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Abstract

Extending the notion of very weak solutions, developed recently in the three-dimensional case,
to bounded domains Ω ⊂ R

2 we obtain a new class of unique solutions u in Lq(Ω), q > 2, to the
stationary Navier–Stokes system −�u + u · ∇u + ∇p = f , divu = k, u|∂Ω

= g with data f, k, g

of low regularity. As a main consequence we obtain a new uniqueness class also for classical weak
or strong solutions. Indeed, such a solution is unique if its Lq -norm is sufficiently small or the data
satisfy the uniqueness condition of a very weak solution.
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1. Introduction and main results

Throughout this paper, Ω ⊂ R
2 denotes a bounded domain with boundary ∂Ω of class

C2,1 and unit outer normal vector N(x) = (N1(x),N2(x)) at x = (x1, x2) ∈ ∂Ω . Then we
consider the stationary Navier–Stokes system

−�u + u · ∇u + ∇p = f, divu = k in Ω, u|∂Ω
= g (1.1)

with nonhomogeneous data f = divF , k and g satisfying

F = (Fij )i,j=1,2 ∈ Lr(Ω), k ∈ Lr(Ω), g ∈ W−1/q,q(∂Ω),∫
Ω

k dx =
∫

∂Ω

g · N do, (1.2)

where 2 < q < ∞, q ′ = q
q−1 < r � q , 1

2 + 1
q

� 1
r
; the surface integral in (1.2) is well

defined in the generalized sense
∫
∂Ω

g · N do = 〈g,N〉∂Ω = 〈N · g,1〉∂Ω .

Definition 1.1. Given data F,k and g as in (1.2) a vector field u = (u1, u2) ∈ Lq(Ω) is
called a very weak solution of (1.1) if and only if for every test function

w ∈ C2
0,σ (Ω̄) = {

v ∈ C2(Ω̄): divv = 0, v|∂Ω
= 0

}

the well defined relation

−〈u,�w〉 + 〈g,N · ∇w〉∂Ω − 〈uu,∇w〉 − 〈ku,w〉 = −〈F,∇w〉 (1.3)

and the equations

divu = k in Ω, N · u|∂Ω
= N · g (1.4)

are satisfied.

Here C2(Ω̄) = {v|Ω̄ : v ∈ C2(R2)}, 〈· , ·〉 denotes the usual Lq–Lq ′
-pairing on Ω and

〈g,N · ∇w〉∂Ω means the value of the boundary distribution g ∈ W−1/q,q(∂Ω) applied to
the test function N · ∇w; for more details see Section 2.1. The relation (1.3) is formally
obtained from (1.1) by applying the test function w ∈ C2

0,σ (Ω̄), using integration by parts
and the equation u ·∇u = div(uu)−ku where uu = (uiuj )i,j=1,2. The boundary condition
N · u|∂Ω

= N · g is well defined since u ∈ Lq(Ω) and k = divu = Lr(Ω). On the other
hand, an elementary calculation proves that

N · ∇w = (rotw)τ on ∂Ω for all w ∈ C2 (Ω̄),
0,σ
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where τ = (−N2,N1)⊥N is the unit tangential vector at x ∈ ∂Ω and rotw =
∂1w2 − ∂2w1. Hence, the term

〈g,N · ∇w〉∂Ω = 〈
g, (rotw)τ

〉
∂Ω

in (1.3) contains only the tangential component g · τ = u|∂Ω
· τ of g. Therefore, the condi-

tion on the normal component of u on ∂Ω in (1.4) must be prescribed in addition to (1.3).
In principle, we follow the notion of very weak solutions introduced by Amann [2,3] for the
three-dimensional nonstationary case with k = 0 and extended in [6,10] to the stationary
and nonstationary 3D-case with k �= 0.

To prove the main existence result for the Navier–Stokes equations we first consider the
stationary Stokes system

−�u + ∇p = f, divu = k in Ω, u|∂Ω
= g (1.5)

with data f = divF,k and g as in (1.2) where now 1 < r � q < ∞, 1
2 + 1

q
� 1

r
.

Theorem 1.2. Suppose the data f = divF,k, g satisfy (1.2) with 1 < r � q < ∞,
1
2 + 1

q
� 1

r
. Then there exists a unique very weak solution u ∈ Lq(Ω) of the Stokes system

(1.5), i.e.,

−〈u,�w〉 + 〈g,N · ∇w〉∂Ω = −〈F,∇w〉 for all w ∈ C2
0,σ (Ω̄)

divu = k in Ω, N · u|∂Ω
= N · g. (1.6)

Moreover, there exists a pressure p ∈ W−1,q (Ω) such that −�u + ∇p = f in the sense of
distributions, and (u,p) satisfy the estimate

‖u‖q + ‖p‖−1,q � C
(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
(1.7)

with a constant C = C(Ω,q, r) > 0.

For the Navier–Stokes system the nonlinear term u ·∇u causes the additional restrictions
q > 2 and q ′ < r . Now our main result reads as follows:

Theorem 1.3. Suppose the data f = divF,k, g satisfy (1.2) with 2 < q < ∞, q ′ < r � q

and 1
2 + 1

q
� 1

r
. There exists a constant K = K(Ω,q, r) > 0 such that if

‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω � K, (1.8)

then the Navier–Stokes system (1.1) has a unique very weak solution u ∈ Lq(Ω). Moreover,
there exists a pressure p ∈ W−1,q (Ω) such that (1.1) is satisfied in the sense of distribu-
tions.

