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ABSTRACT

Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in
linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this
mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends.
Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the
priming residue in the C-terminal half of the protein and an accumulation of positively charged residues
at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding
capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of
bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear
localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the
attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal

Nuclear localization signal gene transfer.

Horizontal gene transfer

© 2014 Elsevier Inc. All rights reserved.
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Replication of linear genomes

DNA polymerases (DNAPs) are unable to start de novo DNA
synthesis and require a free hydroxyl group to incorporate each
new deoxynucleotide. In the case of circular genomes, a nick at
the replication origin can generate an available 3’OH group to
initiate the new strand synthesis. Alternatively, replication
often starts by the synthesis of an RNA primer oligonucleotide
that must be subsequently removed and refilled. However, at
linear chromosome ends, removal of the primer fragment
would generate an unreplicated single-stranded DNA (ssDNA)
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portion, which may lead to end shortening and loss of genetic
information. This so-called end-replication problem can be
overcome by different strategies. As far back as 1972 it was
clear that previously observed head-tail concatemer intermedi-
ates during replication of bacteriophages T4 or T7 would allow
them to evade the end-replication problem (Watson, 1972).
Other phage linear genomes avoid end shortening by under-
going circularization prior to DNA replication, like A phage
(Campbell, 1994). Many eukaryotic viruses have similar strate-
gies that also involve the presence of inverted terminal repeti-
tions (ITR) that allow the formation of concatemeric replicative
intermediates, e.g., in parvovirus or poxvirus replication, or
genome circularization prior to replication, as in the case of
herpesvirus (Boehmer and Lehman, 1997; Moss, 2013). In
eukaryotic chromosomes telomerase extends directly the 3’
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end, giving rise to a G-rich overhanging ssDNA that is protected
from nucleolytic attacks and recombinational activities by
various strategies, including folding into higher structures such
as T-loops or G-quadruplexes (Blackburn, 1990). Alternatively,
other organisms including bacteriophages, animal viruses like
Adenovirus, mitochondrial and cytoplasmatic plasmids of yeast
and filamentous fungi, linear chromosomes and plasmids of
Streptomyces, as well as human Hepatitis B virus and some plant
and animal RNA viruses (Salas, 1991), possess a terminal protein
(TP), which is involved in priming the genome replication by
different mechanisms (see below) and becomes covalently
linked to the genome ends. More recently, the presence of a
protein-primed replication strategy has been suggested in a
wide variety of replicons, including archaeal viruses, eukaryotic
transposable elements (TE) and virophages (Bamford et al.,
2005; Kapitonov and Jurka, 2006; Fischer and Suttle, 2011;
Peng et al., 2007). These predictions are based on the homology
of the protein-primed DNA polymerases, a subgroup of B-family
DNA polymerases that contain two specific subdomains, named
TPR1 and TPR2, which are involved in the interaction with TP
and in processivity and strand-displacement capacity, respec-
tively (Dufour et al., 2000; Rodriguez et al., 2005).

The evolutionary origin of protein-primed DNA replication
mechanisms remains uncertain, although the incidence of genes
encoding protein-primed DNA polymerases, with an apparent
monophyletic origin (Filee et al, 2002; Braithwaite and Ito,
1993), among taxa associated with all domains of life, has been
highlighted as consistent with a replication mechanism aroused
early in the evolution, the genes being acquired from the primor-
dial gene pool (Peng et al., 2007; Koonin, 2006). In addition,
terminal proteins of human Hepatitis B virus and RNA viruses,
though they would have independent origins, most likely also
appeared early in the evolution, most likely prior to or simulta-
neously with key events of eukaryogenesis (Koonin et al., 2008).
Hence, the utilization of a terminal protein as a primer for genome
replication seems to be an ancient solution for the end-replication
problem, which might have arisen independently several times
and, as we discuss below, provides a useful instrument that has
often acquired several additional functions associated with gen-
ome maintenance and replication, like compartmentalization or
gene transfer.

