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Abstract

We propose a scenario that the mass splitting between the first generation of the heavy Majorana neutrino and the other two generations of
degenerate heavy neutrinos in the seesaw framework is responsible for the deviation of the solar mixing angle from the maximal mixing, while
keeping the maximal mixing between the tau and muon neutrinos as it is. On top of the scenario, we show that the tiny breaking of the degeneracy
of the two heavy Majorana neutrinos leads to the non-zero small mixing angle Ue3 in the PMNS matrix and the little deviation of the atmospheric
neutrino mixing angle from the maximal mixing.
© 2006 Elsevier B.V.
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Thanks to enormous progress in solar, atmospheric and terrestrial neutrino experiments, we have now the robust evidence for
the existence of neutrino oscillation which provides a window to physics beyond the standard model (SM). Until now, while
the atmospheric neutrino deficit still points toward a maximal mixing between the tau and muon neutrinos, however, the solar
neutrino problem favors a not-so-maximal mixing between the electron and muon neutrinos. There have been many attempts to
explain the origin of the deviation of the solar mixing angle from the maximal mixing. Surprisingly, it has recently been noted
that the solar neutrino mixing angle θsol required for a solution of the solar neutrino problem and the Cabibbo angle θC reveal
a striking relation [1], θsol + θC � π

4 , which is satisfied by the experimental results within a few percent accuracy, θsol + θC =
45.4◦ ± 1.7◦ [2–4]. This quark–lepton complementarity (QLC) relation has been simply interpreted as an evidence for certain
quark–lepton symmetry or quark–lepton unification as shown in Refs. [1,5,6]. But, it can be an accidental phenomenon as pointed
out in Refs. [6,7]. Thus, it is worthwhile to find the possible alternatives to the grand unification origin of the deviation of the solar
mixing from the maximal mixing.

In this Letter, we propose a scenario that the mass splitting between the first generation of the heavy Majorana neutrino and the
other two generations of degenerate heavy neutrinos in the seesaw framework is responsible for the deviation of the solar mixing
angle from the maximal mixing, while keeping the maximal mixing between the tau and muon neutrinos as it is. The maximal
atmospheric neutrino mixing and the smallness of Ue3 may be the trace of the original “bi-maximal” mixing which is presumably
supposed to be achieved by some underlying flavor symmetries, and thus the best possible approach to the problem is to start in the
limit of the maximal mixing with Ue3 = 0, and understand how the deviation of the solar mixing from the maximal is realized. In our
scenario, the primitive “bi-maximal” neutrino mixing is generated only from the neutrino Dirac Yukawa matrix by taking a diagonal
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form of three degenerate heavy Majorana neutrinos in a basis where the charged lepton mass matrix is real and diagonal. As will be
shown, the deviation of the solar mixing can then be generated from breakdown of the degeneracy of the heavy Majorana neutrino
masses between the first and the other two generations. The main point in this scenario is that the deviation can be expressed in
terms of the ratio between two heavy Majorana neutrino masses. On top of the scenario, we will also show that the tiny breaking
of the degeneracy of the two heavy Majorana neutrinos will lead to the small mixing angle θ13 in the PMNS matrix and the very
small deviation of the atmospheric neutrino mixing angle from the maximal mixing. We will propose that the origin of the tiny mass
splitting among three heavy Majorana neutrinos is the effective dimension-five operators whose structures are governed by discrete
flavor symmetry, and show that the desirable mass splitting responsible for the deviation of maximal mixing of solar neutrinos and
non-zero Ue3 is related with the vacuum structures of some scalar fields introduced in the dimension-five operators.

Before proceeding to our scenario, we wish to motivate one scheme that leads to exact “bi-maximal” mixing in the framework
of the seesaw mechanism. We study in a basis where the charged lepton mass matrix is real and diagonal. The light neutrino mass
matrix Mν diagonalized by Ubimax is given through the seesaw mechanism by

(1)Mν = MT
DM−1

R MD = UbimaxM
diag
ν UT

bimax,

where MD = YDv/
√

2 with electroweak vacuum expectation value v and the neutrino Dirac Yukawa matrix YD , and MR is a mass
matrix of heavy Majorana neutrinos. The mixing matrix Ubimax denotes the “bi-maximal” mixing matrix [8]:
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Then, the “bi-maximal” mixing can be achieved by one of the three possible ways as follows:

• Taking YD diagonalized by Ubimax and MR = M · I with the identity matrix I and a common mass scale M ;
• Taking YD = y · I and MR diagonalized by Ubimax;
• Taking “bi-maximal” mixing pattern from the combination of the nontrivial YD and MR .