Furthermore, under the smallness condition (1.8) the solution pair (u,p) of (1.1) satis-
fies the a priori estimates:
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‖u‖q � C
(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
, (1.9)

‖p‖−1,q � C
(‖F‖r + ‖u‖q + ‖u‖2

q + ‖u‖q ‖k‖r

)
(1.10)

with C = C(Ω,q, r) > 0.

As an application we consider the classical Navier–Stokes equations with data
F ∈ L2(Ω), k = 0 and g ∈ W 1/2,2(∂Ω) such that

∫
∂Ω

g · N do = 0 and a weak solution
u ∈ W 1,2(Ω), i.e.,

−�u + u · ∇u + ∇p = divF, divu = 0 in Ω, u|∂Ω
= g (1.11)

in the usual weak L2-sense. As is well known, see [9, VIII, Theorem 4.1], there exists
at least one weak solution u ∈ W 1,2(Ω) if Ω is simply connected or if

∫
Γi

g · N do = 0
for every boundary component Γi of ∂Ω in the case of a multiply-connected domain.
Moreover, there exists a constant K1 = K1(Ω) > 0 such that the smallness assumption

‖F‖2 + ‖g‖1/2,2,∂Ω � K1 (1.12)

guarantees the uniqueness of the weak solution u, cf. [9, VIII, Theorem 4.2].
The following corollaries are an obvious consequence of Theorem 1.3. First we obtain

a weaker uniqueness condition and therefore a larger uniqueness class for weak solutions
u ∈ W 1,2(Ω) of (1.11).

Corollary 1.4. Let F ∈ L2(Ω), g ∈ W 1/2,2(∂Ω), and let u ∈ W 1,2(Ω) be a weak solution
of (1.11) in the weak L2-sense. Moreover, let 2 < q < ∞, q ′ < r � 2 and 1

2 + 1
q

� 1
r
. There

exists a constant K = K(Ω,q, r) > 0 such that if

‖F‖r + ‖g‖−1/q,q,∂Ω � K, (1.13)

then u is unique in the class of such weak solutions with the same data f = divF and g.

Note that the weakest integrability condition on F in (1.13) is obtained when q = 4
and r > 4

3 is chosen arbitrarily close to 4
3 ; concerning g the embedding L2(∂Ω) ⊂

W−1/4,4(∂Ω) shows that a weak solution of (1.11) is unique provided that ‖u‖4 or
‖F‖r + ‖g‖2,∂Ω with r > 4

3 are sufficiently small.
Corollary 1.4 on weak L2-solutions may easily be extended to weak Lq -solutions. As

in (1.11) a vector field u ∈ W 1,q (Ω) is called a weak Lq -solution of (1.1) if

−�u + u · ∇u + ∇p = divF, divu = k in Ω

holds with some p ∈ Lq(Ω) in the sense of distributions and if u|∂Ω
= g is satisfied in the

sense of classical trace theorems.
The next corollary follows from Theorem 1.3 and the regularity property in Proposi-

tion 2.4(1).
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Corollary 1.5. Assume that the data f = divF,k and g from (1.2) additionally satisfy the
conditions F ∈ Lq(Ω), k ∈ Lq(Ω) and g ∈ W 1−1/q,q(∂Ω). Then there exists a constant
K = K(Ω,q, r) > 0 such that the smallness condition

‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω � K

implies the existence of a unique weak solution u ∈ W 1,q(Ω) in the usual weak Lq -sense.

The proofs in Section 2.3 below will show that the previous results can be improved
concerning the assumptions on f = divF :

Remark 1.6. The condition f = divF , F ∈ Lr(Ω), in (1.2) may be replaced by the slightly
weaker condition A−1

q Pqf ∈ L
q
σ (Ω) in the sense of (2.10) below. In this case, the term

−〈F,∇w〉 = 〈divF,w〉 in (1.3) and (1.6) is replaced by

〈
A−1

q Pqf,Aq ′w
〉
, w ∈ C2

0,σ (Ω̄).

Then both Theorems 1.2 and 1.3 remain valid if we replace ‖F‖r by ‖A−1
q Pqf ‖q in the

smallness assumption (1.8) and in the a priori estimates (1.7), (1.9) and (1.10). This ex-
tension follows from the proofs in Sections 2.2 and 2.3 and the explicit representation
formulae (2.12) using (2.13), (2.18), (2.22) which are written in a form easily leading to
this more general result.

2. Proofs

2.1. Preliminaries

Let 1 < q < ∞ and q ′ = q
q−1 . For the bounded domain Ω ⊂ R

2 with boundary ∂Ω of

class C2,1 we need the usual Lebesgue and Sobolev spaces Lq(Ω), Wm,q(Ω), W
m,q

0 (Ω),
m = 1,2, with norms ‖·‖Lq(Ω) = ‖·‖q and ‖·‖Wm,q(Ω) = ‖·‖m,q , respectively. The space

W−m,q(Ω) = W
m,q ′
0 (Ω)′ denotes the dual space of W

m,q ′
0 (Ω) with pairing 〈f, v〉 for any

functional f ∈ W−m,q(Ω) and test function v ∈ W
m,q ′
0 (Ω); the norm in W−m,q(Ω) is

denoted by ‖·‖W−m,q (Ω) = ‖·‖−m,q . Analogously, on the boundary ∂Ω we introduce the
spaces Lq(∂Ω), Wα,q(∂Ω) and W−α,q(∂Ω) = Wα,q ′

(∂Ω)′ with pairing 〈· , ·〉∂Ω , 0 �
α � 2. The corresponding norms are ‖·‖q,∂Ω , ‖·‖α,q,∂Ω and ‖·‖−α,q,∂Ω . Note that we will
use the same notation for function spaces of scalar-, vector- or matrix-valued fields.

