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SUMMARY

The inflammatory microenvironment promotes skin
tumorigenesis. However, the mechanisms by which
cells protect themselves from inflammatory signals
are unknown. Downregulation of IKKa promotes
skin tumorprogression frompapillomas tosquamous
cell carcinomas, which is frequently accompanied
by genomic instability, including aneuploid chromo-
somes and extra centrosomes. In this study, we
found that IKKa promoted oligomerization of nucleo-
phosmin (NPM), a negative centrosome duplication
regulator, which further enhanced NPM and centro-
some association, inhibited centrosome amplifica-
tion, and maintained genome integrity. Levels of
NPMhexamersand IKKawereconversely associated
with skin tumor progression. Importantly, proinflam-
matory cytokine-induced IKKa activation promoted
the formation of NPM oligomers and reduced centro-
some numbers in mouse and human cells, whereas
kinase-dead IKKa blocked this connection. There-
fore, our findings suggest a mechanism in which an
IKKa-NPM axismay use inflammatory signals to sup-
press centrosome amplification, promote genomic
integrity, and prevent tumor progression.
INTRODUCTION

IKKa (also called Chuk) is a serine/threonine protein kinase that

can be activated by various cytokines through different recep-
Cell Re
tors in a kinase-dependent manner (Ghosh and Karin, 2002).

However, IKKa regulates keratinocyte differentiation and prolif-

eration in the skin independently of its kinase activity (Hu et al.,

2001). IKKa downregulation promotes skin carcinogenesis,

and its deletion induces spontaneous squamous cell carcinomas

(SCCs) of the skin, lungs, and forestomach in mice (Liu et al.,

2008; Park et al., 2007; Xiao et al., 2013). In humans, IKKa down-

regulation has been reported in SCCs of the skin, lungs, esoph-

agus, and head and neck (Marinari et al., 2008). A single

mutation-generated IKKa deletion has been identified in human

lethal syndrome (cocoon syndrome), in which multiple organs

are malformed (Lahtela et al., 2010). These findings highlight

the importance of IKKa in the pathogenesis of these human dis-

eases. Recently, we have demonstrated that inflammation pro-

motes IKKa reduction-initiated SCC development in mice (Xiao

et al., 2013). Similar inflammatory phenotypes have been

observed in human SCCs. This evidence prompted us to inves-

tigate whether proinflammatory cytokine-induced IKKa activa-

tion may antagonize skin tumorigenesis.

The centrosome, a small organelle composed of pericentriolar

material and tubulin proteins, generates polar spindles that

segregate chromosomes into two daughter cells during mitosis

(Nigg, 2002). Normal cells contain one or two centrosomes.

The centrosome duplication cycle is incorporated into the cell

cycle. Many cell-cycle regulators, tumor suppressors, and onco-

genic proteins regulate centrosome duplication. The presence

of extra centrosomes is frequently associated with cancer

(D’Assoro et al., 2002; Nigg, 2002). The extra centrosomes

have been demonstrated to generate multipolar spindles that

directly mediate merotelic attachments, a type of exacerbating

erroneous attachment of spindle microtubules to chromosomes

during chromosome segregation, thereby inducing chromo-

some missegregation and promoting chromosomal instability
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and aneuploidy (Ganem et al., 2009). Centrosome amplification

can initiate tumorigenesis in flies (Basto et al., 2008). Therefore,

proper centrosome replication may be pivotal for maintaining

genomic stability and preventing tumor development.

NPM regulates centrosome duplication and binds to centro-

somes at the M phase (Okuda et al., 2000). After Cdk2 and cyclin

E phosphorylate Thr199 in NPM, NPM dissociates from centro-

somes, in turn triggering centrosome duplication at the late G1

phase. Blocking NPM dissociation from centrosomes inhibits

centrosome duplication. Conversely, NPM loss leads to unre-

stricted centrosome duplication and genomic instability in

mouse embryonic fibroblasts (MEFs) (Grisendi et al., 2005).

Npm�/� mice exhibit embryonic lethality, and NPM reduction

promotes c-Myc-induced leukemia development in mice. The

N-terminal region of the Npm gene can be fused with the

anaplastic lymphoma kinase, retinoic acid receptor a, or myeloid

leukemia factor 1 gene through genomic DNA breaks in several

types of human leukemia (Grisendi and Pandolfi, 2005). NPM

has multiple functions and partners. On the other hand, NPM

has been proposed to have an oncogenic activity (Yung, 2007).

The controversial functions of NPM may be partially due to its

various partners in particular cellular events. We have observed

increased NPM levels in benign skin papillomas and reduced

NPM levels in malignant skin carcinomas (Zhu et al., 2009), indi-

cating that NPM may regulate skin tumorigenesis.

Here, we show that IKKa enhances the association between

NPMandcentrosomes throughphosphorylatingNPM,whichpre-

vents centrosome amplification and genomic instability. Unex-

pectedly, this IKKa-NPM axis responds to inflammatory signals.

Because IKKa expression is downregulated in SCCs, decreased

IKKa cannot provide a connection between the inflammatory

microenvironment and control of centrosome duplication,

thereby promoting centrosome amplification and genomic insta-

bility. Our finding reveals a mechanism for how IKKamay prevent

skin tumor progression in the inflammatory microenvironment.

RESULTS

IKKa Interacts with NPM and Phosphorylates S125 of
NPM
To study the relationship between IKKa and NPM in keratino-

cytes, we first compared the status of NPM using two-dimen-

sional gel electrophoresis and found that its isoelectric

status was different in primary-cultured Ikka�/� keratinocytes

compared to wild-type (WT) keratinocytes (Figure S1A). Using

immunoprecipitation (IP), an interaction between NPM and

IKKa was detected, but not between NPM and IKKb in keratino-

cytes (Figures 1A and S1B). We identified the interaction regions

of IKKa and NPM by coexpressing Flag-tagged NPM with HA-

tagged WT IKKa and four other mutant forms or coexpressing

WT HA-IKKa with WT Flag-NPM and four other deletion forms,

followed by IP and western blotting (Figures S1C–S1E). The re-

sults showed that WT IKKa interacted with WT NPM, although

IKKa bound weakly to an N-terminal-truncated NPM, suggesting

that the interaction between IKKa and NPM requires both pro-

teins in their entirety.

