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Abstract

Extending the notion of very weak solutions, developed recently in the three-dimensional case,
to bounded domains £2 C R? we obtain a new class of unique solutions u in L9(£2), ¢ > 2, to the
stationary Navier-Stokes system —Au +u - Vu + Vp = f, divu =k, Ugo =8 with data f, k, g
of low regularity. As a main consequence we obtain a new uniqueness class also for classical weak
or strong solutions. Indeed, such a solution is unique if its LY-norm is sufficiently small or the data
satisfy the uniqueness condition of a very weak solution.
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1. Introduction and main results
Throughout this paper, £2 C R? denotes a bounded domain with boundary 32 of class

C?! and unit outer normal vector N(x) = (Ni(x), Na(x)) at x = (x1, x2) € 0§2. Then we
consider the stationary Navier—Stokes system

—Au+4u-Vu+Vp=f, divu=k in$, u,,=¢ (1.1

with nonhomogeneous data f =div F, k and g satisfying

F=(F)ij=12€L(2), kel (2), geW Y1402,

/kdx:fg-Ndo, (1.2)
2 082

where 2 < g < o0, ¢’ = qu <r<gq, % + é > %; the surface integral in (1.2) is well

defined in the generalized sense fm g-Ndo=(g,N)so =(N-g, 1)s0.

Definition 1.1. Given data F, k and g as in (1.2) a vector field u = (u1,up) € L1(£2) is
called a very weak solution of (1.1) if and only if for every test function

w e Cj,(2) = {ve C*(R2): divv=0, v),, =0}
the well defined relation
—(u, Aw) + (g, N - Vw)go — (uu, Vw) — (ku, w) = —(F, Vw) (1.3)
and the equations
divu =k in £2, N-uj,,=N-g (1.4)
are satisfied.

Here C%(2) = {v|é: v e C2(R?)}, (-, -) denotes the usual Lq—Lq/—pairing on £2 and
(g, N - Vw)yo means the value of the boundary distribution g € W~1/4:9(3£2) applied to
the test function N - Vw; for more details see Section 2.1. The relation (1.3) is formally
obtained from (1.1) by applying the test function w € Cg »(£2), using integration by parts
and the equation u - Vu = div(uu) — ku where uu = (u;u); j=1,2. The boundary condition

N-uj,,=N-g is well defined since u € L9(§2) and k = divu = L"(£2). On the other
hand, an elementary calculation proves that

N -Vw=(rotw)r on 32 forallw € Césa(.(_?),
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where 7 = (—Nz,Nj) LN is the unit tangential vector at x € 9§2 and rotw =
djwy — dhwj. Hence, the term

(8. N - Vw)ye = (g, (rotw)t),

in (1.3) contains only the tangential component g - 7 =u|, , -  of g. Therefore, the condi-
tion on the normal component of u on 952 in (1.4) must be prescribed in addition to (1.3).
In principle, we follow the notion of very weak solutions introduced by Amann [2,3] for the
three-dimensional nonstationary case with k = 0 and extended in [6,10] to the stationary
and nonstationary 3D-case with k # 0.

To prove the main existence result for the Navier—Stokes equations we first consider the
stationary Stokes system

—Au+Vp=f, divu=k in$2, u),,=¢ (1.5

N -

with data f =div F, k and g asin (1.2) where now 1 <r <g <oo,%+ >

Q=

Theorem 1.2. Suppose the data f = div F,k, g satisfy (1.2) with 1 <r < q < o0,
% + ql P> % Then there exists a unique very weak solution u € L9(S2) of the Stokes system
(1.5), i.e.,
—(u, Aw) + (g, N - Vw)yo = —(F, Vw) forallw € Cj ,(2)
divu =k in$2, N~u|aQ=N~g. (1.6)

Moreover, there exists a pressure p € W~19(82) such that — Au + V p = f in the sense of
distributions, and (u, p) satisfy the estimate

lullg + Ipl-1. SCIFN+ Ikl + 1gl-1/g.9.022) (1.7
with a constant C = C(82,q,r) > 0.