The spaces of smooth functions on Ω are denoted by Cm
0 (Ω), Cm(Ω), Cm(Ω̄) for

m = 0,1,2, . . . and m = ∞. Moreover,

Cm
0 (Ω̄) = {

v ∈ Cm(Ω̄): v|∂Ω
= 0

}
, Cm

0,σ (Ω) = {
u ∈ Cm

0 (Ω): divu = 0
}
,

and—as the main space of test functions—

Cm (Ω̄) = {
u ∈ Cm(Ω̄): divu = 0

}
.
0,σ 0
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Concerning distributions d ∈ C∞
0 (Ω)′ on Ω we again use the symbol 〈· , ·〉 for the duality

pairing; on the boundary the test function space Cm(∂Ω), m = 1,2, allows for distributions
in Cm(∂Ω)′ with pairing 〈· , ·〉∂Ω .

For 1 < q < ∞ let L
q
σ (Ω) be the closure of C∞

0,σ (Ω) with the norm ‖·‖q . As is well

known, L
q
σ (Ω) is the space of solenoidal vector fields in Lq(Ω) with vanishing normal

trace on ∂Ω . Then the dual space L
q
σ (Ω)′ can be identified with L

q ′
σ (Ω) using the canoni-

cal pairing 〈f, v〉 = ∫
Ω

f ·v dx; thus we will write L
q
σ (Ω)′ = L

q ′
σ (Ω). Similarly we use the

space Lq(∂Ω)′ with canonical pairing 〈f, v〉∂Ω = ∫
∂Ω

f · v do where
∫
∂Ω

. . . do denotes
the boundary integral on ∂Ω with surface measure do.

Let us recall some classical trace and extension properties for Sobolev spaces. For
m = 1,2 there exists a well defined boundary trace operator from Wm,q(Ω) onto
Wm−1/q,q(∂Ω). Conversely, there exist linear bounded extension operators

E1 :W 1−1/q,q(∂Ω) → W 1,q (Ω), (2.1)

E2 :W 2−1/q,q(∂Ω) × W 1−1/q,q(∂Ω) → W 2,q(Ω) (2.2)

such that

E1(h)|∂Ω
= h and E2(h1, h2)|∂Ω

= h1, N · ∇E2(h1, h2) = h2. (2.3)

We note that the operator norms of E1 and E2 depend only on Ω and q .
Let 1 < r � q , 1

2 + 1
q

� 1
r
, and let f ∈ Lq(Ω), divf ∈ Lr(Ω). Then by Green’s identity

〈divf,E1(h)〉 = 〈N · f,h〉∂Ω − 〈f, ∇E1(h)〉 and the embedding estimate ‖E1(h)‖r ′ �
c(‖E1(h)‖q ′ + ‖∇E1(h)‖q ′), we obtain that

∣∣〈N · f,h〉∂Ω

∣∣ � c
(‖f ‖q + ‖divf ‖r

)‖h‖1/q,q ′,∂Ω, h ∈ W 1/q,q ′
(∂Ω),

with c = c(Ω,q, r) > 0. Hence the normal component N ·f |∂Ω
of f at ∂Ω is well defined

in W−1/q,q(∂Ω) and satisfies the estimate

‖N · f ‖−1/q,q,∂Ω � c
(‖f ‖q + ‖divf ‖r

)
. (2.4)

Conversely, there exists a bounded linear extension operator

Ê :W−1/q,q(∂Ω) → {
f ∈ Lq(Ω): divf ∈ Lr(Ω)

}

such that N · Ê(h)|∂Ω
= h; in particular,

∥∥Ê(h)
∥∥

q
+ ∥∥div Ê(h)

∥∥
r
� c‖h‖−1/q,q,∂Ω (2.5)

with c = c(Ω,q, r) > 0; cf. [15, Corollary 4.6, (4.10)].
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By analogy, for f ∈ Lq(Ω) such that rotf = ∂1f2 − ∂2f1 ∈ Lr(Ω), i.e., div f̃ ∈ Lr(Ω)

for f̃ = (f2,−f1), we conclude that the tangential component

τ · f ∈ W−1/q,q(∂Ω), τ = (−N2,N1),

of f at ∂Ω is well defined; moreover, by (2.4)

‖τ · f ‖−1/q,q,∂Ω � c
(‖f ‖q + ‖ rotf ‖r

)
. (2.6)

We recall that there exists a linear bounded operator

B :Lq

0(Ω) :=
{
f ∈ Lq(Ω):

∫
Ω

f dx = 0

}
→ W

1,q

0 (Ω),

B :Lq

0(Ω) ∩ W
1,q

0 (Ω) → W
2,q

0 (Ω),

satisfying divB(f ) = f ; in particular, there exists c = c(Ω,q) > 0 such that

∥∥B(f )
∥∥

1,q
� c‖f ‖q,

∥∥B(f )
∥∥

2,q
� c‖f ‖1,q (2.7)

for f ∈ L
q

0(Ω) and f ∈ L
q

0(Ω)∩W
1,q

0 (Ω), respectively; see [5], [8, Theorem III 3.2], [16,
p. 68].