Alternative protein-primed genome replication mechanisms

Protein-primed based replication of Adenoviruses and several
bacteriophages from different families like ®29 or PRD1 can
duplicate the full-length genome continuously from both origins,
without requiring Okazaki fragments or other accessory proteins
(Salas, 1991). The replication mechanism of Bacillus subtilis phage
®29 DNA has been extensively studied, thanks to the develop-
ment of an in vitro replication system with purified proteins and
TP-DNA as template (reviewed in De Vega and Salas (2011)). Fig. 1
shows a scheme of ®29 genome replication. Briefly, the TP-DNAP
heterodimer specifically recognizes the TP-containing DNA ends,
which are opened with the help of the double-stranded DNA
binding protein (DBP). The DNAP then catalyzes the addition of the
first dAMP to the TP present in the heterodimer complex, using
the second base of the genome end as a template. The presence of
repetitive sequences at the replication origins in the ®29 genome
allows maintenance of the terminal nucleotides by a backward
movement of the initiation complex called sliding-back, described
also in other bacteriophages, or jumping-back in the case of
Adenovirus. At least in the case of ®29-like phages, the specificity
of the internal template nucleotide that directs the first nucleotide
incorporated is determined by the amino acids sequence near to

Fig. 1. Schematic representation of bacteriophage ®29 TP-DNA replication. The
DNAP (blue) and the TP (green) form an heterodimer that specifically binds to each
of the genome ends (i). This binding is enhanced by the presence of the parental TP
(dark green) and the end opening by the viral double-stranded DNA binding
protein (DBP, red spheres). The synthesis of the new strand starts when the DNAP
catalyzes the addition of the first nucleotide to its associated TP, using the second
base of the genome end as a template (ii). Then, the DNAP dissociates,
and the elongation progress asymmetrically from both ends (iii). The viral-encoded
SSB protein (yellow ovals) binds to the displaced ssDNA and is removed by the
DNAP during later stages of the replication process (iv). Eventually, continuous
processive polymerization results in the generation of two fully replicated genomes
(v). For simplicity only one of the TP-DNA ends is represented. See text for more
details.
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the priming residue of the TP, i.e. the priming loop (Longas et al.,
2008). Then, after a transition step, the DNAP dissociates, and the
elongation continues until replication of the nascent DNA strand is
completed, thanks to the high processivity of the DNAP and its
intrinsic strand displacement activity. The viral-encoded SSB
protein binds to the displaced ssDNA and is removed by the DNAP
during later stages of the replication process. Eventually, contin-
uous processive polymerization results in the generation of two
fully replicated genomes.

The structure of @29 TP has been partially solved (Kamtekar
et al., 2006); it contains three structural domains: (i) the C-
terminal domain (Ct), which has the serine-232 priming residue,
(ii) the intermediate domain (I) that contributes to the surface of
interaction with the DNAP, and (iii) the N-terminal domain (Nt)
that has sequence-independent DNA-binding capacity required for
recruitment of the viral genome (TP-DNA) and DNAP at the host
nucleoid (Mufioz-Espin et al., 2010) and also contains a nuclear
localization sequence (NLS), functional when the protein is
expressed in mammalian cells (Redrejo-Rodriguez et al., 2012).
In the case of Adenovirus, the TP is synthesized as pre-terminal
protein (pTP), which is processed by a viral-encoded protease to
yield mature TP after the viral replication cycle starts. Thus, the
infective TP-DNA is the template for early transcription and the
first round of replication, whereas the newly synthesized pTP-DNA
is the template for subsequent rounds prior to pTP processing
(Hoeben and Uil, 2013). Moreover, the pTP contains a NLS that is
required for nuclear localization of both TP and DNAP (Zhao and
Padmanabhan, 1988).

A number of cytoplasmic and mitochondrial linear plasmids
from eukaryotic microbes also use a protein-primed replication
mechanism. In this case, a single open reading frame encodes a
protein with two domains, the TP and the DNAP, that starts
genome replication using an unknown self-priming mechanism
in the TP domain, which is subsequently proteolytically processed,
releasing the DNA polymerase and the genome-linked TP (Klassen
and Meinhardt, 2007). The same TP-DNAP bifunctional protein
conformation has been proposed for eukaryotic mobile elements,
polintons or mavericks (Kapitonov and Jurka, 2006).