For the Navier—Stokes system the nonlinear term u - Vu causes the additional restrictions
g > 2 and ¢’ < r. Now our main result reads as follows:

Theorem 1.3. Suppose the data f =div F, k, g satisfy (1.2) with2 < g <00, ¢’ <r <gq
and % + é > % There exists a constant K = K (82, g, r) > 0 such that if

IEN- + 11kl + 18l -1/4.9.02 < K, (1.8)

then the Navier—Stokes system (1.1) has a unique very weak solution u € L9 (82). Moreover,
there exists a pressure p € W™19(82) such that (1.1) is satisfied in the sense of distribu-
tions.

Furthermore, under the smallness condition (1.8) the solution pair (u, p) of (1.1) satis-
fies the a priori estimates:
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lullg < CIFI+ Ikl + lgll-1/g.9,62) (1.9)
1pl-1g <SCUFI =+ lullg + llully + lulq Il (1.10)

withC =C(82,q,r) > 0.

As an application we consider the classical Navier—Stokes equations with data
FeL*(2), k=0and g € W/%2(32) such that [,, g Ndo=0 and a weak solution
uewh(),ie.,

—Au+u-Vu+Vp=divF, divu=0 1in £, Ulgo =8 (1.11)

in the usual weak L2-sense. As is well known, see [9, VIII, Theorem 4.1], there exists
at least one weak solution u € W' 2(£2) if £ is simply connected or if / & Ndo=0
for every boundary component I; of 9§2 in the case of a multiply-connécted domain.
Moreover, there exists a constant K1 = K1(§2) > 0 such that the smallness assumption

I1Fll2+ llgliy2.200 < Ki (1.12)

guarantees the uniqueness of the weak solution u, cf. [9, VIII, Theorem 4.2].
The following corollaries are an obvious consequence of Theorem 1.3. First we obtain

a weaker uniqueness condition and therefore a larger uniqueness class for weak solutions
ue Wh2(2) of (1.11).

Corollary 1.4. Let F € L*(2), g € WY/22(382), and let u € W'2(82) be a weak solution
of (1.11) in the weak L2-sense. Moreover, let2 < g <00, q' <r <2and % + é > % There
exists a constant K = K(£2, g, r) > 0 such that if

I1Fl-+llgl-1/q.q9.002 < K, (1.13)
then u is unique in the class of such weak solutions with the same data f =div F and g.

Note that the weakest integrability condition on F in (1.13) is obtained when ¢ = 4
and r > % is chosen arbitrarily close to ‘3—‘; concerning g the embedding L?(92) C
W—1/44(52) shows that a weak solution of (1.11) is unique provided that |ju|l4 or
IF I+ ligll2,a with r > 3 are sufficiently small.

Corollary 1.4 on weak L?-solutions may easily be extended to weak L-solutions. As
in (1.11) a vector field u € W14(£2) is called a weak L9-solution of (1.1) if

—Au+u-Vu+Vp=divF, divu =k in £2

holds with some p € L7(£2) in the sense of distributions and if u| 90 =8 is satisfied in the
sense of classical trace theorems.

The next corollary follows from Theorem 1.3 and the regularity property in Proposi-
tion 2.4(1).
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Corollary 1.5. Assume that the data f =div F, k and g from (1.2) additionally satisfy the
conditions F € L4(2), k € L4(2) and g € W'=V9:9(382). Then there exists a constant
K =K (£2,q,r) > 0 such that the smallness condition

IE M+ Nkl + 18l -1/q.9.02 < K
implies the existence of a unique weak solution u € W1-4(82) in the usual weak L -sense.

The proofs in Section 2.3 below will show that the previous results can be improved
concerning the assumptions on f =div F":

Remark 1.6. The condition f =div F, F € L"(£2), in (1.2) may be replaced by the slightly
weaker condition A;qu fe L%(£2) in the sense of (2.10) below. In this case, the term
—(F,Vw) = (div F, w) in (1.3) and (1.6) is replaced by

(A Py f. Agw).,  w e C], ().

Then both Theorems 1.2 and 1.3 remain valid if we replace || F ||, by ||A;1 Py fll4 in the
smallness assumption (1.8) and in the a priori estimates (1.7), (1.9) and (1.10). This ex-
tension follows from the proofs in Sections 2.2 and 2.3 and the explicit representation
formulae (2.12) using (2.13), (2.18), (2.22) which are written in a form easily leading to
this more general result.