Let f ∈ Lq(Ω), 1 < q < ∞. Then the weak Neumann problem �H = divf in Ω ,
N · (∇H − f )|∂Ω

= 0, has a unique solution ∇H ∈ Lq(Ω) such that

‖∇H‖q � c‖f ‖q, c = c(Ω,q) > 0; (2.8)

cf. [7,15]. Setting Pqf = f − ∇H we get the bounded Helmholtz projection Pq :Lq(Ω)

→ Lq(Ω) with range R(Pq) = L
q
σ (Ω), satisfying P 2

q = Pq and P ′
q = Pq ′ for the dual

operator.
The Stokes operator

Aq = −Pq� :D(Aq) = Lq
σ (Ω) ∩ W

1,q

0 (Ω) ∩ W 2,q (Ω) → Lq
σ (Ω)

is a closed bijective operator on the dense domain D(Aq) ⊂ L
q
σ (Ω) with the following

properties: The fractional powers A
β
q :D(A

β
q ) → L

q
σ (Ω), 0 � β � 1, with dense domain

D(A
β
q ) ⊂ L

q
σ (Ω) are well defined and injective, and A

−β
q = (A

β
q )−1 :Lq

σ (Ω) → L
q
σ (Ω)

are bounded operators with range R(A
−β
q ) = D(A

β
q ). The norms ‖u‖1,q and ‖A1/2

q u‖q

are equivalent for u ∈ D(A
1/2
q ), and the norms ‖u‖2,q and ‖Aqu‖q are equivalent for

u ∈ D(Aq); in particular, C∞
0,σ (Ω) is dense in D(A

1/2
q ) with norm ‖A1/2

q ‖q , and C2
0,σ (Ω̄)

is dense in D(Aq) with norm ‖Aq‖q . Moreover, the embedding estimate

‖u‖q � c
∥∥Aβ

r u
∥∥

r
, u ∈D

(
Aβ

r

)
, 1 < r � q, β + 1 � 1

, (2.9)

q r
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holds with a constant c = c(Ω,β, q, r) > 0. Finally, Aqu = Aru for u ∈ D(Aq) ∩
D(Ar), 1 < q , r < ∞, and (Aq)′ = Aq ′ for the dual operator of Aq ; cf. [1,4,8,11–15,
16–18].

To solve the Stokes and Navier–Stokes equations in their very weak formulation we
introduce a generalized meaning of the operator A

−β
q Pq , 0 � β � 1, 1 < q < ∞. Given a

distribution u = (u1, u2) ∈ C∞
0 (Ω)′ we say that its restriction Pqu := u|C∞

0,σ

satisfies

A
−β
q Pqu ∈ L

q
σ (Ω) : ⇐⇒ 〈Pqu,w〉 is well defined for all w ∈ D

(
A

β

q ′
)

and
∣∣〈Pqu,w〉∣∣ � C

∥∥A
β

q ′w
∥∥

q ′ (2.10)

with a constant C = C(u). In other words,

∣∣〈Pqu,A
−β

q ′ v
〉∣∣ � C‖v‖q ′ for all v ∈ Lq ′

σ (Ω).

Hence there exists an element A
−β
q Pqu := u∗ ∈ L

q
σ (Ω) with norm ‖A−β

q Pqu‖q � C such
that formally

〈
A−β

q Pqu, v
〉 = 〈u∗, v〉 = 〈

Pqu,A
−β

q ′ v
〉 = 〈

u,Pq ′A−β

q ′ v
〉
, v ∈ Lq ′

σ (Ω). (2.11)

2.2. Proof of Theorem 1.2

The idea of the proof is based on an explicit representation of the very weak solution u

in the form

u = R + S + ∇H, (2.12)

where ∇H = (I − Pq)u carries the information of k = divu and g · N = u|∂Ω
· N , see

(2.13) below, where S = A−1
q Pq divF solves a homogeneous Stokes equation with external

force f = divF , and R mainly carries the information of the tangential component of g

(plus a correction due to ∇H ), see (2.21) below.
In the following we construct R,S and ∇H step by step using only the data f, k, g;

then we show that u = R + S +∇H is the desired very weak solution. First we define ∇H

as a solution of the weak Neumann problem

�H = k in Ω, N · ∇H |∂Ω
= N · g. (2.13)

For this purpose we define v = Ê(N · g) as in Section 2.1 satisfying v ∈ Lq(Ω),
divv ∈ Lr(Ω) and N · v|∂Ω

= N · g. Moreover, since
∫
Ω

(divv − k) dx = ∫
∂Ω

N · g do −∫
Ω

k dx = 0 by (1.2), we find b = B(divv − k) ∈ W
1,r
0 (Ω) satisfying divb = divv − k and

‖b‖q � c1‖∇b‖r � c2
(‖divv‖r + ‖k‖r

)
(2.14)
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with cj = cj (Ω,q, r) > 0, j = 1,2, see (2.7). Then we solve the weak Neumann problem

�H = div(v − b), N · (∇H − v + b)|∂Ω
= 0 (2.15)

and obtain by (2.5), (2.8), (2.14) the estimate

‖∇H‖q � c1‖v − b‖q � c2
(‖g‖−1/q,q,∂Ω + ‖k‖r

)
(2.16)

with cj = cj (Ω,q, r) > 0, j = 1,2. For later use, we remark that ∇H |∂Ω
∈ W−1/q,q(∂Ω)

is well defined. Actually, div(∇H) = k ∈ Lr(Ω) and rot(∇H) = 0; hence by (2.4), (2.6),
(2.16)

‖∇H‖−1/q,q,∂Ω � c1
(‖N · ∇H‖−1/q,q,∂Ω + ‖τ · ∇H‖−1/q,q,∂Ω

)
� c2

(‖g‖−1/q,q,∂Ω + ‖k‖r

)
(2.17)

with cj = cj (Ω,q, r) > 0, j = 1,2.
Next we define

S = A−1
q Pq divF. (2.18)