In addition, as previously mentioned, filamentous bacteria
from the genus Streptomyces and other members of the phylum
Actinobacteria possess linear chromosomes and linear plasmids
whose 5-end is capped by a terminal protein (denoted as Tpg).
In this case, full-length genome replication entails two steps.
Replication starts from an internal origin in a bidirectional way,
which eventually results in single-stranded gaps at the 3’-ends
of about 300 nt. Those ssDNA patches are filled in using a
mechanism that requires the fold-back pairing of distant palin-
dromes prior to Tpg recruitment by a specific telomere-binding

Table 1

protein and subsequent deoxynucleotidylation of the priming
residue of the Tpg, which remains covalently linked to the
newly synthesized DNA strand (Hopwood, 2006). The C-
terminal portion of Tpgs contains the priming residue, whereas
the N-terminal half comprises different predicted functional
domains, including a segment similar to the thumb domain of
HIV reverse transcriptase, which overlaps a helix-turn-helix
(HTH) motif that is required for successful end-patching. More-
over, several Tpgs include an amphiphilic B-strand involved in
protein-protein and protein-membrane interactions and a
nuclear localization signal (NLS), functional in animal and plant
cells (Yang et al., 2002; Tsai et al., 2011, 2008).

Replication of human Hepatitis B virus (HBV) is a complex
mechanism comprising different types of genome molecules.
Infecting particles have a double-stranded DNA genome, whose
synthesis requires a RNA replicative intermediate, called prege-
nomic RNA (pgRNA). The synthesis of pgRNA is carried out by a
multifunctional viral polymerase (P protein), with reverse tran-
scriptase and RNase H activities. Moreover, the N-terminus of P is a
terminal protein, which contains the priming tyrosine-63 that is
required to initiate the viral DNA minus-strand synthesis, using a
specific loop in the pgRNA, called g, as template. This first step of
protein-primed DNA synthesis gives rise to a short DNA oligonu-
cleotide, which, after a template switch to a 3’ specific region,
initiates full-length minus-strand DNA synthesis (Nassal, 2008).

Finally, a number of vertebrate and plant positive-sense
(+)-RNA viruses from Picornaviridae, Caliciviridae and Potiviridae
families, and some members of the genus Sobemovirus, have a
small TP (2-24 kDa) known as VPg, which is released from a
polyprotein precursor and primes RNA synthesis, being thus
covalently linked to the 5-terminal uridine of the genome. VPg
proteins perform additional functions in vivo; thus, the VPg
precursor has a chaperone activity that stimulates the RNA
polymerase, and a possible role in encapsidation of calicivirus
RNA has been suggested. Moreover, plant virus VPg proteins
contain an NLS that directs the protein to the nucleus (Jiang and
Laliberte, 2011; Goodfellow, 2011).

Bacteriophage TPs

Contrary to DNAPs, TP sequences are very poorly conserved,
even among the same viral family. Among bacteriophages, only
TPs from D29 closely related phages (the ®29-like viral genus),
like Nf or GA-1, show a clear similarity with @29 in Blast analysis
(E-values 8 x 107°° and 3 x 10~ 22, respectively). TPs from other
Podoviridae members, like Cp-1 or ®CP24R, show no significant
similarity (E-value > 0) with ®29 TP, and the same can be found

Summary of bacteriophage terminal proteins (TPs) from representative phages from diverse families and hosts and their main properties.