Second, to determine whether IKKa phosphorylates NPM, we

used different NPM deletion and mutation forms as kinase sub-
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strates and found that IKKa phosphorylated the amino acid (aa)

119–195 region, which contains five serine sites, but a kinase-

dead IKKamutant (IKKa-KA) did not phosphorylateNPM (Figures

1B,1C,andS1E).We then replacedeachserine (S)withalanine (A)

to generate five mutated NPM proteins (S125A, S137A, S139A,

S143A, and S149A). S125A and a delta form lacking the aa 119–

195 region completely abolished NPM phosphorylation by IKKa

(Figure 1C), suggesting that IKKa phosphorylates S125 of NPM.

IKKaefficientlyphosphorylatedNPMThr199A (Thr199was replaced

by alanine [Okuda et al., 2000]) (Figure 1C). Although IKKb

also phosphorylated the aa 119–195 region of NPM, it did not

show specificity for one of these serine sites (Figure S1F).

Because IKKa is specifically associated with NPM, we focused

on understanding the relationship between IKKa and NPM.

We generated a phospho-(p)-S125-NPM antibody, and the

specific p-S125-NPM peptide blocked the p-S125 antibody ac-

tivity in a dose-dependent manner inWT cells (Figure 1D). Re-ex-

pressing WT HA-IKKa restored S125-NPM phosphorylation in

Ikka�/� cells, but re-expressing HA-IKKa-KA did not (Figure 1E).

Previous reports suggest that CKII kinase phosphorylates S125-

NPM (Chan et al., 1986; Szebeni et al., 2003). To determine

whether IKKa requires CKII for phosphorylating S125-NPM, we

knocked down CKII expression in WT MEFs using small inter-

fering RNA (siRNA), which did not affect NPM levels. Although

CKII siRNA slightly reduced p-S125-NPM levels in WT MEFs,

the p-S125-NPM level in Ikka�/� cells was lower than that in

WT cells lacking CKII (Figure 1F), suggesting that IKKa induced

the phosphorylation of S125-NPM independently of CKII.

Mass spectrometry (MS) analysis further confirmed that

p-S125 was associated with IKKa and not IKKa-KA (Figure 1G;

Figures S3C–S3E). Together, these results indicate that IKKa

specifically phosphorylates S125-NPM. The sequence sur-

rounding S125 of NPM is not a consensus phosphorylation site

like the consensus S32 of IkBa (Figures 1G and 1H). A compar-

ison of the similarities and differences between the phosphoryla-

tion sequences of several proteins and the activities of IKKa and

IKKb on these proteins suggests that IKKb likely shows stronger

kinase activity for those proteins containing consensus

sequences than IKKa does (Hu et al., 2004; Mercurio et al.,

1997), whereas IKKa preferentially phosphorylates proteins con-

taining nonconsensus sequences (Anest et al., 2003; Hoberg

et al., 2006) (Figure 1H). Thus, IKKa and IKKb kinase activities

are not identical.

Immunofluorescent (IF) staining with the p-S125-NPM anti-

body revealed substantially reduced staining in the skin of

kinase-dead Ikka (IkkaKA/KA) mice compared to WT mice (Fig-

ure S1G). Western blot consistently showed reduced p-S125-

NPM levels in the skin and heart of Ikka�/� newborn mice

compared to WT (Figure S1H). These results suggest a physio-

logical relationship between IKKa and S125-NPM.

S125 Phosphorylation Promotes NPM-NPM Interaction
and NPM Hexamer Formation
To determine the functional relationship between IKKa and

S125-NPM, we examined NPM levels in primary-cultured

Ikka+/+, Ikka+/�, and Ikka�/� keratinocytes and found that,

although the NPM levels at the expected molecular size

(37 kDa) remained similar, increased levels of NPM hexamers
hors



Figure 1. IKKa Interacts with NPM and

Phosphorylates S125 of NPM

(A) Interaction of IKKa and NPM in primary-

cultured keratinocytes detected by immunopre-

cipitation (IP) with IKKa antibody (Ab) and western

blot with NPM antibody. Immunoglobulin (Ig),

control for IP; HC, antibody heavy chain.

(B and C) Phosphorylation of NPM by IKKa was

analyzed with an immunocomplex kinase assay

(IKA). HA-IKKa was precipitated with HA antibody

using lysates of HEK293 cells overexpressing

HA-IKKa or HA-IKKa-KA. GST-NPMproteins were

used as kinase substrates. Five phosphorylation

sites within aa 119–195 of NPM were examined

using IKA. GST IkBa, positive control for IKK; neg,

GST-14-3-3s protein as a kinase-negative con-

trol; *, bands indicating labeled proteins.

(D) The specificity of p-S125-NPM from WT MEF

lysates was analyzed by western blot with p-S125-

NPM antibody that was incubated with a specific

p-S125-NPM peptide for 2 hr at room tempera-

ture. b-actin, protein-loading control. Ratio, anti-

body:peptide.

(E) Western blot shows HA-IKKa (HA), p-S125-

NPM, and NPM levels in WT and Ikka�/� MEFs

transfected with HA-IKKa, HA-IKKa-KA, or control

vector (Cont).

(F) Western blot shows CKII, p-S125NPM, NPM,

and IKKa levels in Ikka�/� and WT MEFs treated

with control siRNA (si-C) or CKII siRNA (si-CKII).

(G) Phosphorylated S125-NPM sequence (*, pS)

was analyzed using trypsin digestion and mass

spectrometry.

(H) The consensus sequences containing serine

sites that can be phosphorylated by IKKa and

IKKb. S, serine; D, aspartic acid; T, threonine; c,

hydrophobic amino acid; X, any amino acid.

See also Figure S1.
with a molecular size of approximately 230 kDa were correlated

with increased IKKa levels in a dose-dependent manner.

Conversely, increased levels of small NPM oligomers were asso-

ciatedwith decreased IKKa levels in the keratinocytes (Figure 2A,

left and right panels). IKKa siRNA treatment reduced NPM hex-

amer levels in a dose-dependent manner (Figure 2B). Previous

studies showed the presence of NPM monomers and hexamers

in cells by using either native or denaturing protein gel electro-

phoresis, and the NPM hexamer levels were lower in denaturing

gels than in native gels (Herrera et al., 1996; Yung and Chan,

1987). We detected NPM hexamer levels using the two different

gel methods (data not shown). As the denaturing gel produced

the most consistent results, we used it in this study. NPM hex-

amer formation can be altered by many factors, such as cell-cy-

cle regulation, small molecule inhibitors, salts, and several NPM

mutations (Chou and Yung, 1995; Herrera et al., 1996; Liu and

Chan, 1991; Zirwes et al., 1997). Here, our results showed that

IKKa regulated NPM hexamer formation.