2. Proofs
2.1. Preliminaries

Letl <g <ooand g’ = qu For the bounded domain £2 C R? with boundary 852 of

class C>! we need the usual Lebesgue and Sobolev spaces LI (£2), W™ (), Wy (),
m = 1,2, with norms ||-||za(2) = |-l and ||-[lwm.a(2) = ||-|lm,q, respectively. The space

W=m4(2) = W7 (2)' denotes the dual space of W™ (£2) with pairing (£, v) for any
functional f € W"-4(£2) and test function v € W(gn‘q/(.Q); the norm in W"4(£2) is

denoted by ||-lw-m.q(2) = II-l=m.q- Analogously, on the boundary 92 we introduce the
spaces L9(0£2), W¥4(082) and W—*4(082) = W""‘/(SQ)/ with pairing (-, )30, 0 <
a < 2. The corresponding norms are ||-|l4,952, |I*lla,q,652 and ||-|| —«,4,552 - Note that we will

use the same notation for function spaces of scalar-, vector- or matrix-valued fields. .
The spaces of smooth functions on §2 are denoted by Cjy'(£2), C™"(£2), C™(82) for
m=0,1,2,...and m = o0o. Moreover,

Cy(82)={veC™(£): V)0 =0}, Cily (2) = {u € C§ (£2): divu =0},
and—as the main space of test functions—

Ciy(82) = {u € Cj'(22): divu =0}.
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Concerning distributions d € C§°(£2)" on §2 we again use the symbol (-, -) for the duality
pairing; on the boundary the test function space C™ (32), m = 1, 2, allows for distributions
in C™(9£2)" with pairing (-, -)3.

For 1 < g < oo let LY (£2) be the closure of C(‘)’f’a (£2) with the norm |-[|4. As is well
known, L{ (£2) is the space of solenoidal vector fields in L9(£2) with vanishing normal
trace on 3£2. Then the dual space LZ (£2)’ can be identified with LZ, (£2) using the canoni-
cal pairing ( f, v) = [, f - vdx; thus we will write L& (£2)' = Lg/(.Q). Similarly we use the
space L9(9£2)" with canonical pairing (f,v)se = [;o f - vdo where [, ...do denotes
the boundary integral on 92 with surface measure do.

Let us recall some classical trace and extension properties for Sobolev spaces. For
m = 1,2 there exists a well defined boundary trace operator from W"9(£2) onto
wm=1/4:4(32). Conversely, there exist linear bounded extension operators

E:w'TVe132) - whi(), @.1)
Ey:W>V44(32) x wi=V44(32) — w1 (2) 2.2)
such that
Ei(h)|,,=h and Ey(hi, hy)|,, =h1, N -VE;(hi,hy)=hy.  (2.3)
We note that the operator norms of E| and E, depend only on £2 and ¢.
Letl <r<gq, %+g > L andlet f € L9(£2), div f € L"(£2). Then by Green’s identity

(div f, E1(h)) = (N - f,h)se — (f, VE1(h)) and the embedding estimate ||E{(h)|,» <
c(lEr(M) g + IVE1(h)l4), we obtain that

(N £ mag| <c(Ilfllg + 1div £l IRl g 00, e W 382),

with ¢ = ¢($2, ¢, r) > 0. Hence the normal component N - oo of f at 082 is well defined
in W—1/4:9(32) and satisfies the estimate

IN - Fll-1jg.q.02 < c(Ifllg + 1div £1,). 24)
Conversely, there exists a bounded linear extension operator
E:Ww™Y11032) - | f e L9(2): div f € L (2)}
such that N - E (h) log = h; in particular,
[EW], +divEm], < clhll-1/4.4.00 2.5)

with c = ¢(£2, g, r) > 0; cf. [15, Corollary 4.6, (4.10)].
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By analogy, for f € L9(£2) such thatrot f =91 f, — 02 f1 € L"(£2),1.e., divf eL"(£2)
for f = (f2, — f1), we conclude that the tangential component

T feW VM@R), T=(=N2 N,
of f at 92 is well defined; moreover, by (2.4)

IT- fll-1/g.9.02 <c(Ilfllg + ot £II,). (2.6)

We recall that there exists a linear bounded operator
B:LY(2):= {f e LI(Q): /fdx =0} — W, (92),
2

1, 2,
B:LY(2) N Wy 1(2) — Wy ($2),
satisfying div B(f) = f; in particular, there exists ¢ = c¢(£2, g) > 0 such that

1B, <clflg: B, <clflig 2.7)

for f € Lg (£2)and f € Lg )N Wol‘q (£2), respectively; see [5], [8, Theorem III 3.2], [16
p- 68].

