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ABSTRACT 

When the undirected graph of a real square matrix is a tree or forest, we establish 
finitely computable tests yielding information about the magnitudes and multiplicities 
of the eigenvahres of the matrix. Applying these tests to system designs expressed as 
signed directed graphs can be sufficient to guarantee controllability of the associated 
linear dynamical systems. 

1. INTRODUCTION 

We work throughout with real matrices and begin by introducing some 
notation and definitions needed to develop our results. We generally follow 
the conventions in [4]. When A = [aij] is a real matrix of order n, its signed 
digraph SD(A) has node set { 1,2,. . . , n } and a directed edge from i to j iff 
a ji # 0. This edge is signed as the sign of a ji. The set of all matrices with the 
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same sign pattern (and thus the same signed digraph) as A is denoted by 
Q(A). We also use the undirected graph G(A) which has the same node set 
as SD(A) with edge set {{i,j}:i#j and aij # 0 # aji}. An edge of G(A) 
thus corresponds to a 2-cycle in SD(A). A 2-cycle in SD(A) is positive if 
u I ju j, > 0 and negative if a ijaj, < 0. A node i with a l-cycle is called 
distinguished and corresponds to a nonzero diagonal entry in A, ai, f 0. 
Since we seek to characterize eigenvalues, we work throughout with matrices 
A which are irreducible. Moreover, for the validity of many constructions and 
reduction arguments, we require SD(A) to have a 2cycle but no k-cycle for 
k > 2; equivalently, G(A) is a tree and A is combinatorially symmetric. 

We consider the differential equation i( t ) = A”x( t ) with A E Q(A), and 
we seek to detect the possibility of constant or sinusoidal trajectories. Here a 
constunt (strictly constant ) trajectory x( t ) E R n for ii = CT= ia i jx j satisfies 
i, = 0 and xi # 0 for some (all) i. A sinusoidal (strictly sinusoidal) 
trajectory for our equation satisfies i!, = - xl and xi f 0 for some (all) i. 
(We use Z 0 to denote “not the constant function with the value zero.“) It is 
well known that i = AX admits a constant (sinusoidal) trajectory iff A has a 
zero (purely imaginary) eigenvalue (see, for example, [3]). 

Suppose G(A) is a tree. We define SD(A) to be A-consistent if there exist 
nonzero constants { X r, . . , X n } such that X,aij= - Xjaj, for i # j; all 
h ,a ,, > 0; and some h ia i, > 0. For example, matrices with a i ja ji < 0 for all 
i+j,a,,<Oforalli,anda,, < 0 for at least one i have SD(A) X-consistent 
with all X, negative. These matrices are candidates for sign stability [4]. 

We now show that X-consistency can be expressed in finitely computable 
terms. Suppose node 1 is a distinguished node in X-consistent SD(A), so 
ai1 # 0. Choose h, = _+ 1, so a,,X, > 0. Then use the signs of 2cycles along 
the chain to specify all other { X j} signs; this can be done because of the tree 
structure of G(A). Then SD(A) is X-consistent iff each X,aZi > 0. Thus 
X-consistency is a property of SD(A), rather than A itself. 

We define a subchain of SD(A) as a subgraph which is a straight chain 
of 2cycles; thus the undirected graph of a subchain is a simple path (that is, 
an unbranched tree). Clearly when SD(A) has at least two lcycles, then 
SD(A) is not Xconsistent iff some subchain of SD(A) with distinguished end 
nodes and no other distinguished nodes is not h-consistent. We call a 
subchain with distinguished end nodes and no other distinguished nodes a 
proper subchain. 

2. STRICTLY CONSTANT TRAJECTORIES 

We first consider zero eigenvalues and have the following characteriza- 
tion. 
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THEOREM 1. Suppose A is an irreducible matrix of order > 2 and 
SD(A) has rw k-cycle, k > 2. The? there exist A E Q(A) and a strictly 
constant trajectory satisfying X! = Ax = 0 iff each end node of SD(A) is 
distinguished and SD(A) is not Lconsistent. 

Proof. Suppose x is a strictly constant trajectory. Obviously each end 
node must be distinguished. Furthermore, if SD(A) were h-consistent, then 
the derivative of A = Cl= ,Xixf/2 along the constant trajectory x would yield 
0 = A = E~=,Xiaiix~ > 0, a contradiction. 