We then investigated whether S125 regulates NPM oligomer-

ization by introducing Flag-tagged NPM, NPMS125A, and

NPMThr199A into cells, followed by IP with an Flag antibody and

western blot with a NPM antibody. Because NPM interacts

with NPM, the Flag antibody should pull down both Flag-tagged

NPM and endogenous NPM. Flag-NPMS125A showed a much
Cell Re
weaker ability to pull down Flag-NPMS125A and endogenous

NPM and formed fewer hexamers than did Flag-NPM, whereas

Flag-NPMThr199A showed a stronger ability to perform these

activities than did Flag-NPM and Flag-NPMS125A (Figure 2C,

left and right panels). A glutathione S-transferase (GST)-NPM

protein consistently pulled down substantially more Flag-

NPMThr199A and Flag-NPM, including NPM monomers and

hexamers than did Flag-NPMS125A (Figure 2D). We also found

reducedNPMhexamer and p-S125-NPM levels in IkkaKA/KA cells

and that reintroducing WT IKKa increased NPM hexamer and

p-S125-NPM levels (Figure S2A). These results indicate that

S125 phosphorylation may stabilize NPM hexamers by strength-

ening NPM oligomerization.

We then examined the correlation between NPM hexamer

levels, IKKa, and skin tumors, including papillomas and

carcinomas derived from BL6 mice, induced by the chemical

carcinogens 7,12-dimethylbenz[a]-anthracene (DMBA) and 12-

O-tetradecanoylphorbol-13-acetate (TPA) (Park et al., 2007). In

this setting, approximately 95% of the papillomas eventually

regress, and only 5% progress to malignant carcinomas. TPA

treatment increases IKKa levels in the skin. Western blot showed

significantly increased NPM hexamer and IKKa levels in papil-

lomas compared to untreated normal skin (Figure 2E).

Conversely, the NPM hexamer and IKKa levels in carcinomas
ports 5, 1243–1255, December 12, 2013 ª2013 The Authors 1245



Figure 2. IKKa Regulates NPM Oligomerization via S125-NPM

(A) Western blot shows NPM monomer and hexamer, IKKa, and g-tubulin (g-tub) levels in primary-cultured Ikka�/�, Ikka+/�, and Ikka+/+ keratinocytes.

(B) The effect of IKKa siRNA on NPM oligomerization was detected with western blot. Mock, no siRNA; Cont, nonspecific siRNA (400 nM).

(C) Binding of Flag-NPM, Flag-NPMS125A (S125A), and Flag-NPMThr199A (T199A) in HEK293 cells was compared using IPwith Flag antibody andwestern blot (WB)

with NPM antibody at short (left) and long (right) exposures.

(D) Binding abilities of Flag-NPM, Flag-NPMS125A, and Flag-NPMThr199A from HEK293 cells with GST-NPM protein were compared using GST pull-down assay

and western blot with Flag antibody. GST-NPM, loaded GST-NPM protein.

(E) Western blot shows NPM, NPM hexamer, and IKKa levels in normal skin (Sk), papillomas (Pa), and carcinomas (Ca). Regress, tumor regress; progress, tumor

progression; *, fine band. b-actin, protein loading control.

(F) Western blot shows IKKa, p-IKKa, p-IKKb, p-S125-NPM, NPM, and NPM hexamer levels in HEK293 cells following TNFa (10 ng/ml) stimulation.

(legend continued on next page)
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were markedly decreased compared to normal skin and papil-

lomas (Figure 2E). These results indicate a good correlation be-

tween reduced NPM hexamer and IKKa levels and tumor pro-

gression. NPM loss increased centrosome numbers (Grisendi

et al., 2005). Consistently, we observed increased centrosome

numbers in carcinomas compared to papillomas and normal

skin (Figure S2B). We also detected increased centrosome

numbers in skin SCCs derived from IkkaKA/KA mice (Figure S2C).

Previously, we reported spontaneous skin SCCs in a proportion

of IkkaKA/KA mice, associated with IKKa reduction and marked

inflammation (Xiao et al., 2013). Increased TNFa, a major proin-

flammatory cytokine, has been observed in the inflammatory

microenvironment during skin and lung SCC development and

increased IKKa has been reported to inhibit skin tumor progres-

sion (Liu et al., 2006; Park et al., 2007; Xiao et al., 2013).We found

that TNFa treatment induced IKKa phosphorylation and

increased NPM hexamers, which were correlated with increased

NPM phosphorylation (Figure 2F). Because TNFa also activated

IKKb (Figure 2F), we next treated WT and IkkaKA/KA MEFs with a

lymphotoxin beta receptor (LtbR) antibody (agonist) (Dejardin

et al., 2002) to specifically activate IKKa. This agonist markedly

elevated NPM hexamers in WT cells, but not in IkkaKA/KA cells

(Figure 2G), and the increased hexamers correlated with the

increased IKKa phosphorylation in WT cells, indicating that

IKKa kinase is required for hexamerization. Previously, we re-

ported reduced IKKa in IkkaKA/KA cells (Xiao et al., 2013).

Although increased NPM hexamer levels were associated with

IKKa phosphorylation in both the HEK293 cells and WT MEFs,

the NPM hexamer peak then decreased quickly, suggesting

that a mechanism that downregulates NPM hexamer formation

is present. We will investigate this in the future.

Lymphotoxin alpha (Lta) is a ligand of LtbR. We found

increased Lta and TNFa expression in mouse skin tumors

induced by DMBA and TPA (Park et al., 2007) compared to

normal skin (Figures 2H and S2D). Together, these results sug-

gest that this IKKa-NPM axis may use the proinflammatory cyto-

kine-induced signal to promote NPM hexamer formation in vivo.