Note that for all w ∈ D(Aq ′)

∣∣〈divF,w〉∣∣ = ∣∣−〈F,∇w〉∣∣ � ‖F‖r‖∇w‖r ′

� c1‖F‖r

∥∥A
1/2
r ′ w

∥∥
r ′ � c2‖F‖r‖Aq ′w‖q ′

with cj = cj (Ω,q, r) > 0, j = 1,2. Hence A−1
q Pq divF ∈ L

q
σ (Ω) is well defined and

satisfies

∥∥A−1
q Pq divF

∥∥
q

� c2‖F‖r , (2.19)

cf. (2.10). Moreover, by (2.11), for all w ∈ C2
0,σ (Ω̄)

−〈S,�w〉 = 〈
A−1

q Pq divF,Aq ′w
〉 = 〈Pq divF,w〉 = −〈F,∇w〉. (2.20)

Comparing this identity with (1.6) we conclude that S = A−1
q Pq divF is a very weak

solution of the Stokes system with S|∂Ω
= 0, divS = 0 in Ω and external force divF .

Now it remains to find the remainder term R (= u−S −∇H) as the very weak solution
of the Stokes system

−�R + ∇p = 0, divR = 0 in Ω, R|∂Ω
= g − ∇H |∂Ω

. (2.21)

Thus for all w ∈ C2
0,σ (Ω̄)

−〈R,�w〉 + 〈g − ∇H,N · ∇w〉∂Ω = 0. (2.22)
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By (2.17) and using properties of the trace map we get for g̃ = g −∇H and all w ∈D(Aq ′)

∣∣〈g̃,N · ∇w〉∂Ω

∣∣ � c‖g̃‖−1/q,q,∂Ω‖∇w‖1/q,q ′,∂Ω � c‖g̃‖−1/q,q,∂Ω‖w‖2,q ′

� c
(‖g‖−1/q,q,∂Ω + ‖k‖r

)‖Aq ′w‖q ′ .

Since R(Aq ′) = L
q ′
σ (Ω), this inequality may be written in the form

∣∣〈g̃,N · ∇(
A−1

q ′ v
)〉

∂Ω

∣∣ � c
(‖g‖−1/q,q,∂Ω + ‖k‖r

)‖v‖q ′ , v ∈ Lq ′
σ (Ω).

Hence there exists a unique R ∈ L
q
σ (Ω) satisfying 〈R,v〉 = 〈g̃,N · ∇A−1

q ′ v〉 for all v ∈
L

q ′
σ (Ω) and consequently also (2.22); moreover,

‖R‖q � c
(‖g‖−1/q,q,∂Ω + ‖k‖r

)
, c = c(Ω,q, r) > 0. (2.23)

Finally we have to show that u := R + S +∇H is a very weak solution of (1.5). By (2.13),
(2.20), (2.22) it suffices to show the identity

〈∇H,�w〉 = 〈∇H,N · ∇w〉∂Ω for all w ∈ C2
0,σ (Ω̄). (2.24)

For its proof we approximate k, g in (2.13) by smooth functions kn, gn, n ∈ N, such
that ‖k − kn‖r → 0, ‖g − gn‖−1/q,q,∂Ω → 0 as n → ∞, and let ∇Hn ∈ Lq(Ω) be
the solution of (2.13) with k, g replaced by kn, gn. Then, by (2.16), (2.17) we obtain
‖∇H − ∇Hn‖q → 0, ‖∇H − ∇Hn‖−1/q,q,∂Ω → 0 as n → ∞; hence the identity

〈∇Hn,�w〉 = 〈∇Hn,N · ∇w〉∂Ω − 〈∇(∇Hn),∇w
〉

= 〈∇Hn,N · ∇w〉∂Ω + 〈
�(∇Hn),w

〉
= 〈∇Hn,N · ∇w〉∂Ω − 〈�Hn,divw〉
= 〈∇Hn,N · ∇w〉∂Ω

converges to (2.24) as n → ∞.
Note that a very weak solution u ∈ Lq(Ω) of (1.5) is unique. Indeed, in the case F = 0,

k = 0, g = 0 the defining identity (1.6) implies that u ∈ L
q
σ (Ω) satisfies −〈u,�w〉 =

〈u,Aq ′w〉 = 0 for all w ∈ C2
0,σ (Ω̄); since R(Aq ′) = L

q ′
σ (Ω) we conclude that u = 0. More-

over, in the general case, (2.12) and (2.16), (2.19), (2.23) yield the a priori estimate (1.7)
for u.

Concerning the pressure, we consider test functions w ∈ C∞
0,σ (Ω) in (1.6) and are led

to the identity

〈divF + �u,w〉 = 0

in the sense of distributions. Then de Rham’s argument proves the existence of a distribu-
tion p ∈ C∞(Ω)′ satisfying divF + �u = ∇p. Furthermore, we get ∇p ∈ W−2,q (Ω) and
0
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‖∇p‖−2,q � c1(‖F‖r + ‖u‖q). From [16, II, (2.3.3)], we get that there exists M ∈ R such
that

‖p − M‖−1,q � c2‖∇p‖−2,q � c3
(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)

with cj = cj (Ω,q, r) > 0, j = 1,2,3. Replacing p by p − M we complete the proof of
Theorem 1.2. �
2.3. Proof of Theorem 1.3

We write the Navier–Stokes system (1.1) in the form

−�u + ∇p = f̂ (u), divu = k in Ω, u|∂Ω
= g, (2.25)

where

f̂ (u) = f − u · ∇u = f − div(uu) + ku, (2.26)

and use the representation formula (2.12) in the form

u = F(u) := ∇H + R + A−1
q Pqf̂ (u); (2.27)

here ∇H , R are defined by (2.13), (2.22), respectively. At this point, it is necessary to show
that A−1

q Pqf̂ (u) ∈ Lq(Ω) for u ∈ Lq(Ω), see (2.10).