For the converse, let us assume SD(A) is itself a proper subchain. 
Labeling the nodes in the obvious way, A” is a tridiagonal matrix; we fix all 
entries except G,, ( # 0). Considering the disjoint cycles of A and setting 
LY~ = dji+la”i+li for i = 1,2,...,n - 1 gives 

det d = 
( - l)“‘“[ - a’,,cy,cu, . . . an_Ziinn + alas.. . CX,_~] if n is even, 

( - I)‘” - 1)‘2 [a”,,a,a,. . . (Y,_~ + a1a3.. . (Y,_~c?,,] if n is odd. 

The sign of G,, is either + or -, and it is either possible to adjust the 
magnitude of G,, so det A’ = 0 or not, depending only on that sign. If SD(A) 
were X-consistent, it would be impossible to have a constant trajectory with 
det A = 0. Since we are assuming that SD(A) is not X-consistent, 6,” must 
be of the other sign, so for some choice of lZ,,l, det A’ = 0. 

Now let x be a nontrivial solution of Ax = 0 with A” as above. The 
equations E~=iGijxj = 0 with E,, # 0 show that xi = 0 implies x2 = 0, x3 = 0, 
and so on through the chain; therefore xi # 0. But xi # 0 implies, by the 
same argument, that each component of x is nonzero; and so x is a strictly 
constant trajectory. (Note that if an end node is not distinguished, then the 
argument fails, as some component of x is zero). 

Next suppose that SD(A) may be partitioned into a proper subchain 
which is not X-consistent and a second subchain with exactly one dis- 
tinguished node, the end node (not the node of attachment); see Figure 1 for 
an example. Starting at the node of attachment 9, let the nodes of the second 
subchain be labeled 9,9 + 1,. . . , q+m, with 9+m the end node and 
6, + nl 4 + nl # 0. Let A, x be specified as above for the proper subchain, and let 

other A entries be arbitrary in magnitude except Zq+ iq. Tentatively set 
x~+~~ = 1. Then x~+~ can be used to specify x~+~_ i, which in turn can be 
used to specify x~++~, and so on down the chain. Finally x~+ i is specified. 
If there is a sign conflict in the equation at node 9 + 1, start over with 
X = ‘I + 111 - 1. Then specify C,+l,. At node 9 we must modify kvalues so that 



112 CLARK JEFFRIES AND P. VAN DEN DRIESSCHE 

FIG. 1. An example to illustrate method of proof of Theorem 1. Nodes 1,2,3,4,5 
are in a proper subchain; nodes 4,6,7 are in a second subchain with the end node 
distinguished. 

a” yaXa + a”&3 + 4f,+Ixp+I = 0, where nodes (Y, p are neighbors of node q 
in the proper subchain. The first two summands are already of opposite signs, 
so adjustment of the magnitudes of a’,, and d,, can clearly be carried out so 
Xx=0, all xi#O, i=q ,..., q + m. The case in which the node of attach- 

ment q is also distinguished follows in a similar way, with the additional term 
a’,,~, in the equation at node q. 

A simple extension of the above sequence shows that any number of 
subchains with distinguished end nodes can be accommodated. Lastly, ad- 
ditional nodes can acquire (small magnitude) l-cycles by local adjustment of 
A’ values, since each node clearly has inputs of opposite signs. n 

The case when A is of order 1 is trivial: there exists A” E Q(A) and a 
strictly constant trajectory x satisfying i = Ax = 0 iff SD(A) consists of a 
single undistinguished node. 

3. STRICTLY SINUSOIDAL TRAJECTORIES 

We now consider detection of purely imaginary eigenvalues of A, that is, 
the possibility of a sinusoidal trajectory x for 2 = A”x, not all components of 
x being zero, with A E Q(A). We obviously restrict considerations to matrices 
of order n > 2. 

LEMMA 1. Suppose A is irreducible, all 2-cycles in SD(A) are positive, 
and SD(A) contains no k-cycle for k > 2. Then there exist 7~) A E Q(A) and 
sinusoidal x solving i = Ax. 
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Proof When all 2ccycles in SD(A) are positive, there exist { Xi }, hi > 0, 
such that Xiaij= hjaji for all i#j. Thus the matrix [$‘2uijh;1/2] is 
symmetric and so has only real eigenvalues. Thus A, being diagonally similar 
to this matrix, also has no nonzero purely imaginary eigenvalues and so no 
sinusoidal trajectory. n 

LEMMA 2. Suppose A is irreducible and SD(A) has no l-cycle or 
k-cycle, k > 2, but at least one negative 2-cycle. Then there exist A” E Q(A) 
and strictly sinusoidal x solving i = xx. 