IKKa Colocalizes with NPM in Centrosomes, and NPM
Hexamers Stabilize the Association of NPM and
Centrosomes
In investigating the function of NPM hexamers in centrosomes,

we used an immunoelectron microscopy approach to confirm

that immunostained NPM polymers were associated with cen-

trosomes (Figure 3A, left). Immunostained NPM polymers asso-

ciated with nucleoli were used as a positive control (Bertwistle

et al., 2004) (Figure 3A, middle). Chinese hamster ovary (CHO)

and U2OS human osteosarcoma cells have been widely used

to study centrosome duplication (Meraldi et al., 1999). IF staining

showed that IKKa colocalized with one or two centrosomes and

that IKKa colocalized with NPM in centrosomes at the M phase

(Figure 3B), suggesting that IKKa associates with centrosomes
(G) Western blot shows NPM hexamer, NPM, IKKa, IKKb, p-S125-NPM, and p

treatment.

(H) Quantitative PCR shows relative expression levels of Lta in normal skin and s

t test. The results are presented as mean ± SD of four samples.

See also Figure S2.

Cell Re
in both the M phase and interphase in CHO cells. NPM was

also found to colocalize with centrosomes at the M phase in pri-

mary cultured keratinocytes (Figure S3A). We confirmed that the

g-tubulin or centrin antibody (centrosome components) stained

the same centrosomes in cells (Figure S3B). Also, purified cen-

trosomes (g-tubulin containing fractions) from U2OS and CHO

cells contained IKKa and NPM, but not IKKb and IKKg

(Figure 3C).

To examine whether NPM hexamers regulate the association

of NPM and centrosomes through S125-NPM, we isolated

centrosomes from CHO cells transfected with Flag-NPM, Flag-

NPMS125A, and Flag-NPMThr199A and examined centrosome-

bound NPM levels. The total levels of centrosome-bound

Flag-NPMS125A (NPM monomers and hexamers) were markedly

lower than were the total levels of centrosome-bound Flag-NPM

(Figure 3D, left and right panels). In contrast, the total levels of

centrosome-bound Flag-NPMThr199A (monomers and hexamers)

were markedly increased compared to Flag-NPM. Moreover,

overexpressed IKKa-KA reduced centrosome-bound NPM

hexamer levels in cells compared to overexpressed WT IKKa

(Figure 3E). Both WT IKKa and IKKa-KA were found to interact

with NPM (Figure 3F). To determine whether IKKa-KA can

compete with WT IKKa for interaction with NPM, we coex-

pressed Flag-NPM/HA-IKKa or Flag-NPM/HA-IKKa-KA in

HEK293 cells and immunoprecipitated Flag-NPM with a Flag

antibody. The isolated Flag-NPM protein was digested with

trypsin and was analyzed using mass spectrometry (Figures

S3C–S3E). The S125 site is located in a 31-aa peptide. We found

more peptides containing unphosphorylated S125 in cells

coexpressing Flag-NPM/HA-IKKa-KA than in cells coexpressing

Flag-NPM/HA-IKKa. These results suggest that IKKa-KA may

block S125-NPM phosphorylation, reducing centrosome-

bound NPM hexamers and NPM. Collectively, the S125-NPM

phosphorylation enhanced NPM hexamer levels to stabilize the

association of NPM with centrosomes.

IKKa Loss Induces Centrosome Amplification and
Increases Chromosome Numbers
We further examined the effect of IKKa loss on centrosome

numbers. IF staining showed increased centrosome numbers

in primary Ikka�/� keratinocytes and Ikka�/� immortalized kerati-

nocytes (Liu et al., 2009) compared to WT keratinocytes (Fig-

ure 4A). Reintroducing WT IKKa, but not IKKa-KA, reduced

centrosome numbers in Ikka�/� keratinocytes. Consistently,

centrosome numbers were increased in IkkaKA/KA MEFs

compared to WT MEFs (Figure 4B, left and right). The LtbR anti-

body treatment reduced centrosome numbers in WT MEFs, but

not in IkkaKA/KA MEFs (Figure 4B, left), suggesting that IKKa ki-

nase activation specifically represses centrosome amplification.

We further examined whether centrosome duplication is

deregulated in Ikka�/� and IkkaKA/KA cells using a standard

centrosome duplication assay (Meraldi et al., 1999; Nigg,
-IKKa levels in WT and IkkaKA/KA MEFs following LtbR antibody (500 ng/ml)

kin tumors induced by chemical carcinogens. p < 0.05 examined by Student’s

ports 5, 1243–1255, December 12, 2013 ª2013 The Authors 1247



Figure 3. S125 of NPM Regulates Centrosome-Bound NPM Levels

(A) Left: Immunoelectron microscopy shows the association of NPM and centrosomes. N, nucleus; C, centrosome; dark spots, immunostained NPM. Scale bar,

250 nm. Middle: Immunostained NPM associates with a nucleolus as positive-staining control. Right: Unstained centrosomes as negative-staining control.

(B) Colocalization of IKKa with pericentrin, g-tubulin, and NPM in CHO cells was detected with IF staining. Each arrow indicates a centrosome. Blue, DAPI

staining. Scale bar, 10 mm.

(C) Fractions of purified centrosomes obtained from U2OS and CHO cells using small-scale sucrose-gradient ultracentrifugation, followed by western blot.

Numbers indicate fractions. S, supernatants of cells; g-tub, g-tubulin.

(D) Left: Levels of centrosome-bound Flag-NPM, Flag-NPMS125A (S125A), and Flag-NPMThr199A (T199A) hexamers andmonomers, detected by western blot with

Flag antibody. Number, centrosome fractions. Right: Relative density levels of centrosome-bound NPM were measured using densitometry (Image Station 440;

Eastman Kodak) and analyzed using an image analysis software program (ImageQuant TL v. 2003.01; Amersham Biosciences). Each relative value was

determined from six fractions and then divided by the density levels of g-tubulin and overexpressed Flag-NPM.

(legend continued on next page)
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2002). We treated WT, IkkaKA/KA, and Ikka�/� MEFs with hy-

droxyurea and examined centrosome numbers at 24, 48, and

72 hr. The numbers of IkkaKA/KA and Ikka�/� cells with amplified

centrosomes increased progressively; however, the number of

WTcellswith amplified centrosomesdid not increase (Figure 4C).

The progression of centrosome amplification wasmore severe in

Ikka�/� than in IkkaKA/KA cells. These results suggest that IKKa

loss or inactivation is associated with centrosome amplification.