Lemma 2.1. Let 2 < q < ∞, q ′ < r � q and 1
2 + 1

q
� 1

r
, and let u,v ∈ Lq(Ω), k ∈ Lr(Ω).

(i) There exists a constant c = c(Ω,q, r) > 0 such that

∥∥A−1
q Pq div(uv)

∥∥
q

� c‖u‖q‖v‖q,
∥∥A−1

q Pq(ku)
∥∥

q
� c‖u‖q‖k‖r .

(ii) Let w ∈ Lq0(Ω), q0 > 2 and q̃ = q0q
q0+q

. Then there exists a constant c = c(Ω,q, q0)

> 0 such that

∥∥A
−1/2
q̃

Pq̃ div(vw)
∥∥

q̃
+ ∥∥A

−1/2
q̃

Pq̃ div(wv)
∥∥

q̃
� c‖v‖q‖w‖q0,∥∥A

−1/2
2 P2(ku)

∥∥
2 � c‖u‖q‖k‖r .

Proof. (i) For ϕ ∈ C2
0,σ (Ω̄) ⊂ D(Aq ′)

∣∣〈div(uv),ϕ〉∣∣ = ∣∣〈uv,∇ϕ〉∣∣ � ‖u‖q‖v‖q‖∇ϕ‖(q/2)′

� c1‖u‖q‖v‖q

∥∥A
1/2

′ϕ
∥∥ ′ � c2‖u‖q‖v‖q‖Aq ′ϕ‖q ′
(q/2) (q/2)
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by (2.9) with β = 1
2 and q, r replaced by (

q
2 )′, q ′. Hence (2.10) yields the first estimate

of (i). To prove the second estimate, define s = (1 − 1
r

− 1
q
)−1 ∈ (1,∞) and use (2.9) with

β = 1 and q, r replaced by s, q ′ to get that

∣∣〈ku,ϕ〉∣∣ � ‖k‖r‖u‖q‖ϕ‖s � c3‖k‖r‖u‖q‖Aq ′ϕ‖q ′ .

(ii) For ϕ ∈ C∞
0,σ (Ω) Hölder’s inequality yields the estimate

∣∣〈div(vw),ϕ〉∣∣ = ∣∣〈vw,∇ϕ〉∣∣ � c‖v‖q‖w‖q0

∥∥A
1/2
q̃ ′ ϕ

∥∥
q̃ ′ .

The term |〈div(wv),ϕ〉| will be estimated similarly. Since C∞
0,σ (Ω) is dense in D(A

1/2
q̃ ′ ),

the first inequality is proved, see (2.10). Moreover, using the continuous embedding
D(A

1/2
2 ) ⊂ Ls

σ (Ω) for every s ∈ (1,∞), the estimate

∣∣〈ku,ϕ〉∣∣ � ‖k‖r‖u‖q‖ϕ‖s � c‖k‖r‖u‖q

∥∥A
1/2
2 ϕ

∥∥
2,

where s = (1 − 1
r

− 1
q
)−1, proves the second inequality. �

By Lemma 2.1 a vector field u ∈ Lq(Ω) is a very weak solution of (1.1) if and only
if u is a very weak solution of (2.25). Moreover, u may be found as a fixed point of the
nonlinear equation (2.27). To solve (2.27), we use (2.16), (2.19), (2.23) and Lemma 2.1 to
get the inequality

∥∥F(u)
∥∥

q
� C0

(‖u‖2
q + ‖u‖q‖k‖r + ‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
(2.28)

where C0 = C0(Ω,q, r) > 0. Setting α = C0, β = C0‖k‖r and γ = C0(‖F‖r + ‖k‖r +
‖g‖−1/q,q,∂Ω), the previous inequality may be written in the form

∥∥F(u)
∥∥

q
� α‖u‖2

q + β‖u‖q + γ, u ∈ Lq(Ω).

Analogously, we obtain that

∥∥F(u) −F(v)
∥∥

q
�

(
α‖u‖q + α‖v‖q + β

)‖u − v‖q, u, v ∈ Lq(Ω).

Now Banach’s fixed point theorem applied to F on a closed ball Bρ(0) ⊂ Lp(Ω), ρ > 0,

proves the existence of a unique fixed point u ∈ Bρ(0) of (2.27) provided that the data
F,k, g satisfy the smallness condition (1.8) with a suitable constant K = K(C0), C0 as
in (2.28). Moreover, the unique solution u ∈ Bρ(0) satisfies the a priori estimate (1.9) with
C = 2C0; for more details of this standard procedure see, e.g., [10, Proof of Theorem 4].
As in the proof of Theorem 1.2 we get a pressure p ∈ W−1,q (Ω) such that (1.1) holds in
the sense of distributions and satisfying (1.10).