Proof. Suppose SD(A) contains a negative 2-cycle. The question of 
existence is resolved by showing that it is always possible to attach straight 
chains to any subsystem with strictly sinusoidal nodes. In fact only f sin t 
and + cos t are required as node values; the entries of A’ are specified and 
modified as needed. Consider attachment of a straight chain with node set 
{2,3,..., p } to a subsystem with strictly sinusoidal node values at node 1. 
Assume node 1 has the value sin t. The idea is illustrated in Figure 2. We 
tentatively assign node p the value cost if p is even, or sin t if p is odd. 
Then let ]G,,_,] = 1, so that the sign of a”,,_i determines whether node 
p - 1 in i = Ax is fi,, that is, +sint if p is even, &cost if p is odd. 
Consider the equation at row p - 1. Specifying either ]a”,_r,] = ]&,_,,_,] = i 
or ]Z,_i,] = 1, ]a’,_r,_,] = 2, as needed according to edge signs, allows us to 
keep xP_ i = + 2,. This procedure extends down to row 1 of It = Ax. At row 
1 there might be a sign inconsistency. If so, then start over with the opposite 
sign for node p to correct this. If node 1 has the value cost, then assign node 
p the value sin t if p is even or cost if p is odd, and proceed as previously. 
Finally, adjust the magnitudes of 6ij as needed. n 

LEMMA 3. Suppose A is irreducible, SD(A) contains rw kcycle for 
k > 2, SD(A) contains at least one negative 2-cycle and at least one l-cycle, 
and SD(A) is not X-consistent, Then there exists A E Q(A) and a strictly 
sinusoidal trajectory x for i = Ax. 

cos t sin t 
+ 

FIG. 2. An illustration of the idea in the proof of Lemma 2. Attachment of a 
straight chain with node set {2,3,4,5} to subsystem at node 1. 
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Proof. Let us define an associated matrix sign pattern Q(A) in terms of 
Q( A, by replacing each diagonal_ entry in Q(A) with 0. Apply Lemma 2 to 
Q( AZ_ to obtain matrix values A and strictly sinusoidal trajectory y(t) for 
tj=Ay. 

We shall employ some of the machinery of [4, Section 51. If x,(t) is any 
function satisfying li = - x, define a complex number yi by xi(t) = Re[y,e”]. 
It will suffice to prove the _existence of n complex numbers { yi }, each 
nonzero, satisfying for some A E Q(A) 

( -a’,, + l)yi = c qjyj. (1) 
i#j 

Lemma 2 implies the existence of nonzero complex numbers { ai } satisfying 
bai = Ci + ja,j6j, where yi(t) = Re[6,e“]. If nodes i and j are connected by a 
2-cycle in SD(A), then the ratio Si /Sj is a nonzero purely imaginary number. 

Regard G(A) as a tree rooted at a distinguished node r with neighbor s. 
Define cij = Zij for all index pairs i # j, except define Z,, as below. Choose 
a node q such that a,, # 0 and such that SD(B) is Consistent, where the 
matrix B = [bij] has bij = Gij for if j, b,, = - a,,, b,, = uq4, and all other 
bii = 0. Considering the A argument in the proof of Theorem 1, no trajectory 
z(t) for i = Bz could be strictly sinusoidal. 

Using the tree structure of G(A), we can solve all but the Tth equation in 
(1) starting at the ends of branches and computing “down the tree” until 
each yi, i z I, is given as some yi = eiy,. If all ]Zii], i z r, are sufficiently 
small, the ratios of y-values for connected nodes are all nonzero complex 
numbers, close to the corresponding S-ratios. In particular Im( a,) z 0. Define 
y, = 1 (so x,(t) = cost). For sufficiently small ]cii] it will suffice to solve 
- a’,, + L = Erscx, with real i,,, 6,,. Since Im(a,) z 0, this is possible. The 
sign of E,, is correct, since each Bij is close to Zij, i + j, which follows from 
the continuity of complex inversion and complex multiplication. Suppose the 
sign of E,, is 0 or the opposite of urr. Rechoose all ]kZij 1 much smaller for 
i # q, retaining la,,]. Recalculate all Zij, i # j, and &,,. To avoid a positive 
integral of A over the interval [0,2~], such a rechoice must lead to a’,, of the 
correct sign. (The integral of h over [0,27r] must be zero for x = Re[ye”].) 1 

THEOREM 2. Suppose A is irreducible and SD(A) has no k-cycle, k > 2. 
Then there exists a strictly sinusoidal trajectory x solving i = Ax for 
some A E Q(A) iff SD(A) has at least one negative 2-cycle and SD(A) is 
not X-consistent. 