Using spectral karyotyping (SKY) analysis, we assayed chromo-

some instability and found dramatically increased chromosome

numbers in Ikka�/� and IkkaKA/KA MEFs and immortalized

Ikka�/� keratinocytes compared to WT cells (Figures 4D and

S4A). These results suggest that IKKa deficiency induces centro-

some amplification, which may be associated with chromosome

instability, although the detailedmechanism remains to be inves-

tigated. To determine the relevance of this study to human tumor

development, we compared numbers of centrosomes in a

normal human bronchial epithelial cell line (HBEC) (Xiao et al.,

2013) and a human tongue SCC line (SCC25), and found mark-

edly increased centrosomes in SCC25 cells compared to

HBEC cells (Figure 4E). Human Lta (hLta) treatment reduced

centrosome numbers in HBEC cells, but not in SCC25 cells (Fig-

ure 4E). Furthermore, hLta treatment increased levels of IKKa

and NPM phosphorylation and NPM hexamers in human HBEC

cells (Figure 4F), indicating that human and mouse cells share

a commonmechanism for the control of centrosome duplication.

Chromosome numbers were also increased in SCC25 and the

A431 line, derived from a human epidermal tumor, compared

to HEBC cells (Figures 4G and S4B). Western blot showed

reduced levels of IKKa and increased levels of Aurora A, a kinase

that promotes cell mitosis (Prajapati et al., 2006) and phosphor-

ylated Aurora A in A431 and SCC25 cells compared to HBEC

cells, whereas reintroduced IKKa reduced Aurora A and phos-

phorylated Aurora A levels in A431 and SCC25 cells (Figure S4C),

suggesting that IKKa downregulates Aurora A expression, which

is different from the result reported by Prajapati et al. (2006). We

will further investigate whether IKKa acts differently in different

types of cells and how IKKa regulates Aurora A expression.

p53 has been shown to regulate centrosome duplication

(D’Assoro et al., 2002; Fukasawa et al., 1996). Therefore, we

examined whether IKKa null cells have a defect in p53 expres-

sion. Following treatment with ultraviolet B (UVB) or doxorubicin,

p53 and p21 were appropriately induced in both primary WT

and Ikka�/� keratinocytes (Figure S4D), suggesting that IKKa

can regulate centrosomes independent of p53 in primary

keratinocytes.

Mutant S125A-NPM Induces Centrosome Amplification
We further hypothesized that the S125A-NPM mutant or other

NPM mutations that reduce NPM hexamers may increase

centrosome amplification. We then introduced NPM and
(E) Centrosome-bound NPM from CHO cells overexpressing IKKa or IKKa-KA was

were converted to relative density levels using densitometry (Image Station 440

relative value was collected from six fractions.

(F) Interaction of GST-NPM with IKKa (WT) or IKKa-KA (KA) in CHO cells was anal

protein loading was stained with Coomassie blue. Input, HA-IKKa and HA-IKKa-

See also Figure S3.
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NPMS125A into CHO cells. NPMThr199A was used as a functional

control because it inhibits centrosome duplication (Tokuyama

et al., 2001); IKKa, IKKa-KA, IKKb, and IKKb-KA were used as

controls. NPMS125A or IKKa-KA induced significantly more cen-

trosomes than did WT NPM, WT IKKa, IKKb, or IKKb-KA,

whereas NPMThr199A reduced centrosomes significantly (Fig-

ure 5A). To determine whether NPM oligomerization regulates

centrosomes as a common mechanism, we generated three

NPM mutants (Figure S5A). A phosphomimetic NPMS125D

slightly increased NPMhexamer levels and did not cause centro-

some amplification (Figures S5A–S5C). NPMC22S andNPMM579L,

previously reported to reduce NPM oligomerization (Liu and

Chan, 1991; Zirwes et al., 1997), were found to reduce NPM

hexamers and increase centrosome amplification (Figure 5A;

Figures S5A–S5C). These results support the notion that NPM

oligomerization is a mechanism involved in preventing centro-

some amplification.

We depleted endogenous NPM from CHO and U2OS cells by

NPM siRNA. NPM knockdown dramatically increased centro-

some numbers in these cells (Figures 5B and 5C). In cells treated

with NPM siRNA, re-expressing NPM and NPMThr199A reconsti-

tuted endogenous NPM function, but NPMS125A failed to do so

(Figure 5B). The result further demonstrated that S125-NPM

prevented centrosome amplification.

We next tested whether the kinase activity of IKKa plays a role

in preventing centrosome amplification by coexpressing NPM/

IKKa, NPM/IKKa-EE (a constitutively active form of IKKa [Mercu-

rio et al., 1997]), or NPM/IKKa-KA in CHO cells, after depleting

the endogenous NPMwith siRNA. NPM/IKKa and NPM/IKKa-EE

decreased centrosome numbers, whereas NPM/IKKa-KA

increased centrosome numbers (Figure S5D). Moreover, re-ex-

pressed IKKa or IKKa-EE repressed centrosome amplification

in KA/KA cells, but IKKa-KA did not (data not shown). Further-

more, we depleted endogenous IKKa in CHO cells using siRNA

and found that IKKa siRNA increased centrosome numbers,

but IKKb siRNA and the control siRNA did not (Figure 5D, left

and middle panels). We used IF staining to localize NPM in the

centrosomes of those cells treated with control siRNA, IKKa

siRNA, or IKKb siRNA (Tokuyama et al., 2001). The results

showed that the percentage of cells containing centrosome-

bound NPM was lower among the cells treated with IKKa siRNA

than those treatedwith control siRNAand IKKb siRNA (Figure 5D,

right panel), suggesting that IKKa enhances the association of

NPM and centrosomes. Thus, both S125-NPM and IKKa kinase

are required for preventing centrosome amplification.

To verify the effect of the presence or absence of IKKa kinase

on S125-NPM phosphorylation associated with centrosomes in

cells, we performed IF staining and found that the p-S125-

NPM antibody stained centrosomes in cells containing one

centrosome (G1 phase) and in dividing cells (M phase; Fig-

ure S5E) but did not stain centrosomes well in cells containing
detected using western blot with NPM antibody. Signals from the western blot

) and analyzed using the ImageQuant TL software program (v. 2003.01). Each

yzed by GST pull-down followed by western blot (WB) with IKKa antibody. GST

KA levels in total cell lysates.
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Figure 4. IKKa Deficiency Is Associated with Centrosome Amplification and Increased Chromosome Numbers

(A) Centrosome numbers in primary-cultured WT (+/+) and Ikka�/� (�/�) keratinocytes and Ikka�/� immortalized keratinocytes (cell line) detected by IF staining.

p value was determined by Student’s t test. The results are presented as mean ± SD from three experiments.