Let f € L9(£2), 1 < g < oco. Then the weak Neumann problem AH = div f in £2,
N-(VH — f)|a.rz =0, has a unique solution VH € L?(2) such that

IVHlq <cllfllg, c¢=¢c(82,9)>0; (2.8)

cf. [7,15]. Setting P, f = f — VH we get the bounded Helmholtz projection P, : L9($2)
— L9(2) with range R(P,) = L (£2), satisfying P} = P, and P] = P, for the dual
operator.

The Stokes operator

Ag=—P,A:D(Ay) = LL(2) N Wy (2) N W21(2) - LL(RQ)

is a closed bijective operator on the dense domain D(A,) C L (£2) with the following
properties: The fractional powers AB D(Aﬁ y— LI(2),0< B < 1, with dense domain
D(A) C LL(2) are well defined and injective, and A,” = (AD)"1:LI(2) — Lq (9)
are bounded operators with range R(Aqﬂ) = D(Ag). The norms ||ull,, and ||Aq u||q
are equivalent for u € D(Al/ 2) and the norms |lu|>, and |[A4ull; are equivalent for

u € D(Ay); in particular, COO (£2) is dense in D(Al/2) with norm ||A1/ lly, and nga(S_Z)
is dense in D(A,) with norm ||A l4- Moreover, the embedding estimate

N | o=

lullg <c|APul|., ueD(AP), 1<r<q,ﬂ+$2 , (2.9)
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holds with a constant ¢ = ¢(£2, 8,¢9,7r) > 0. Finally, Aju = A,u for u € D(Ay) N
D(A;), 1 <g, r < oo, and (Aq)/ = A, for the dual operator of Ay; cf. [1,4,8,11-15,
16-18].

To solve the Stokes and Navier—Stokes equations in their very weak formulation we
introduce a generalized meaning of the operator A; p P;,0<B<1,1<g <o0.Givena

distribution u = (4, up) € C(‘)X’(.Q)’ we say that its restriction Pyu := U] oo satisfies
0,0

APPueli(Q): > (Pyu,w)iswelldefined forall w e D(As,)
and |(Pqu, w)| < C||A5,w

y (2.10)

with a constant C = C («). In other words,

(P, u, A;,ﬂv)| <Clvlly forallve LY (£2).

Hence there exists an element A;ﬁ Pyju:=u*e LY(£2) with norm ||Aq_’S Pyully < C such
that formally

(477 Py, v) = (u*,v) = (Pgu. A_Pv) = (u. PyA_ o). velf(@). @11
2.2. Proof of Theorem 1.2

The idea of the proof is based on an explicit representation of the very weak solution u
in the form

u=R+S+VH, 2.12)

where VH = (I — P,)u carries the information of k = divu and g - N - N, see

=Uhe
(2.13) below, where S = A;l P, div F solves a homogeneous Stokes equation with external
force f =div F, and R mainly carries the information of the tangential component of g
(plus a correction due to VH), see (2.21) below.

In the following we construct R, S and VH step by step using only the data f, k, g;
then we show that u = R + S 4 V H is the desired very weak solution. First we define VH

as a solution of the weak Neumann problem

AH=k in$2, N-VH|,,=N-g. (2.13)
For this purpose we define v = E(N - g) as in Section 2.1 satisfying v € L9($2),
divv € L"(£2) and N - v|,, = N - g. Moreover, since Jo(divv—kydx = [, N - gdo —
Jokdx =0by (1.2), we find b = B(divv —k) € W(}’r(.Q) satisfying divb = divv — k and

161y <etllVbll, < ca(ldivol, + [Ik,) (2.14)
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withc; =¢;($2,q,r) >0, j =1,2, see (2.7). Then we solve the weak Neumann problem
AH =div(v — D), N-(VH —v+b)|,,=0 (2.15)
and obtain by (2.5), (2.8), (2.14) the estimate
IVHIl, <erllv = bllg < e2(Ilgll=1/g.q.02 + Ikll;) (2.16)
withc; =c¢;(82,q,r) > 0, j = 1, 2. For later use, we remark that VH|,, € w—l4:4382)

is well defined. Actually, div(VH) =k € L"(§2) and rot(V H) = 0; hence by (2.4), (2.6),
(2.16)