Proof. Consider A E Q(A) and a strictly sinusoidal trajectory r with 
associated constants {X j}, and assume there is a l-cycle at node i. Define 
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A = E;=,Xix;/2. If SD(A) were X-consistent, then along x the derivative of 
A would be A = E~=iXiZiiz” > 0. This would contradict the fact that 
A( r(t)) = R(x(t + 27r)). Lemma 1 establishes that SD(A) must have a nega- 
tive e-cycle. 

On the other hand, Lemmas 2 and 3 establish the existence of x when 
SD(A) has a negative 2-cycle and is not &consistent. n 

COROLLARYl. Zf A is irreducible and SD(A) has no k-cycle, k > 2, and 
exactly one l-cycle, then no A E Q(A) admits a strictly sinusoidal trajectory. 

Proof. Since in this case SD(A) is &consistent, Theorem 2 precludes a 
strictly sinusoidal trajectory. n 

4. CONSTANT TRAJECTORIES 

We now study solutions of Ax = 0 with x f 0 but some xi = 0. Note that 
the case n = 1 (A is the 0 matrix) is trivial, so we take n > 2. Suppose our 
previous assumptions hold, namely that A is irreducible and SD(A) has no 
k-cycles, k > 2, and also that Ax = 0, x f 0. Then there is natural way to 
partition SD(A) and G(A) into subgraphs. Let a white block be a maximal 
connected subgraph on the nodes of SD(A) which correspond to nonzero 
components of x. All nodes not in white blocks are black and in black blocks. 
This arrangement is expressed in the following color test. A O-coloring is a 
scheme for coloring all nodes of SD(A) which has no k-cycle, k > 2, black or 
white, so that: 

(i) no black node is a neighbor of exactly one white node; 
(ii) each maximal white block as a subgraph is either: a single undis- 

tinguished node; or a digraph which has at least two nodes, which has each 
end node distinguished, and which is not A-consistent. 

THEOREM 3. Suppose A is an irreducible matrix of order > 2 and 
SD(A) contains no k-cycle, k > 2. Then there exists A E Q(A) and a vector 
x f 0 satisfying Ax = 0 iff SD(A) admits a O-coloring with at least one 
white node. 

Proof. Suppose n > 2, Ax = 0, x f 0. Color white all nodes correspond- 
ing to nonzero entries in x, and color all other nodes black. Theorem 1 
implies condition (ii) when all xi z 0 and so all nodes are white. When both 
black and white nodes are present, considering the jth row equation 
in Ax = 0 for some x j = 0, we see condition (i) must be fulfilled. Any white 
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block satisfies a subsystem of equations A? = 0 which conforms to the 
conditions of Theorem 1, and so must fulfill condition (ii). 

For the converse, suppose SD(A) admits a holoring with some white 
node. We proceed to construct x f 0 satisfying AX = 0. Consider the subsys- 
tem of equations AX = 0 associated with a white block. By Theorem 1 such a 
subsystem admits a solution with each component nonzero. Let the compo- 
nents of the full vector r corresponding to the subsystem be so defined. 
Suppose j is a black node connected to a node in this white block; then by (i) 
node j is connected to other white nodes k,, k,, . . . , k,, q >, 1. Let ]a”+] be 
arbitrary positive numbers. Choose nonzero { xk, } values satisfying the jth 
row equation in Ax = 0. Using Theorem 1, extend these x-values through 
their respective white blocks; since G(A) is a tree, this procedure can be 
carried out for all white nodes and black nodes connected to white nodes. Let 
all other entries in A corresponding to edges in SD(A) from black nodes have 
arbitrary magnitudes, and components of x corresponding to black nodes be 
zero. This completes the construction of A and x with Ax = 0 and x $0. n 

To consider multiple eigenvalues of A, we use the idea of an undirected 
block graph B(A). Suppose we have a nontrivial O-coloring of SD(A). Delete 
from SD(A) all black nodes not connected to any white nodes and all edges 
to or from such black nodes. The nodes of B(A) consist of the remaining 
black nodes {b,, b,,... } and the (maximal) white blocks { wi, ws, . . . }. An 
edge {( bi, wj)} belongs to B(A) precisely when some node of b, is con- 
nected by a 2cycle to some node of wj. We say that B(A) is branched at a 
black node if some black node in B(A) is connected to more than two white 
nodes. We make use of ideas developed in [2, 6, 71 for sign symmetric 
matrices. 