(B) Left: Comparison of untreated and LtbR antibody (500 ng/ml) treated WT and IkkaKA/KA (KA/KA) MEFs containing more than two centrosomes detected by

IF staining. The statistical result (p) was analyzed by Student’s t test. n.s, no significant difference. The results are presented as mean ± SD from three

experiments. Right: Stained centrosomes (green) indicated by arrows. Multiple centrosomes are enlarged from small boxes to large boxes (arrows). Scale

bars, 10 mm.

(C) Analysis for centrosome duplication inWT, IkkaKA/KA, and Ikka�/�MEFs treated with 2mMhydroxyurea. Centrosome numbers were analyzed by staining with

g-tubulin antibody. Black column, cells containing one or two centrosomes; white column, cells containing more than two centrosomes. The results represent as

mean ± SD from three experiments.

(D) Comparison of chromosome numbers from ten cells in each type of cells: WT, Ikka�/�, and IkkaKA/KA MEFs, as detected by SKY.

(E) Centrosome numbers in HBECandSCC25 cells treatedwith hLta (50 ng/ml) detected by IF staining. n.s., no significant difference. The results are presented as

mean ± SD from three experiments.

(F) Western blot shows the indicated protein levels in HBEC cells treated with hLta (50 ng/ml). b-actin, protein loading control.

(G) Comparison of chromosome numbers from ten cells in each type of cells: HBEC, A431, and SCC25 cells as detected by SKY.

See also Figure S4.
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Figure 5. S125 of NPM Suppresses Centro-

some Amplification

(A) Effects of NPM, NPMS125A (S125A), NPMThr199A

(T199A), IKKa, IKKa-KA, IKKb, IKKb-KA, and

NPMC22S (C22S; see Figure S5A) on centrosome

amplification in CHO cells. Each bar is compared

to the control (Cont, untreated cells). Si-, siRNA;

Cont, untreated cells. **p < 0.01; *p < 0.05 exam-

ined by Student’s t test. Bar graphs are presented

as mean ± SD from three experiments.

(B) Top: Effects of WT NPM, NPMS125A (S125A),

and NPMThr199A (T199A) on centrosome amplifi-

cation in CHO andU2OS cells lacking endogenous

NPM. Each column is compared to the control

(Cont). Si-, siRNA. **p < 0.01; *p < 0.05 examined

by Student’s t test. Bar graphs are presented as

mean ± SD. Middle and bottom: Western blot

shows NPM and Flag-NPM levels in cells treated

with NPM siRNA (si-NPM), control siRNA (si-Cont),

overexpression of Flag-NPM, T199A-NPM, or

S125A-NPM. PCDNA3.1, vector control.

(C) Centrosomes in CHO and U2OS cells treated

with NPM siRNA or control siRNA were stained

with IF with g-tubulin antibody (green). Blue, DAPI

for nuclear staining. Scale bar, 10 mm.

(D) Left: Effects of reduced IKKa on centrosome

amplification in CHO cells treated with IKKa

siRNA, IKKb siRNA, or control siRNA (Cont).

Middle: Reduced endogenous IKKa expression

and increased centrosome numbers in CHO cells

treated with IKKa siRNA (siRNA) or control siRNA

(Cont), detected by IF staining. Scale bar, 10 mm.

Right: Effects of IKKa siRNA and IKKb siRNA

on centrosome-bound NPM levels in CHO cells,

detected by IF staining with NPM and g-tubulin

antibodies. NPM colocalized with g-tubulin was

considered centrosome-bound NPM. **p < 0.01

examined by Student’s t test. Bar graphs are

presented as mean ± SD from three experiments.

See also Figure S5.
two centrosomes (G2 phase; Figure S5E). These results are

consistent with the relationship between NPM and the centro-

some cycle during the cell cycle (Okuda et al., 2000). However,

the p-S125-NPM antibody did not stain centrosomes in dividing

IkkaKA/KA cells (Figure S5E), suggesting a relationship between

p-S125-NPM and IKKa kinase activity in centrosomes during

the cell-cycle regulation.

NPM Is a Potential Target in Human Skin SCCs
Moreover, we examined bothNPMand IKKa levels in human skin

samples in tissue arrays containing human skin SCCs, basal cell

carcinomas (BCCs), melanomas, condyloma acuminata of the

cunnus (keratinocytic tumor-like lesions), hyperplastic epidermis,

epidermal tissues adjacent to skin tumors, and normal skin.

The immunohistochemical staining showed that NPM was well
Cell Reports 5, 1243–1255, De
expressed in normal human epidermal

and epithelial tissues, in the hyperprolifer-

ating epidermis with inflammation, and in

tumor-adjacent tissues (Figures 6A and

6B, left). This NPM staining pattern was
consistent with the pattern in the NPM-stained human lung

epithelial cells reportedpreviously (Mascauxet al., 2008). Approx-

imately 45% of skin SCCs and a proportion of BCCs and mela-

nomas expressed reduced NPM (Figure 6A, left). Interestingly,

approximately half of the human condylomas expressed little or

markedly reduced NPM. IKKa expression was reduced in 72%

of human SCCs and in 90% of human BCCs (Figure 6A, right).

Further analysis of the relationship between IKKa and NPM levels

showed that 47.8% of human skin SCCs and 26.7% of BCCs

with downregulated NPM expressed reduced IKKa. However,

we did not observe a correlation between the expression of

IKKa andNPM in condylomas. DecreasedNPM levels also impair

NPM activity, suggesting that reduced NPM, IKKa, or NPM/IKKa

may contribute to human SCC development via the mechanism

identified in this study (Figure 7).
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Figure 6. NPM Is a Potential Target for the

Development of Human Skin Cancers

(A) The graph showsNPM and IKKa levels in human

tissue arrays containing skin SCCs, adjacent

tissues surrounding SCCs, and hyperplasia of

squamous epithelium, detected using immunohis-

tochemical staining with NPM (left) or IKKa anti-

body (right). Staining was classified as +++, ++, +,

and �, according to staining intensity.