IVH-1/g.g.02 <c1(IIN-VHI-1/g.9.00 + 1T-VHI-1/4.4.02)
<ea(llgl=1/q.q.00 + Ikl (2.17)

withc; =¢;j(2,q9,r) >0, j=1,2.
Next we define

S=A;'PydivF. (2.18)
Note that for all w € D(Ay/)
[(div F, w)| = |—(F, Vw)| < | F [l IVw],
1/2
<allFl A w], < cllFll Ay wly

with ¢; = ¢j(£2,4,r) >0, j = 1,2. Hence A;!'P,divF € LE(£2) is well defined and
satisfies

| A PydivF || <call Flr, (2.19)
cf. (2.10). Moreover, by (2.11), for all w € Cag(_(})
_<S, Aw> = <A;1 Pq div F, Aq/U)) = <Pq div F’ w> — _<F’ Vw> (220)

Comparing this identity with (1.6) we conclude that S = A;qu div F is a very weak
solution of the Stokes system with S|‘a o= 0, divS =0 in £2 and external force div F'.

Now it remains to find the remainder term R (= u — S — V H) as the very weak solution
of the Stokes system

—AR+Vp=0, divR=0 in%2, =g—VH|,,. (2.21)

Rjq

Thus for all w € Cg,g (£2)

—(R, Aw) + (g — VH, N - Vw)yeo = 0. (2.22)
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By (2.17) and using properties of the trace map we getfor g =g — VH and all w € D(A,/)

(8, N - Vwhae| <cllgll-1/q.q.02IVWl1/q.q 00 < cllgll-1/g.q,02wl2.q

c(llgl-1/q.q,02 + Ikl 1 Agwllg-
Since R(A,/) = LZ/(.Q), this inequality may be written in the form
(8. N V(A1) 0] <cllgl-1/gqae + IKI) IVl  ve Ll ().

Hence there exists a unique R € LY (£2) satisfying (R, v) = (g, N - VA;,lv) for all v €

LZ/(.Q) and consequently also (2.22); moreover,

IRy <c(llgll=1/q.q.02 + Ikll;), c=c(2.q.r)>0. (2.23)

Finally we have to show that u := R+ S + VH is a very weak solution of (1.5). By (2.13),
(2.20), (2.22) it suffices to show the identity

(VH, Aw) = (VH,N - Vw)ye forallw e 3, (2). (2.24)

For its proof we approximate k, g in (2.13) by smooth functions k;,, g», n € N, such
that ||k — k,|l, — O, llg — gull-1/4.4q.02 — 0 as n — oo, and let VH, € L9(2) be
the solution of (2.13) with k, g replaced by kj,, g,. Then, by (2.16), (2.17) we obtain
IVH —VH,|;—0,IVH - VH,|-1/4,4,02 = 0 as n — 00; hence the identity
(VHy,, Aw) = ( )
= (VHy, N - Vs +(A(VH,), w)
=(VH,,N -Vw)se — (AH,,divw)
=(VH,,N -Vw)p

VH,, N-Vw)ye —(V(VH,), Vw)

converges to (2.24) as n — oo.

Note that a very weak solution u € L9 (§2) of (1.5) is unique. Indeed, in the case F =0,
k =0, g = 0 the defining identity (1.6) implies that u € LL(£2) satisfies —(u, Aw) =
(u, Ayw)=0forall w € C2 (Q) since R(Ay) = Lq (£2) we conclude that u = 0. More-
over, in the general case, (2 12) and (2.16), (2.19), (2.23) yield the a priori estimate (1.7)
for u.