THEOREM 4. Suppose A is irreducible and SD(A) contains no k-cycle, 
k > 2. Then 0 is an eigenvalue in at least two Jordan blocks of some 
A E Q(A) iff SD(A) admits a O-coloring for which B(A) is branched at a 
black node. 

Proof. Suppose there exists A E Q(A) and that 0 is an eigenvalue in two 
or more Jordan blocks of A”. Then there must exist two linearly independent 
solutions x and y for Ar = Ay = 0; choose x so that the number of 
components with ri = 0 is maximal. If the O-colorings associated with x and 
y are the same, then xi = 0 iff yi = 0. By resealing and renumbering we can 
achieve ri = yr # 0. Thus the O-coloring associated with r - y has more zero 
components than r, a contradiction. So we may assume without loss of 
generality that the O-coloring associated with x has a minimal number of 
white nodes and that the O-colorings associated with x and y are distinct. 
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Consider a white block in the O-coloring for x, with submatrix x and 
subvector X, so & = 0. Suppose the white block is attached at node i to 
exactly one black node, node j (there must always exist such a block and 
node). Suppose node j is white in the O-coloring for y; then we also have 
& + 5 = 0 where .$ is a vector with exactly one nonzero entry corresponding 
to the attachment of node i to white node j. Since any vector in the kernel of 
x must be proportional to X, we have gk = a?, for all nodes in the white 
block, even node i. The ith row equation is then 0 = &Y&Y, = XZikvk + ti = 
&Ii@, + ti = ti. This contradiction shows that node j must be black in the 
O-coloring for y. Using the tree structure of G(A), this argument extends to 
all nodes which are black in the O-coloring for x and attached to white nodes; 
and shows that no white block of the O-coloring for y can properly contain a 
white block of the O-coloring for X. Thus if the two colorings differ, some 
white block and its adjacent black nodes of the coloring for x he entirely 
within a black block of the coloring for y. Now color a node of SD(A) white 
if it is white in either the x or the y O-coloring, and black otherwise. Clearly 
this is a O-coloring for SD(A), and the associated B(A) is branched. 

Conversely, suppose that there is a O-coloring for SD(A) with B(A) 
branched. Then we use the proof of the first part of Theorem 3 to construct y 
and A so Ay = 0 and so yi # 0 if and only if node i is white. Thus the vector 
components of y corresponding to black nodes are zero, the edge values from 
black nodes are arbitrary. Some branched component of B(A) contains a 
straight path with white block end nodes. Recolor black all nodes of SD(A) 
not in that straight path to achi_eve a distinct O-coloring. Use Theorem 3 again 
to construct a new x (same A) which is not proportional to y but which 
satisfies Ax = 0. n 

5. SINUSOIDAL TRAJECTORIES 

We now give a color test associated with sinusoidal trajectories and 
imaginary eigenvalues. An Im-coZoring is a scheme for coloring all nodes of 
SD(A) which has no k-cycle, k > 2, black or white so that: 

(i) no black node is a neighbor of exactly one white node; 
(ii) each maximal white block as a subgraph contains at least one negative 

e-cycle and is not Xconsistent. 

Clearly, starting with an Imcoloring, we can derive a block graph B(A) just 
as in the previous section. 

THEOREM 5. Suppose A is an irreducible matrix of order > 2, and 
SD(A) has 7~) k-cycles, k > 2. Then there exists a sinusoidal trajectory for 



118 CLARK JEFFRIES AND P. VAN DEN DRIESSCHE 

J = Ax, x f 0, for some A E Q(A) iff SD(A) admits an Im-coloring with at 
least one white node. 

Proof. If i = Ax is a sinusoidal trajectory (x f 0), color node i white if 
x, f 0; otherwise color node i black. Theorem 2 together with a line of 
reasoning parallel to that in the first part of the proof of Theorem 3 show that 
such a coloring is a nontrivial Im-coloring. 