(B) Human tissue sections from arrays that were

immunohistochemically stained with NPM or IKKa

antibody. Brown, positive for NPM or IKKa; blue,

nuclear counterstaining; epidermis stained as +++;

skin SCC stained as �; condyloma stained as �;

PC, breast tissue stained with NPM antibody as

positive control; NC, breast tissue stained with

isotype control antibody as negative control within

black lines. Scale bars = 50 mm.
DISCUSSION

Appropriate molecular surveillants at various cellular events

protect cells, maintaining organ homeostasis. Defects in these

crucial moleculesmay be involved in the pathogenesis of the dis-

eases and cancer. Chronic inflammation surrounding tumor loci

is a common phenomenon and promotes tumor initiation and

progression (Xiao et al., 2013). Whether the specific molecules

can use the harmful inflammatory signaling to protect cells dur-

ing tumorigenesis remains to be revealed. Here, we identified a

function of IKKa in suppressing centrosome amplification.

IKKa interacted with and phosphorylated NPM, which further

prevented centrosome amplification and genomic instability,

and inflammatory signaling activated IKKa to regulate centro-

some duplication. The tumor progression requires multimolec-

ular alterations. IKKa downregulation impairs this protective

connection in the inflammatory microenvironment, which may
1252 Cell Reports 5, 1243–1255, December 12, 2013 ª2013 The Authors
cooperate with other nonimmune mecha-

nisms to promote tumor progression.

NPM monomers can form hexamers

(Chou and Yung, 1995). In this study, we

showed that IKKa regulated the formation

of NPM hexamers in a dose-dependent

manner in primary-cultured keratinocytes

and in other types of cells. Importantly, in

BL6 mice, increased NPM hexamer and

IKKa levels were associated with papil-

lomas induced by DMBA and TPA (Park

et al., 2007), most of which eventually re-

gressed. Conversely, reduced NPM hex-

amer and IKKa levels correlated with skin

tumor progression. These good correla-

tions suggest that IKKa and NPM hexam-

ers may play a preventive role during skin

carcinogenesis.

Our study further demonstrated that

IKKa interacted with NPM and phos-

phorylated S125-NPM, which promoted

NPM-NPM interaction and NPM hexamer
formation. The increased NPM hexamer levels promoted the as-

sociation of NPM and centrosomes, which prevented centro-

some amplification. IKKa loss, kinase-dead IKKa, NPM loss, or

NPMS125A decreased levels of NPM hexamers and the associa-

tion of NPM with centrosomes, thereby promoting centrosome

amplification. Furthermore, the NPMThr199A mutant increased

NPM hexamer levels and repressed centrosome numbers, and

the NPMC22S and NPMM579L mutants decreased hexamer levels

and enhanced centrosome amplification (Liu and Chan, 1991;

Zirwes et al., 1997). These results suggest that NPMhexameriza-

tion may serve as a common mechanism for regulating the

association of NPM and centrosomes. On the other hand, over-

expressed IKKa or kinase-active IKKa repressed centrosome

amplification, which may partially explain the result in which

overexpressed IKKa in keratinocytes repressed skin tumor pro-

gression in transgenic Lori.IKKa mice with FVB background

treated with chemical carcinogens (Liu et al., 2006) and in



Figure 7. A Working Model for the IKKa-NPM Axis

Left photo shows two centrosomes stained by g-tubulin (green) during cell

mitosis. Blue, nucleus stained with DAPI. Right picture indicates two centro-

somes (red) that link to chromosomes (blue) through spindles (green) during

mitosis. The IKKa and NPM axis contributes to maintaining normal centro-

some numbers through enhancing the association of NPM hexamers and

centrosomes. P-, phosphorylation.
K5.IKKa mice treated with UVB radiation (Xia et al., 2013). The

increased inflammation is required to cooperate with UVB or

DMBA/TPA carcinogen in skin carcinogenesis.

IKKa and IKKb, two highly conserved protein kinases, display

distinct kinase activities for some proteins, which may also

contribute to their physiological functions (Mercurio et al.,

1997). Interestingly, IKKa, but not IKKb, has been reported to

phosphorylate serine 10 of histone H3 (Anest et al., 2003; Yama-

moto et al., 2003); however, we did not detect this H3 phosphor-

ylation in keratinocytes (Zhu et al., 2007), suggesting that IKKa

kinase activity has a cell-type specificity, which may partially

explain why the combined molecular alterations, including IKKa

downregulation, kinase-dead IKKa, and inflammation, can induce

spontaneousskin, lung, and forestomachSCCs in IkkaKA/KAmice,

although kinase-independent IKKa activities also contribute to

the tumorigenesis (Liu et al., 2008; Xiao et al., 2013).

The association of extra (supernumerary) centrosomes with

malignant tumors has been known formore than 100 years (God-

inho et al., 2009). Only recently have studies provided direct

evidence to demonstrate how extra centrosomes cause chro-

mosome instability (Ganem et al., 2009). In addition, although

extra centrosomes may cause cell-cycle arrest or cell death in

normal cells, tumor and immortalized cells possessing supernu-

merary centrosomes usually divide successfully (Godinho et al.,

2009). Human SCCs show increased chromosome numbers

(Weaver and Cleveland, 2006). In the current study, we also

detected increased centrosomes and chromosomes in human

SCC cells compared to normal human epithelial cells. Consis-

tently, chromosome numbers were abnormally increased in
Cell Re
Ikka�/� and IkkaKA/KA mouse cells compared to WT cells.

Together, because centrosome abnormalities are one of the

mechanisms for causing aneuploidy and our results demon-

strated a good correlation between centrosome amplification/

increased chromosomes and mutated IKKa/NPM, lack of IKKa

and NPM function may increase centrosome amplification,

which further cooperates with other molecular events to facilitate

chromosome and genome changes; thus, the benign tumor cells

may be prone to malignant transformation in the inflammatory

microenvironment. In the future, we will investigate underlying

mechanisms for increased chromosome numbers in these

mouse and human cells because additional molecules may be

required for maintaining the proper chromosome numbers.