Concerning the pressure, we consider test functions w € Cg?a (£2) in (1.6) and are led
to the identity '

(divF + Au,w) =0

in the sense of distributions. Then de Rham’s argument proves the existence of a distribu-
tion p € C3°(82)" satistying div F 4 Au = V p. Furthermore, we get Vp € W=24(£2) and
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IVpll—2,4 <ci(lFll- + llullg). From [16, 11, (2.3.3)], we get that there exists M € R such
that

Ip—Mll-14 <c2llVpll-24 <c3(IIF Nl + Ikl + lIgll-1/g..02)

with ¢c; =¢;(82,q,r) >0, j =1,2,3. Replacing p by p — M we complete the proof of
Theorem 1.2. O

2.3. Proof of Theorem 1.3
‘We write the Navier—Stokes system (1.1) in the form
—Au—i—Vp:f(u), divu =k in £2, Uy =8 (2.25)
where
fw)=f—u-Vu= f—div(uu) + ku, (2.26)
and use the representation formula (2.12) in the form
u=Fu):=VH+R+A;'P,fw): (2.27)

here VH, R are defined by (2.13), (2.22), respectively. At this point, it is necessary to show
that A;quf(u) € L91(82) foru € L1(82), see (2.10).

Lemma2.1.Let2 <q <00, q' <r gqand%—i—% > L andletu,ve L4(2), ke L (%)

(1) There exists a constant ¢ = c(§2,q,r) > 0 such that

|Ag! Py divan) |, <clluliglivllg. A7 Poki)], < cllullylikll.

(i) Let w € L9°(82), qo > 2 and g = qz(fq‘ Then there exists a constant ¢ = c($2,q, qo)
> 0 such that

—1/2

HA;l/zpq div(vw) Hq + HAq P; div(wv) H(; <clvllglwlg,,

| A7 2 Pytku)]|, < cllully Ik,

Proof. (i) For ¢ € Cj ,(2) C D(Ay)

|[(div(uv), p)| = [(uv, Vo) | < lullg 0]Vl g2y

1/2

<erllulghvllg| A8l 2y < llullglvllglAgely
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by (2.9) with 8 = % and g, r replaced by (%), ¢’. Hence (2.10) yields the first estimate
of (i). To prove the second estimate, define s = (1 — % — %)’1 € (1, o0) and use (2.9) with
B =1and g, r replaced by s, g’ to get that

|[(ku, )] < Mkl Nullg lells < esllkllllullg 1 Agrelly-

(ii) For ¢ € C . (£2) Holder’s inequality yields the estimate

1/2

[(divvw), )] = [(vw, V)| < cllvllglwllgy [ A

The term |{div(wv), ¢)| will be estimated similarly. Since C"O (£2) is dense in D(Al/ 2)
the first inequality is proved, see (2.10). Moreover, using the continuous embeddlng

D(Al/z) C L} (£2) for every s € (1, 00), the estimate

1/2
| (kut, )| < Nkl luellg I lls < ellkll, llully | AY e

where s = (1 — % — %)_1, proves the second inequality. O

By Lemma 2.1 a vector field u € L9(2) is a very weak solution of (1.1) if and only
if u is a very weak solution of (2.25). Moreover, 1 may be found as a fixed point of the
nonlinear equation (2.27). To solve (2.27), we use (2.16), (2.19), (2.23) and Lemma 2.1 to
get the inequality

| 7@, < Collully +llullg Ikl + 1Fll; + 1kl + lgl-1/g.4.02)  (2.28)

where Co = Co(£2,¢,r) > 0. Setting & = Co, B = Collkll, and y = Co(I Fll, + lIkll, +
llgll-1/4.4,852), the previous inequality may be written in the form

|F@l, <alully +Bllulg +v. ueLl!().
Analogously, we obtain that
|F@) = Fo, < (@lullg +allvlg +B)llu—vig. u,veLl($2).

Now Banach’s fixed point theorem applied to F on a closed ball B,(0) C L?(£2), p > 0,
proves the existence of a unique fixed point u € B,(0) of (2.27) provided that the data
F .k, g satisfy the smallness condition (1.8) with a suitable constant K = K(Cp), Cyp as
in (2.28). Moreover, the unique solution u € B, (0) satisfies the a priori estimate (1.9) with
C =2Cy; for more details of this standard procedure see, e.g., [10, Proof of Theorem 4].
As in the proof of Theorem 1.2 we get a pressure p € W~ 14(£2) such that (1.1) holds in
the sense of distributions and satisfying (1.10).
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It remains to prove the uniqueness of u in the class of all very weak solutions of (1.1).
Assume that u, v € LY(£2) are very weak solutions of (1.1) with the same data f,k, g.
Then the representation formula (2.27) (with VH =0, R = 0) yields for u — v the identity

u—v=A;"Pydiv(v(v —u) + (v —wu) + A, Py(k(u — v)), (2.29)

which can be considered as a linear equation in u — v keeping u, v fixed. Applying A;/ 2
formally we get for w = u — v that