Virus Family Host TP Genbank accession Size pl Priming N-terminal Nucleoid/DNA- Nuclear
number (aa) residue binding targeting
@29 Podoviridae B. subtilis P03681.1 266 8.57 Ser232 Yes Yes(®)
Nf Podoviridae B. subtilis ACH57070.1 266 5.59 Ser232 Yes Yes®)
GA-1 Podoviridae B. subtilis NP_073686.1 266 4.88 Ser232 Yes No®)
PRD1 Tectiviridae E. coli and other Gram- P09009.1 259 10.79 Tyr190 Yes Yes(®)
negative
Bam35 Tectiviridae B. thuringiensis NP_943750.1* 245 10.59 n.d. nd. Yes(®)
Cp-1 Podoviridae S. pneumoniae NP_044816.1 230 10.77 Thri189 Yes Yes(®)
Av-1 Podoviridae Actinomyces sp YP_001333658* 360 10  nd. nd. Yes™®
®CP24R  Podoviridae Clostridium perfringens AEW47836.1* 246 1012 nd. nd. Yes®®)
Ascc®28 Podoviridae Lactococcus lactis ACA21480.1* 167 1019 nd. nd. No®
®YS61  Myoviridae Thermus thermophilus YP_006560295.1* 261 10.72 n.d. nd. No”

When indicated * the TP was annotated or suggested based on the location of an ORF adjacent to the DNA polymerase (see the text for references). Nuclear targeting is

based on localization of the protein when expressed in mammalian cells (E) or in the presence of putative NLSs (P), as reported in Redrejo-Rodriguez et al. (2012).
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Fig. 2. Structure of ®29 terminal protein (TP). A. Structure of the ®29 DNA polymerase (DNAP) and TP complex. The DNAP (in gray ribbon) and the TP (cylindrical helices) are
represented as in Kamtekar et al. (2006). Using this structure as a major template, a TP homology model, obtained with I-Tasser (Roy et al., 2010), is superimposed on the
crystallographic structure. TP domains Nt, I and Ct are colored in blue, yellow and green, respectively; darker hues are used for the modeled structure. Lateral chain of the
Serine-232 priming residue and the Lysines-25 and -27 are also shown. B. Structure of the ®29 DNA polymerase (DNAP) and TP complex in the same orientation than in
panel A, but with the electrostatic surface representation of the modeled TP. The Coulombic electrostatic surface is colored blue and red for electropositive and
electronegative charges, respectively. The figure was rendered with UCSF Chimera software (Pettersen et al., 2004).

for phage TPs from other viral families, either when compared
with @29 or between themselves. Moreover, structure-function
studies from other phage TPs beyond @29 or ®29-like phages are
not available, therefore their structural or functional domains are
not easy to recognize. However, as expected from proteins that
perform the same function, they share some structural features
(Table 1), like a relatively small size and a high proportion of basic
residues, some of them grouped in positively charged clusters in
the N-terminal half of the protein (Redrejo-Rodriguez et al., 2012),
which usually results in a high isoelectric point. Moreover,
although the priming residue may be a serine, threonine or
tyrosine, it is always in a loop between two a-helices and followed
by an acidic residue (D/E), which has been recently shown to be
involved in the stabilization of the priming loop/DNAP catalytic
active site interaction (del Prado et al., 2013). With the exception
of PRD1, the priming loop is highly hydrophilic, due to a negatively
charged surface that mimics DNA in the interaction with the DNAP
(see below). Interestingly, the priming residue of Streptomyces Tpg
is also within a hydrophilic pocket (Yang et al., 2013) and is
followed by an acidic residue, despite the fact that the two
proteins may have evolved independently.

The structure of the 29 TP was partially solved in complex
with the DNAP (Kamtekar et al., 2006). As mentioned above, in
this complex (Fig. 2A), the TP forms an elongated three domain
structure. The C-terminal priming domain (Ct, residues 173-266)
is comprised of a four-helix bundle, buried inside the DNAP,
mimicking DNA thanks to a highly electronegative surface. This
domain is connected through a hinge to the intermediate domain
(I, residues 74-122), which spans two long a-helices and a short f3-
turn-f structure and interacts with the DNAP mainly through the
TPR1 subdomain. Several residues of the Ct and I domains have
been identified as polymerase ligands (del Prado et al., 2012).