576 R. Farwig et al. / J. Differential Equations 227 (2006) 564–580
It remains to prove the uniqueness of u in the class of all very weak solutions of (1.1).
Assume that u,v ∈ Lq(Ω) are very weak solutions of (1.1) with the same data f, k, g.
Then the representation formula (2.27) (with ∇H = 0,R = 0) yields for u − v the identity

u − v = A−1
q Pq div

(
v(v − u) + (v − u)u

) + A−1
q Pq

(
k(u − v)

)
, (2.29)

which can be considered as a linear equation in u − v keeping u,v fixed. Applying A
1/2
q

formally we get for w = u − v that

A
1/2
2 w = −A

−1/2
2 P2 div(vw + wu) + A

−1/2
2 P2(kw). (2.30)

Actually, if q � 4, then Lemma 2.1(ii) shows that both terms A
−1/2
2 P2 div(vw + wu) and

A
−1/2
2 P2(kw) are well defined elements in L2

σ (Ω) yielding w = u−v ∈ D(A
1/2
2 ) in (2.29).

However, if 2 < q < 4, then A
−1/2
2 P2(kw) ∈ L2

σ (Ω) as before, but by Lemma 2.1(ii) using

q0 = q > 2 we only get that A
−1/2
q̃

Pq̃ div(vw + wu) ∈ L
q̃
σ where q̃ = q0q

q0+q
< 2. Hence

by (2.29)

w ∈D
(
A

1/2
q̃

) ⊂ W 1,q̃ (Ω) ⊂ Lq1(Ω),
1

q1
= 1

q̃
− 1

2
= 1

q0
−

(
1

2
− 1

q

)
.

This step will be repeated finitely many times implying that

w ∈ Lqj (Ω),
1

qj

= 1

q0
− j

(
1

2
− 1

q

)
, j = 1,2, . . . ,

until
q0qj

q0+qj
� 2 will be guaranteed. Then the case q � 4 considered just before applies and

proves w ∈D(A
1/2
2 ) and (2.30).

Next take the L2-scalar product of (2.30) with A
1/2
2 w and note the identity

∫
Ω

A
1/2
2 w ·

A
−1/2
2 P2 div(vw)dx = − ∫

Ω
(v · ∇w) · w dx = 1

2

∫
Ω

k|w|2 dx. Then Lemma 2.1(ii) and
(1.9) imply that

∥∥A
1/2
2 w

∥∥2
2 � C1

(‖u‖q + ‖k‖r

)∥∥A
1/2
2 w

∥∥2
2

� C2
(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)∥∥A
1/2
2 w

∥∥2
2

with Ci = Ci(Ω,q, r) > 0, i = 1,2. Assuming that the smallness condition (1.8) even
implies KC2 < 1, we conclude that A

1/2
2 w = 0 and that u = v.

Now Theorem 1.3 is completely proved. �
2.4. Further results

Remark 2.2 (Representation formula). (1) The representation u = R+S+∇H , see (2.12),
of the very weak solution u of the Stokes system (1.5) describes u as the sum of three terms
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each of which is a very weak solution of a related Stokes system. Concerning ∇H , note
that by (2.13) v = ∇H solves the equation

−�v + ∇p = 0, divv = k in Ω, v|∂Ω
= ∇H |∂Ω

,

where ∇H |∂Ω
∈ W−1/q,q(∂Ω) is well defined, cf. (2.17).

(2) Consider a very weak solution u ∈ Lq(Ω) of the Navier–Stokes system (1.1), (1.2).
By (2.26), (2.27) u has a representation

u = R + S + ∇H − A−1
q Pqu · ∇u

where R,S and ∇H are defined by (2.21), (2.18) and (2.13), respectively. Let

E = E(f, k, g) = R + S + ∇H ∈ Lq(Ω),

i.e., E is a very weak solution of the inhomogeneous Stokes system (1.5). Then U = u−E

is a very weak solution of the nonlinear system

−�U + ∇p + (U + E) · ∇(U + E) = 0, divU = 0, U |∂Ω
= 0 (2.31)

of Navier–Stokes type with homogeneous data; here Definition 1.1 must be modified cor-
respondingly. We may solve (2.31) directly with Banach’s fixed point theorem when E is
considered to be known. In this case the weaker smallness condition

‖E‖q + ‖k‖r < K1 = K1(Ω,q, r) (2.32)

instead of (1.8) yields existence and (global) uniqueness of the very weak solution of (2.31)
and therefore also of (1.1).

(3) The term ‖F‖r + ‖g‖−1/q,q,∂Ω + ‖k‖r in the smallness condition (1.8) may be
arbitrarily large even when the smallness condition (2.32) is satisfied. Actually, we consider
data of the type Fn = ∇ρn,ρn ∈ C∞

0,σ (Ω), and kn = 0, gn = 0 , n ∈ N, only. Obviously the
unique very weak solution of the Stokes system (1.5) is En = −ρn so that we have to
compare the norms

‖Fn‖r = ‖∇ρn‖r and ‖En‖q = ‖ρn‖q .

To be more precise, let 0 �= ρ ∈ C∞
0,σ (B1(0)) be fixed and assume that for every n ∈ N

the domain Ω admits the choice of n2 points {x(n)
1 , . . . , x

(n)

n2 } ⊂ Ω such that the balls

B1/n(x
(n)
k ), 1 � k � n2, are pairwise disjoint. Now define

ρn(x) =
n2∑

ρ
(
n
(
x − x

(n)
k

))
, x ∈ Ω.
k=1
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Then ‖ρn‖q
q = ∑

k ‖ρ(n(· − x
(n)
k ))‖q

q = M
q

0 where M0 = ‖ρ‖q > 0 and

‖∇ρn‖r
r = nr

∑
k

∥∥(∇ρ)
(
n
(· − x

(n)
k

))∥∥r

r
= nrMr

1 ,

where M1 = ‖∇ρ‖r
r > 0. Hence ‖Fn‖r/‖En‖q ∼ n as n → ∞.