AV w=—A"2Pydivow + wu) + A2 Py (kw). (2.30)

Actually, if g > 4, then Lemma 2.1(ii) shows that both terms A, Sz P, div(vw + wu) and
A, Sz P> (kw) are well defined elements in L2 (£2) yieldingw =u—v € D(Al/z) in (2.29).
However, if 2 < g <4, then A, 12 P (kw) € L2 (£2) as before, but by Lemma 2.1(ii) using

qo = q > 2 we only get that A~ 12 Py divivw + wu) € Lq where g = q‘fq < 2. Hence
by (2.29)

. 1 1 1 1 1 1

weD(A)cwH@) L1 (@), —=--S=—- (— - —).
@ 4 2 q \2 ¢
This step will be repeated finitely many times implying that
, 1 1 (1 1 )
w e LY (£2), —=——jlz——), j=12,...,
gj 490 2 q

until 222 > 2 will be guaranteed. Then the case ¢ > 4 considered just before applies and

q0+4;
proves w € D(Al/z) and (2.30).
Next take the L2-scalar product of (2.30) with A;/ 2w and note the identity [, A o é/ 2w
A;]/szdiv(vw)dx =—[o-Vw) -  wdx = %fgk|w|2dx. Then Lemma 2.1(ii) and
(1.9) imply that

1/2

| 452w < Ci(llullg + k) | AY w5

<G (IF I + Ikl + gl =1/g.4.02) | Ay *w]>

with C; = C;(£2,q,r) > 0, i = 1,2. Assuming that the smallness condition (1.8) even
implies KC; < 1, we conclude that Al/ 2w =0and that u = v.
Now Theorem 1.3 is completely proved. O

2.4. Further results

Remark 2.2 (Representation formula). (1) The representation u = R+ S+ VH, see (2.12),
of the very weak solution u of the Stokes system (1.5) describes u as the sum of three terms
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each of which is a very weak solution of a related Stokes system. Concerning V H, note
that by (2.13) v = VH solves the equation

—Av+Vp=0, divv=k in 2, U|BQ:VH|39,

where VH|, , € W=1/44(32) is well defined, cf. (2.17).
(2) Consider a very weak solution u € L9(£2) of the Navier—Stokes system (1.1), (1.2).
By (2.26), (2.27) u has a representation

u=R+S+VH—A;'"Pu-Vu
where R, S and VH are defined by (2.21), (2.18) and (2.13), respectively. Let
E=E(f.k,g9) =R+ S+VH e L1(2),

i.e., E is a very weak solution of the inhomogeneous Stokes system (1.5). ThenU =u — E
is a very weak solution of the nonlinear system

—AU+Vp+U+E)-VU+E)=0, divU=0, Up,,=0 (231

of Navier—Stokes type with homogeneous data; here Definition 1.1 must be modified cor-
respondingly. We may solve (2.31) directly with Banach’s fixed point theorem when E is
considered to be known. In this case the weaker smallness condition

IElg + llkll, < K1 =K1(82,q,71) (2.32)

instead of (1.8) yields existence and (global) uniqueness of the very weak solution of (2.31)
and therefore also of (1.1).

(3) The term || F|l; + lIgll-1/4.q.82 + lIkll; in the smallness condition (1.8) may be
arbitrarily large even when the smallness condition (2.32) is satisfied. Actually, we consider
data of the type F, = Vpp, o € C&"U (£2), and k, =0, g, =0,n € N, only. Obviously the
unique very weak solution of the Stokes system (1.5) is E,, = —p, so that we have to
compare the norms

I Fell- =1Voull- and 1Exllg = llonllg-

To be more precise, let 0 # p € C§% (B1(0)) be fixed and assume that for every n € N
the domain $2 admits the choice of n? points {xgn), .. .,xr(,'zl)} C £2 such that the balls

Bi/n (x,i")), 1 <k < n?, are pairwise disjoint. Now define

n2

Pn(x) = Zp(n(x —x,&"))), x € S£2.

k=1
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Then [l pn [l = Sy oG- — x4 = M{ where Mo = ||pll; > 0 and

IVoully =n" Y[ (Vp)(n(- = x")) | = n" 1.
k

where M1 = ||Vpl|. > 0. Hence || F; ||/ Exllg ~n as n — oo.