Finally, the Nt domain (residues 1-73) was strongly disordered
within the crystal lattice and thus remains unsolved. Bioinfor-
matic predictions indicated a high proportion of a-helix, and
two poly-alanine «o-helices were modeled in the structure
(Kamtekar et al., 2006). Recently, Far-UV circular dichroism
(CD) spectroscopic analysis has further confirmed the high
content of a-helices in the Nt domain (Holguera et al., 2014).
We have used the I-Tasser protein modeling server (Roy et al.,
2010) to construct a new model of the full-length TP. It shows an
Nt domain conformed by two large «-helices, spanning residues
13-35 and 47-67, linked by a loop that also contains a small a-
helix portion (residues 38-42). This model also allows us to
locate the position of the priming serine-232, which lies in a
disordered loop in the crystallographic structure, within an
electropositive exposed region of the TP (Fig. 2B).

Phage TPs can localize in the bacteria nucleoid and also in the
eukaryotic nucleus

Co-evolving along with their hosts, viruses have developed
strategies to compartmentalize their replication cycle by directing
the subcellular localization of viral proteins within infected cells.
Thus, many proteins from eukaryotic viruses contain NLSs (Cohen
et al., 2011), including Adenovirus (Zhao and Padmanabhan, 1988)
and plant positive-strand RNA viruses (Jiang and Laliberte, 2011),
which direct or contribute to localization of viral replication and
transcription in the host nucleus. Analogously, ®29 TP targets the
host nucleoid by means of a sequence-independent DNA-binding
ability, which provides the correct localization for virus early
replication and transcription, and facilitates recruitment of the
DNAP (Mufoz-Espin et al.,, 2010). This DNA binding capacity
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Fig. 3. Nucleoid and nuclear localization of representative phage TPs. Subcellular localization of ®29, PRD1 and Cp-1 TPs in E. coli, expressed as YFP-TP fusions (A) and
mammalian cells, as double YFP fusions (B). Reproduced with modifications from Redrejo-Rodriguez et al. (2012, 2013). Panel C shows a schematic representation of ®29,
PRD1 and Cp-1 TPs with the fragments required for nucleoid localization and NLs function are highlighted blue and navy blue, respectively.

resides in the Nt domain of the TP, thanks to the high density of
basic amino acids. Nucleoid targeting requires almost the full Nt
domain (residues 1-70). Furthermore, the double mutation K25A/
K27A produces a strong decrease of DNA-binding capacity in vitro
and in vivo and thus host nucleoid localization and DNAP recruit-
ment (Holguera et al.,, 2014). Consequently, that mutation gives
rise to an impaired genome replication in vivo, as shown by
complementation assays of a TP-mutant phage (Holguera et al.,
2014). These two residues are surface-exposed in the TP model
(see Fig. 2), which could explain their major contributions to the
DNA-binding capacity of the TP.

Since the bacterial nucleoid lacks an envelope that isolates the
chromosome from the rest of the cell cytoplasm, DNA-binding
proteins should have access to the chromosome and eventually
bind to the nucleoid. In agreement with this, the TPs nucleoid
localization is conserved beyond the natural host since ®29 TP, as
well as TPs from the related phages Nf and GA-1, also target the
Escherichia coli nucleoid (Table 1 and Fig. 3A) (Mufioz-Espin et al.,
2010; Redrejo-Rodriguez et al., 2013). Also, as in the case of the
host nucleoid, the @29 TP Nt domain is responsible for nucleoid
localization in E. coli (Redrejo-Rodriguez et al., 2013). Furthermore,
the TPs of the ®29-unrelated phages PRD1 and Cp-1, which infect
a variety of Gram-negative bacteria and the Gram-positive patho-
gen Streptococcus pneumonia, respectively, also target the nucleoid
(Redrejo-Rodriguez et al., 2013) by means of N-terminal positively
charged motifs (Fig. 3A). PRD1 TP nucleoid targeting is disrupted
by deletion of the first 41 amino acids, and a fragment spanning
the 1-122 N-terminal residues is required for nucleoid localiza-
tion. In the case of Cp-1 TP, removal of only 11 residues at the N-
termini impaired nucleoid accumulation of the protein, and
elimination of a longer portion of 22 amino acids fully disrupted
the nucleoid targeting (Redrejo-Rodriguez et al., 2013).