Reduced NPM was detected in human and mouse skin SCCs,

but how NPM is downregulated in malignant skin tumors still

needs to be addressed in the future. Notably, the percentage

of human skin SCCs expressing reduced IKKa was higher than

the skin SCCs expressing reduced NPM. Because IKKa deletion

is able to induce spontaneous skin carcinomas (Liu et al., 2008),

downregulated IKKamay play a predominant role in driving skin

tumor development, while NPM is one of IKKa’s targets. In addi-

tion, Npm mutations have been reported in human leukemia

(Grisendi and Pandolfi, 2005), and Ikka mutations have been

detected in human SCCs and other types of cancers (Greenman

et al., 2007; Liu et al., 2006). Here, we showed that mutations and

deletions in IKKa and/or NPM abolished the interaction between

IKKa and NPM and attenuated their function in repressing

centrosome amplification.

Chronic inflammation is frequently found surrounding tumors.

Here, we demonstrated that inflammatory cytokines Lta and

TNFa and an LtbR antibody (agonist) specifically activated

IKKa to induceNPMhexamer formation and repress centrosome

amplification in mouse and human cells. These results suggest

that the presence of IKKa may suppress tumor progression

through maintaining proper centrosome duplication and

genomic integrity in the inflammatory microenvironment.

EXPERIMENTAL PROCEDURES

Cell Culture, Antibodies, and Reagents

HEK293, CHO and U2OS cells were purchased from the American Type Cul-

ture Collection (ATCC) (Manassas) and were cultured in Dulbecco’s modified

Eagle’s medium or F12K medium supplemented with 10% serum. Cultured

cells were transfected with different expression vectors using a transfection

reagent (Lipofectamine with PLUS Reagent; Invitrogen) in accordance with

the manufacturer’s recommendations. Primary keratinocytes were isolated

frommice and cultured as previously described (Hu et al., 2001). A431 (human

epidermoid carcinoma cells) and SCC25 (human tongue SCC) cell lines were

purchased from the ATCC. Purified human Lta (BMS302) was from

eBioscience. Human tissue arrays (SK2081 and CR602) were obtained from

U.S. Biomax. Antibodies used in this study included those for g-tubulin

(T3559, Sigma-Aldrich; ab11316, Abcam), centrin 1 (ab11257, Abcam),

a-tubulin (E-19, Santa Cruz Biotechnology), b-tubulin (D-10, Santa Cruz

Biotechnology), CKII (N18, Santa Cruz Biotechnology), EGFR (sc-03, Santa

Cruz Biotechnology), p-EGFR (sc-12351, Santa Cruz Biotechnology), HA

(H-9658, Sigma-Aldrich), Flag (F-3165, Sigma-Aldrich), NPM (3542, Cell

Signaling Technology; 32-5200, Zymed-Invitrogen), IKKa (IMG-136, Imgenex),

IKKb (05-535, Upstate Cell Signaling Technology), IKKg (559675, BD

PharMingen), lymphotoxin beta (LtbR, 16-5671-82, eBioscience), and rabbit

IgG(H+L) (Invitrogen). An antibody for phosphorylated Ser125 in NPM was

generated using the peptide EDAE{SER}EDEDEEDVKC (GenScript USA),
ports 5, 1243–1255, December 12, 2013 ª2013 The Authors 1253



and the peptide was used to block p-S125-NPM antibody activity. Plasmid

DNA containing different Flag-NPM deletions and GST-NPM WT and

Thr199Amutant plasmids were provided by Dr. Charles J. Sherr (St. Jude Chil-

dren’s Research Hospital) and Dr. Kenji Fukasawa (University of Cincinnati).

Mice

All of the mice used in this study were cared for in accordance with the guide-

lines of the Animal Care and Use Committee (animal protocols 08-075 and

08-074) at the National Cancer Institute.

Centrosome Isolation

Centrosome isolation using sucrose gradient centrifugation was performed as

previously described (Hsu and White, 1998), with minor modifications. Briefly,

exponentially growing CHO or U2OS cells were incubated in a medium con-

taining 1 mg/ml of cytochalasin D and 0.2 mM of nocodazole for 1 hr at 37�C
to depolymerize the actin and microtubule filaments. Cells were then har-

vested and lysed. Swollen nuclei and chromatin aggregates were removed us-

ing centrifugation at 2,500 3 g for 10 min, and the supernatant was filtered

through a 40 mm nylon mesh (BD Biosciences). The concentration of HEPES

was adjusted to 10 mM and 2 units/ml DNase I (Ambion). The mixture was

incubated for 30 min on ice. The lysate was then underlaid with sucrose

solutions and centrifuged at 10,000 3 g for 30 min. This crude centrosome

preparation was further purified using discontinuous sucrose gradient centri-

fugation at 30,000 3 g for 1 hr, and the fractions were collected from the bot-

tom of each tube. Each fraction was diluted in 1 ml of 10 mM PIPES buffer (pH

7.2) and centrifuged at 15,000 rpm for 15 min in a microcentrifuge to recover

the centrosomes. The centrosomes were then dissolved in a loading buffer.

Mass Spectrometry Analysis

Coomassie blue-stained SDS-PAGE gel bands corresponding to NPM were

reduced, alkylated, and digested with an in-gel tryptic digestion to extract

the peptides (Simkus et al., 2009). Each sample was loaded on an Agilent

1100 nano-capillary high-performance liquid chromatography system (Agilent

Technologies) with 10 cm integrated mRPLC-electrospray ionization emitter

columns (made in-house), coupled online with an LTQ XP mass spectrometer

(Thermo Fisher Scientific) for mRPLC-MS2-MS3 analysis. Peptides were eluted

using a linear gradient of 2% mobile phase B (acetonitrile with 0.1% formic

acid) to 42% mobile phase B within 40 min at a constant flow rate of

0.25 ml/min. The five most intense molecular ions in the MS scan were sequen-

tially selected for MS2 andMS3 (if phosphate neutral loss was observed in MS2

spectra) by collision-induced dissociation using 35% normalized collision

energy. The mass spectra were acquired at the mass range of m/z 1,000–

1,300. The ion-source capillary voltage and temperature were set at 1.7 kV

and 200�C, respectively. MS2 and MS3 data were searched against the NPM

protein sequence using BioWorks-interfaced SEQUEST (Thermo Fisher

Scientific). Up to two missed cleavage sites were allowed during the database

search. The cutoffs for legitimate identifications were charge state-dependent

cross-correlation (Xcorr) R2.0 for [M+H]1+, R2.5 for [M+2H]2+, and R3.0 for

[M+3H]3+.
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