Remark 2.3 (Traces). Consider a very weak solution u € L9(£2) of the Stokes sys-
tem (1.5). Then the normal component N - Upo=N-g€ w—14:4(382) is well defined,

cf. (2.4). Since there is no trace theorem of the type u € L9(£2) = Uy € wYa438),
we have to consider the tangential component T - u log = —N>g1 + Nj1go more carefully.

Let h € W!'/4:4'(382) with N - h =0 be given and define using (2.2), (2.7)
w=w(h)= (I — Bdiv) - E2(0, h).

Obviously divw = 0 in £2, Wio = 0 and N - Vw|39 = h, since disz(O,h)|M2 =

N - h = 0; note that here & and E»(0, h) are vector-valued. Moreover, w(-) defines a
bounded linear operator from the space {h € wl/4:4(3§2): N -h =0} into W24 (2) sat-
isfying the estimate

||w(h)||2’q/ <cllhlliyg.q .00, c¢=c(82,q9)>0.
Inserting w as a test function into (1.6) we get the well defined relation
(8. Mo =(u, Awh)) + (A Py f. Agw(h)). (2.33)
Since N - h =0, we may replace (g, i)y by ((t - g)T, h)se and interpret the right-hand

side of (2.33) as the precise meaning of the tangential component - u|, , of the very weak
solution u. Moreover, T - u loc satisfies the estimate

T -l -1/q.q.002 <c1(lully + |47 Py f],)

(ILF Il + NIkl + 1gll-1/q.9,02) (2.34)

NN

withc; =c;j(82,9,7r) >0, j=1,2.

Analogously, for a very weak solution u € L4(§2) of the Navier—Stokes system (1.1),
(1.2), the tangential component 7 - u lgo =78 € W—14:9(82) is well defined and satisfies
(2.33), (2.34) with f replaced by f —u - Vu.

Proposition 2.4 (Regularity). (1) Assume that the data f = div F, k, g in Theorems 1.2
and 1.3 satisfy

FelLi(), keLi(Q), gew!'Vei@pe).

Then the very weak solution u in Theorems 1.2 and 1.3 has the regularity property u €
W4(2) and there exists a corresponding pressure p € L1(82). Moreover, estimate (1.7)
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in Theorem 1.2 can be replaced by

lull.g + 1Pl < c(IF g+ llkllg + lglh-1/q.9,02) (2.35)

with c =c($2,q) > 0.
(2) Assume that

FeWwhi(), kewhi(2), gew* V1iy0).
Then u € W24(82) and p € W9(82) in Theorems 1.2 and 1.3. Moreover, in Theorem 1.2
lullz.g + 1Plg < c(IF g + IKl1g + 18l2-1/0.0.02)- (236)

Proof. (1) Concerning the linear case of Theorem 1.2 let w = E{(g) € wl4(2), and
b= Bk —divw) € Wol’q(.Q), see (2.1) and (2.7); note that [, (k —divw) dx = [, kdx —
/a.o N -gdo=0.Then it =u — w — b solves the Stokes system

—Ai+Vp=f, divi=0 in$2, 0 (2.37)

yg =
with f = f + Aw + Ab e W~19(Q) in the usual weak L9-sense. Using the estimates of
Section 2.1 we obtain the well-defined equation

ASfi=A;"PP, f e LI(2) (2.38)
leading to a unique solution i € D(A(l/z) C Wé’q(.Q). Then u =it + w + b € WHi(2)
is the (unique) very weak solution of (1.5) satisfying the estimate (2.35). Moreover, de
Rham’s argument yields the existence of a unique pressure p € Lg (£2) satisfying (2.35) as
well.

In the nonlinear case we formally get that # = u — w — b satisfies the identity

A i=A;"PP(f —u-Vu), (2.39)

cf. (2.38). However, we need an argument as at the end of the proof of Theorem 1.3 to show
that all terms in (2.39) are well defined, i.e., that u € L7(£2) yields Vu € L9(§2) under the
assumptions given on f, k and g.

(2) The proof follows the same lines as before. In this case u € W24(£2) is a (classical)
strong L9-solution. 0O
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