As mentioned above, pTP of Adenovirus, Streptomyces Tpg and
VPg of plant viruses contain an NLS that can transport the protein
and its attached nucleic acid to the eukaryotic nucleus. Other

prokaryotic proteins that are tightly bound to DNA molecules, like
Agrobacterium VirD2, also have intrinsic NLSs required for DNA
transfer to the eukaryotic nucleus (Rossi et al., 1993; Pelczar et al.,
2004). Interestingly, we found that ®29 TP also localizes in the
eukaryotic nucleus when expressed in mammalian cells and,
moreover, the presence of @29 TP at both ends of a linear DNA
enhances gene delivery (Redrejo-Rodriguez et al, 2012). This
nuclear targeting relies on the N-terminal residues 1-37 and, like
cellular NLSs, its function requires energy, thereby suggesting that
the phage TP contains an intrinsic bona fide NLS. Moreover, TPs
from other phages from different families and with diverse host
range, like PRD1 or Cp-1 (Fig. 3B), among others (Table 1), also
localize or are predicted to localize in the eukaryotic nucleus by
means of putative NLSs (Redrejo-Rodriguez et al., 2012).
Although analogous in terms of targeting the host genome,
nucleoid and nucleus targeting features have very different
structural requirements. Since the bacterial nucleoid lacks an
envelope that isolates the chromosome from the cytosol, the
genome is available to all proteins and those with DNA-binding
capacity would eventually bind to the nucleoid. On the other
hand, eukaryotic nucleus is enclosed by a double-membrane
with pores that only allow the diffusion of small proteins or
nucleic acids. Larger proteins, either from the cell or from a
foreign origin, contain NLSs that comprise an small amino acid
stretch, which is recognized by the importin/karyopherin
transport machinery that actively import them into the nucleus
(Gorlich and Mattaj, 1996). The interaction with nuclear trans-
port mediators depends on sequence recognition of the NLS
motifs, which usually are enriched in lysine and arginine
residues (Chook and Siiel, 2011). On the other hand, DNA-
binding domains are usually composed of several a-helix
segments enriched in basic amino acids (Rohs et al., 2010),
which in the case of TPs are commonly enriched near the N-
terminus of the protein (Fig. 3C). The presence of positively
charged amino acids in both NLS and DNA-binding domains
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have led some authors to propose an evolutionary origin of
NLSs in previously existing DNA-binding motifs as a mechanism
for compartmentalization of proteins inside the nucleus of
primitive eukaryotic cells (Cokol et al., 2000; Dingwall and
Laskey, 1991). In line with this, we have shown that NLSs from
three different phages, ©29, PRD1 and Cp-1, are located within
the region required for nucleoid targeting in bacteria (Fig. 3C)
(Redrejo-Rodriguez et al., 2013). However, we could design ®29
TP mutants with disrupted nuclear localization that still target
the nucleoid and, moreover, we have found two independent
NLSs in the Cp-1 TP, only one of them being required for
nucleoid localization. Thus, nuclear and nucleoid localizations
(i.e. NLS and DNA-binding motifs) are partially overlapping in
phage TPs, but they can be uncoupled, suggesting that they
have been independently conserved along the evolution
(Redrejo-Rodriguez et al., 2013).

TPs provide a new possible mechanism of bacteriophage-
mediated inter-kingdom horizontal gene transfer

Ancient viruses evolved along with their hosts from the
beginning of life and might have contributed to eukaryogenesis
(Bell, 2009; Claverie, 2006; Forterre, 2011). Therefore, NLSs of viral
and cellular proteins may have arisen simultaneously, which
would explain the origin of those motifs in current eukaryotic
viruses. However, although the presence of NLSs in bacteriophages
might be a remnant of ancient evolutionary processes, they must
have a biological function in order to be maintained throughout
evolution.