Suppose SD(A) admits an Imcoloring with at least one white node. 
Using Lemma 3 and balancing edge values as in the latter part of the proof of 
Theorem 3 establishes the existence of a sinusoidal trajectory. n 

THEOREM 6. Suppose A is irreducible and SD(A) contains no k-cycle, 
k > 2. Then 1 is an eigenvalue in at least two Jordan blocks of some 

A E Q(A) iff SD(A) admits an Im-coloring for which B(A) is branched at a 
black node. 

Proof. The proof is completely analogous to the proof of Theorem 4 
(using Theorem 5) and is omitted. n 

6. SIGN CONTROLLABILITY 

For an irreducible matrix A with SD(A) having no k-cycles, k > 2, we 
can detect the possibility that a real number X is an eigenvalue of A or is the 
real part of a complex eigenvalue of A as follows. For any A there are a finite 
number of digraphs SD( A - XI ) fo r - cc < X < cc. First we apply Theorem 
3 to determine whether or not some matrix in Q( A - AZ) has 0 as an 
eigenvalue. Applying Theorem 4 then gives us in addition a criterion for X to 
occur in two or more Jordan blocks for some A E Q(A). Theorems 5 and 6 
give us analogous conditions for the oc_currence of X + 1 or, by resealing, 
x + KL (K > O), as an eigenvalue of some A E Q(A) or as an eigenvahre in two 
or more Jordan blocks. This is a characterization with implications in control 
theory; for background information and related results see [l, 2, 51. Gener- 
alizing control theory concepts, we define A to be controllable if distinct 
Jordan-blocks of A have distinct eigenvalues. We call A sign controllable if 
every A E Q(A) is controllable. 

We express the above observations formally as follows. 

COROLLARY 2. Suppose A is irreducible and SD(A) has rw k-cycle, 
k > 2. Then A is sign controllable if rw block graph B( A” - Xl ) obtained from 
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FIG. 3. An example of a sign controllable signed digraph. 

any O-coloring or any Im-coloring of any SD(A - XI), x E Q(A), is 
branched at a black node. n 

To conclude, we consider as an example A with SD(A) in Figure 3. By 
inspection the O-coloring possibilities can be enumerated as follows. If node 7 
is black, then nodes 5, 6, 8, 10, 9, 11, 4, 2, 1, and 3 are forced to be black (in 
that order, using the rules for @colorings). However, if node 7 is white, then 
nodes 4,6,8 are black, nodes 5,9 are white, nodes 10,ll are black, and nodes 
1,2,3 are white. This is the only nontrivial O-coloring of SD(A), and the 
associated block graph is not branched at a black node, so 0 is an eigenvalue 
in at most one Jordan block of any A E Q(A). 

By inspection the Im-coloring possibilities can be enumerated as follows. 
If node 7 is black, then the node sets { 1,2,3,4} and { 8,9,10, ll} can be 
white with nodes 5 and 6 black. The block graph B(A) associated with this 
coloring is not branched. If node 7 is white, then all nodes white except 8,9 is 
an Im-coloring but also has no branching in B(A). The only other Im-coloring 
with node 7 white is all nodes white; again B(A) is without branching. We 
conclude from Theorems 4 and 6 that no A E Q(A) can have either 0 or KL as 
eigenvalues in more than one Jordan block. 

There are six signed digraphs of the form SD( A - XI) aside from SD(A) 
itself. The only possible B( x - XI) branchings must occur at nodes 2 or 7. 
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(Branching cannot occur at node 8 because node 9 cannot be white for 
X f 0.) If all of nodes 8,9,10,11 have l-cycles of one sign, then there is no 
proper subgraph among those nodes with nontrivial O-coloring. Hence no 
O-coloring could have 7 black and 8 white. Likewise no O-coloring could have 
2 black and 1 or 3 white. Hence no B( A - AZ) graph from a O-coloring of 
SD( A” - hZ ) branches at a black node. The subgraph containing nodes 5,6 
has no negative 2cycle, so in no Im-coloring can node 7 be black and node 6 
white. Likewise in no Im-coloring can node 2 be black and node 1 or 3 be 
white. Hence no Z?( A - AZ) graph from an Im-coloring of SD( a - XI) 
branches at a black node. In summary, Theorems 4 and 6 imply A with 
SD(A) in Figure 3 is sign controllable. 
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