintain invariant patterns throughout the computation.

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 261

A combination of the ideas described here with a straightforward cross product ap-
proach to augmenting an analysis with structural information will, we believe, pro-
vide most of the bene®ts of Pat(R) but should be less expensive. Another approach
would be to perform polyvariant specialisation of the program as suggested in Ref.
[17]. The potential disadvantage of this approach is an explosion in code size.

A simple Prolog implementation of the untupling transformation (with its associ-
ated pattern analysis) can be obtained from

ftp : ==ftp:cs:bgu:ac:il=pub=people=mcodish=untupler:pl:

The pattern analysis is expressed as a simple bottom-up interpreter. It handles a
representative set of Prolog built-ins. However, it is only a toy. Because of the way
built-ins are handled the implementation is applicable only to improve program an-
alyses based on properties which are closed under instantiation. As such, the Pat(R)
analysis currently maintained in the CHINA analyser is surely more robust and
more powerful. Our conclusion to this end is therefore that the results of this paper
indicate that it is worthwhile to consider the application of the proposed technique in
real world analysers.

References

[1] R. Bagnara, Data-¯ow analysis for constraint logic-based languages, Ph.D. thesis, University of Pisa,

1997.

[2] M. Codish, D. Dams, E. Yardeni, Bottom-up abstract interpretation of logic programs, Journal of

Theoretical Computer Science 124 (1994) 93±125.

[3] M. Codish, C. Taboch, A semantic basis for termination analysis of logic programs, Journal of Logic

Programming 41 (1999) 103±123.

[4] A. Cortesi, G. Fil�e, W. Winsborough, Prop revisited: propositional formula as abstract domain for

groundness analysis, in: Proceedings of the Sixth Annual IEEE Symposium, Logic in Computer

Science, IEEE Computer Society Press, Los Alamitos, California, 1991, pp. 322±32.

[5] A. Cortesi, G. Fil�e, W. Winsborough, Optimal groundness analysis using propositional logic, Journal

of Logic Programming 27 (2) (1996) 137±167.

[6] A. Cortesi, B. Le Charlier, P. Van Hentenryck, Conceptual and software support for abstract domain

design: generic structural domain and open product, Technical Report CS-93-13, Brown University,

Department of Computer Science, 1993, Available from ftp://ftp.cs.brown.edu/pub/techreports/93/

cs93-13.ps.Z.

[7] A. Cortesi, B. Le Charlier, P. Van Hentenryck, Combinations of abstract domains for logic

programming, in: ACM Proceedings of the 21st Annual ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages, ACM Press, New York, 1994, pp. 227±239.

[8] P. Cousot, R. Cousot, Abstract interpretation: A uni®ed lattice model for static analysis of programs

by construction or approximation of ®xpoints, in: Proceedings of the Fourth ACM Symposium on

Principles of Programming Languages, January 1977, pp. 238±252.

[9] M. Falaschi, G. Levi, M. Martelli, C. Palamidessi, Declarative modeling of the operational behavior

of logic languages, Theoretical Computer Science 69 (3) (1989) 289±318.

[10] M.C. Fitting, A. Kripke-Kleene, Semantics for logic programming, Journal of Logic Programming 4

(1985) 295±312.

[11] B. Le Charlier, P. Van Hentenryck, Experimental evaluation of a generic abstract interpretation

algorithm for prolog, ACM Transactions on Programming Languages and Systems (TOPLAS) 16 (1)

(1994) 35±101.

[12] J. Lloyd, Foundations of Logic Programming, Springer, Berlin, 1987.

[13] K. Marriott, L. Naish, J. Lassez, Most speci®c logic programs, Annals of Mathematics and Arti®cial

Intelligence 1 (2) (1990).

262 M. Codish et al. / J. Logic Programming 43 (2000) 251±263

[14] K. Marriott, L. Naish, J.-L. Lassez, Most speci®c logic programs, in: R.A. Kowalski, K.A. Bowen,

(Eds.), Proceedings of the Fifth International Conference and Symposium on Logic Programming,

Seatle, ALP, IEEE, MIT Press, Cambridge, MA, 1988, pp. 909±923.

[15] K. Marriott, H. Sùndergaard, Bottom-up data¯ow analysis of normal logic programs, The Journal of

Logic Programming 13 (2 and 3) (1992) 181±204.

[16] K. Marriott, H. Sùndergaard, Precise and e�cient groundness analysis for logic programs, ACM

Letters on Programming Languages and Systems 2 (1±4) (1993) 181±196.

[17] T. Sato, H. Tamaki, Enumeration of success patterns in logic programs, Theoretical Computer

Science 34 (1984) 227±240.

[18] P. Van Hentenryck, A. Cortesi, B. Le Charlier, Evaluation of the domain PROP, Journal of Logic

Programming 23 (3) (1995) 237±278.

M. Codish et al. / J. Logic Programming 43 (2000) 251±263 263