Virus-host interactions are highly complex and often include
gene exchange processes (Canchaya et al., 2003). Bacteriophages
are the most abundant biological entity on Earth (Clokie et al.,
2011) and they coevolved along with their bacterial hosts but also
with eukaryotic organisms, from soil or marine unicellular
phagotrophs to the internal environment of mammals. Given
the capacity of @29 TP to enhance gene delivery, we suggested
that TPs may ferry new traits from bacteria to eukaryotic cells,
thereby mediating horizontal (or lateral) gene transfer (HGT)
(Redrejo-Rodriguez et al., 2012).

The HGT phenomenon has been extensively reported in pro-
karyotes, fungi, plants, and also humans (Abby et al., 2012; Marcet-
Houben and Gabaldon, 2010; Won and Renner, 2003; Lander et al.,
2001; Huang, 2013; Koonin, 2014; Bruto et al., 2014), and it is an
accepted driving force of evolution, although with some contro-
versy about its relative contribution (Salzberg et al., 2001; Kurland
et al., 2003). HGT has been extensively studied in prokaryotes to
decipher the transfer mechanisms, as well as to understand its
biological importance for acquisition of new traits. In bacteria,
natural cell transformation, transduction, and conjugation account
for most of gene transfer (Thomas and Nielsen, 2005). Bacterio-
phages can promiscuously package foreign DNA fragments into
viral particles and also collect host DNA fragments and transfer
them to a new bacterial host (Canchaya et al., 2003).

For a long time it was believed that HGT was limited to the
bacterial and archaeal domains, because of the eukaryotic cell
barriers that make it difficult to access the nuclear genome, and
the fact that in most multicellular eukaryotes the transmission of
genes to offspring is made more difficult because of the separation
of somatic and germ cells (Keeling and Palmer, 2008). An increas-
ing number of prokaryote-to-eukaryote HGT events have been
described in the last years (Dunning Hotopp et al., 2007; Bruto et
al., 2013) and, moreover, actual inter-kingdom gene transfers from
bacteria to human somatic cells have been detected (Riley et al.,
2013). The molecular mechanisms of those transfers remain
unclear. For instance, in the case of phagotrophic protists, in which

HGT has been shown to be more common (Andersson, 2005), DNA
transfer from bacterial food was postulated as a mechanism for the
acquisition of new genes (Doolittle, 1998). However, a number of
HGT candidates observed in photoautotrophic algae can hardly
be explained by this mechanism (Bruto et al., 2014; Schonknecht
et al, 2013; Bhattacharya et al, 2013), which suggests the
requirement for an active transfer vector, like a virus. Moreover,
once inside the cell, the molecular mechanism by which foreign
DNA can overcome the nuclear envelope and enter the eukaryotic
nucleus is unknown (Dunning Hotopp, 2011; Schonknecht et al.,
2014). A well-known example is the HGT between intracellular
bacteria Wolbachia sp. and its eukaryotic host cells, which has been
shown to be facilitated by Wolbachia prophages (Metcalf and
Bordenstein, 2012; Kent et al., 2011).

We proposed (Redrejo-Rodriguez et al., 2012) a possible gen-
eral model in which infected bacteria containing large amounts of
viral particles and/or genomes might encounter eukaryotic cells,
and might be internalized by phagocytosis or other processes.
Normally, viral DNA would be degraded inside the cell, but if the
phage DNA contains 5'-linked TPs, it may enter endocytic path-
ways and subsequently be driven across the nuclear envelope by
the NLS of the TP. In agreement with our hypothesis, the attach-
ment of a single NLS has been shown to increase both nuclear
transport and subsequent expression of large DNA fragments
(Ludtke et al., 1999; Zanta et al., 1999). Furthermore, phages have
been shown to be excellent gene delivery vectors (Tao et al., 2013;
Lankes et al., 2007; Poul and Marks, 1999), although going through
the nuclear envelope would be expected to be a limiting step for
subsequent gene expression and integration of foreign DNA into
the cell chromosomes. Whatever the mechanism, once inside the
cell nucleus, the DNA may be expressed and provide a new trait to
the eukaryotic cell. In line with this idea, a recent report has
shown that prokaryotic promoters may drive gene expression in
eukaryotic cells (Bentancor et al., 2013). Finally, the foreign DNA
might eventually be incorporated into the cell genome and
transferred to progeny cells.