Remark 2.3 (Traces). Consider a very weak solution u ∈ Lq(Ω) of the Stokes sys-
tem (1.5). Then the normal component N · u|∂Ω

= N · g ∈ W−1/q,q(∂Ω) is well defined,

cf. (2.4). Since there is no trace theorem of the type u ∈ Lq(Ω) ⇒ u|∂Ω
∈ W−1/q,q(∂Ω),

we have to consider the tangential component τ · u|∂Ω
= −N2g1 + N1g2 more carefully.

Let h ∈ W 1/q,q ′
(∂Ω) with N · h = 0 be given and define using (2.2), (2.7)

w = w(h) = (I − B div) · E2(0, h).

Obviously divw = 0 in Ω , w|∂Ω
= 0 and N · ∇w|∂Ω

= h, since divE2(0, h)|∂Ω
=

N · h = 0; note that here h and E2(0, h) are vector-valued. Moreover, w(·) defines a
bounded linear operator from the space {h ∈ W 1/q,q ′

(∂Ω): N · h = 0} into W 2,q ′
(Ω) sat-

isfying the estimate
∥∥w(h)

∥∥
2,q ′ � c‖h‖1/q,q ′,∂Ω, c = c(Ω,q) > 0.

Inserting w as a test function into (1.6) we get the well defined relation

〈g,h〉∂Ω = 〈
u,�w(h)

〉 + 〈
A−1

q Pqf,Aq ′w(h)
〉
. (2.33)

Since N · h = 0, we may replace 〈g,h〉∂Ω by 〈(τ · g)τ,h〉∂Ω and interpret the right-hand
side of (2.33) as the precise meaning of the tangential component τ ·u|∂Ω

of the very weak
solution u. Moreover, τ · u|∂Ω

satisfies the estimate

‖τ · u‖−1/q,q,∂Ω � c1
(‖u‖q + ∥∥A−1

q Pqf
∥∥

q

)
� c2

(‖F‖r + ‖k‖r + ‖g‖−1/q,q,∂Ω

)
(2.34)

with cj = cj (Ω,q, r) > 0, j = 1,2.
Analogously, for a very weak solution u ∈ Lq(Ω) of the Navier–Stokes system (1.1),

(1.2), the tangential component τ ·u|∂Ω
= τ ·g ∈ W−1/q,q(Ω) is well defined and satisfies

(2.33), (2.34) with f replaced by f − u · ∇u.

Proposition 2.4 (Regularity). (1) Assume that the data f = divF,k, g in Theorems 1.2
and 1.3 satisfy

F ∈ Lq(Ω), k ∈ Lq(Ω), g ∈ W 1−1/q,q(∂Ω).

Then the very weak solution u in Theorems 1.2 and 1.3 has the regularity property u ∈
W 1,q (Ω) and there exists a corresponding pressure p ∈ Lq(Ω). Moreover, estimate (1.7)
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in Theorem 1.2 can be replaced by

‖u‖1,q + ‖p‖q � c
(‖F‖q + ‖k‖q + ‖g‖1−1/q,q,∂Ω

)
(2.35)

with c = c(Ω,q) > 0.
(2) Assume that

F ∈ W 1,q (Ω), k ∈ W 1,q (Ω), g ∈ W 2−1/q,q(∂Ω).

Then u ∈ W 2,q (Ω) and p ∈ W 1,q (Ω) in Theorems 1.2 and 1.3. Moreover, in Theorem 1.2

‖u‖2,q + ‖p‖1,q � c
(‖F‖1,q + ‖k‖1,q + ‖g‖2−1/q,q,∂Ω

)
. (2.36)

Proof. (1) Concerning the linear case of Theorem 1.2 let w = E1(g) ∈ W 1,q (Ω), and
b = B(k − divw) ∈ W

1,q

0 (Ω), see (2.1) and (2.7); note that
∫
Ω

(k − divw)dx = ∫
Ω

k dx −∫
∂Ω

N · g do = 0. Then ũ = u − w − b solves the Stokes system

−�ũ + ∇p = f̃ , div ũ = 0 in Ω, ũ|∂Ω
= 0 (2.37)

with f̃ = f + �w + �b ∈ W−1,q (Ω) in the usual weak Lq -sense. Using the estimates of
Section 2.1 we obtain the well-defined equation

A
1/2
q ũ = A

−1/2
q Pqf̃ ∈ Lq

σ (Ω) (2.38)

leading to a unique solution ũ ∈ D(A
1/2
q ) ⊂ W

1,q

0 (Ω). Then u = ũ + w + b ∈ W 1,q (Ω)

is the (unique) very weak solution of (1.5) satisfying the estimate (2.35). Moreover, de
Rham’s argument yields the existence of a unique pressure p ∈ L

q

0(Ω) satisfying (2.35) as
well.

In the nonlinear case we formally get that ũ = u − w − b satisfies the identity

A
1/2
q ũ = A

−1/2
q Pq(f̃ − u · ∇u), (2.39)

cf. (2.38). However, we need an argument as at the end of the proof of Theorem 1.3 to show
that all terms in (2.39) are well defined, i.e., that u ∈ Lq(Ω) yields ∇u ∈ Lq(Ω) under the
assumptions given on f, k and g.

(2) The proof follows the same lines as before. In this case u ∈ W 2,q(Ω) is a (classical)
strong Lq -solution. �
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