Concluding remarks and perspectives

Different terminal proteins have evolved in very diverse
replicons to perform a common function of priming genome
(DNA or RNA) synthesis in spite of the lack of clear homology,
even amongst the same kind of terminal proteins like phage TPs.
However, as has been already pointed out, despite the fact of
poor sequence conservation, they share a modular architecture
with the priming function in a C-terminal domain and a
positively charged N-terminal portion that contributes to DNA-
or RNA-binding activity. Furthermore, the N-terminus often
includes other motifs that provide multiple alternative func-
tions in replication/transcription compartmentalization or
pathogenic determinants, like the presence of nuclear localiza-
tion signals (Mufioz-Espin et al., 2010; Redrejo-Rodriguez et al.,
2012, 2013; Zhao and Padmanabhan, 1988; Jiang and Laliberte,
2011; Goodfellow, 2011). New structure-function studies in
different systems and resolution of more TPs structures, which
may reveal structural similarities beyond the amino acids
sequence, would help to understand the origin and evolution
of TPs and protein-primed genome replication.

The recurrent presence of NLSs in TPs from different origins
such as Adenovirus, plant RNA viruses, as well as prokaryotic TPs
from Streptomyces chromosomes and plasmids, bacteriophages
and other genome-associated proteins like Agrobacterium VirD2
is remarkable and suggests an unknown evolutionary role. Parti-
cularly, the existence of NLSs in bacteriophage proteins was
unforeseen. Since karyopherin and importin transport mediators
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are highly conserved and the diversity of nucleocytoplasmatic
transport pathways arose prior to the radiation of current eukar-
yotes (O'Reilly et al., 2011), investigation of cellular partners that
mediate the nuclear internalization of TPs may shed some light on
the origin and biological role of those NLSs. Furthermore, it is
tempting to speculate that other bacteriophage proteins, including
DNA packaging terminases, recombinases or structural proteins,
could contain NLSs that target them to the cell nucleus and might
facilitate interactions of phages and eukaryotic cells.

In the last years, more and more evidences have underlined the
role of inter-domain HGT as major driving force of eukaryotic evolu-
tion, although the molecular mechanisms of transfer are unclear
(Huang, 2013; Bruto et al., 2013; Dunning Hotopp, 2011). Moreover,
it has been predicted that new algorithms providing a more compre-
hensive analysis of potential transfers would reveal the biological
importance of HGT in vertebrates (Huang, 2013; Koonin, 2014;
Schonknecht et al, 2014). Those new methods should implement
novel strategies in order to allow the inclusion of sequences from
plasmids or bacteriophages that are currently ruled out in gene
transfer analysis on the basis of possible contamination. However,
some of those transfers could be genuine (Riley et al., 2013).

The gene pool of non-eukaryotic organisms (bacteria and
archaea) and their viruses may have served as a huge reservoir
of potential new traits during eukaryotes evolution. The wide-
spread presence of NLSs in phage TPs (Redrejo-Rodriguez et al.,
2012) and the fact that TPs are covalently linked to viral genomes
provide a possible molecular mechanism for common genetic
interactions between phages and eukaryotic cells, previously
disregarded, that may have contributed to shape eukaryotic
pangenome along evolution. The actual impact of that process in
the evolution remains to be confirmed.

Finally, the ®29 in vitro replication system is a useful tool for
amplification of heterologous DNA with a covalently linked TP
(Mencia et al., 2011) and straightforward delivery of genes effi-
ciently into the eukaryotic nucleus with increased efficiency in
cultured cells (Redrejo-Rodriguez et al., 2012). Further develop-
ment of this tool may include the use of fusion TPs with several
functional motifs in order to enhance gene delivery by, for
instance, reducing the requirement of transfection reagents,
increasing stability in vivo or modulating target cell specificity
(Redrejo-Rodriguez et al., 2013).
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