For the third case, there may exist various origins of the deviation of the solar mixing depending on possible combinations, and
some of which have been discussed before [9]. For the other two cases, the modification of the trivial sectors proportional to the unit
matrix can be in charge for the origin of the deviation from the maximal mixing. However, since the second case may lead to the
undesirable deviation of the atmospheric mixing aside from the deviation of the solar mixing as one can easily see, we only focus
on the first case in this Letter. In the first case, the “bi-maximal” mixing can be achieved by taking the symmetric matrix YD with
specific form. As an example, we present a detailed model of YD leading to the “bi-maximal” mixing, while keeping MR = M · I
based on the discrete symmetry A4 ⊗ Z2 [10]. Let the three families of leptons and singlet heavy neutrinos be denoted by (νi, li )L,
liR , NiR for i = 1,2,3. In this convention, l̄iLljR and ν̄iLNjR are Dirac mass terms for charged leptons and neutrinos. Under the
discrete symmetry A4 ⊗ Z2, the 3 families of leptons transform as (νi, li )L ∼ (3,+),NiR ∼ (3,+), liR ∼ (1,−), (1′,−), (1′′,−).
We introduce Higgs scalar sectors consisted of seven Higgs doublets Φi ∼ (1,−), (1′,−), (1′′,−),φ ∼ (1,+), σi ∼ (3,+). From
the assignment, the A4 ⊗Z2 invariant Dirac Yukawa interactions for charged lepton sector, liLliRΦj , leads to a diagonal mass matrix
with 3 independent entries each as shown in Ref. [11]. For the mass matrix of the heavy Majorana neutrinos, we can take MNiRNiR

with common mass scale M because of A4 symmetry, i.e., 3 × 3 ∼ 1. The Dirac Yukawa matrix for the neutrino sector, which is
invariant under A4 ⊗ Z2 and diagonalized by the “bi-maximal” mixing matrix, can be obtained from the interaction Lagrangian as
follows:

(3)YD = h1(ν̄1N1 + ν̄2N2 + ν̄3N3)φ + h2(ν̄1N2σ3 + ν̄2N3σ1 + ν̄3N1σ2) + h3(N̄1ν2σ3 + N̄2ν3σ1 + N̄3ν1σ2) + h.c.

In order to achieve the symmetric form of the Dirac Yukawa matrix, we require h2 = h3. The vacuum expectation values for the
neutral components of Higgs sector σ 0

i can be determined by the Higgs potential invariant under A4,
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where ω = e2π/3. Taking 〈σ 0
1 〉 = 0 and 〈σ 0

2 〉 = 〈σ 0
3 〉 = v with v =

√
−m2

2λ1+λ2+λ3+λ4
as well as non-vanishing 〈φ0〉 for the Higgs

sector φ, we can achieve the final form of the Dirac Yukawa matrix given as follows,

(5)YD =
⎛
⎝a b b

b a 0

⎞
⎠ .
b 0 a
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Defining Y
diag
D = diag(x, y, z), the neutrino Dirac Yukawa matrix YD diagonalized by Ubimax is generally given in the symmetric

matrix form by

(6)YD = UbimaxY
diag
D UT

bimax.

Here, we consider the case of non-zero values for x and y, which is crucial to our purpose.
In order to achieve the observed deviation of the solar neutrino mixing from the maximal mixing, we take into account the mass

splitting between the first generation of the heavy Majorana neutrino and the other two degenerate ones, for which the mass matrix
is given by MR = M

diag
R = (M1,M2,M2), which results from the breaking of A4 in the heavy neutrino sector and reflects separation

of NiR ∼ N1R(1) ⊕ N(2,3)R(2) under S3 symmetry. Then, the light neutrino mass matrix Mν is presented as follows:
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where the mass matrix M ′
ν is given by
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Then, the matrix M ′
ν can be diagonalized by U12(θ), and after diagonalizing M ′

ν , we can obtain the mixing angle θ and three
neutrino mass eigenvalues as follows:

(9)tan 2θ = 2xy(M2 − M1)

(x2 − y2)(M1 + M2)
,

mν1 = 1

2M1M2

[(
c2x2 + s2y2)(M1 + M2) + 2csxy(M1 − M2)

]
,

mν2 = 1

2M1M2

[(
s2x2 + c2y2)(M1 + M2) − 2csxy(M1 − M2)

]
,

(10)mν3 = z2

M2
,

where c = cos θ, s = sin θ . Comparing the mixing matrix U12(θ) with U12(π/4) in Ubimax, we can get the solar mixing angle θsol
which deviates as much as the value of θ from the maximal mixing. Note that the value of θ should be negative in order to achieve
the desirable deviation of the solar neutrino mixing. We can argue that the generation of the mixing angle θ due to the splitting
between M1 and M2 in seesaw mechanism may be the origin of the deviation of the solar mixing angle from the maximal mixing
in the case of non-zero x and y. However, since we do not have yet any information on the values of M1 and M2, we cannot
immediately test whether the difference between M1 and M2 is really compatible with the deviation of the solar mixing angle from
the maximal mixing, but we can make numerical estimate for the size of the ratio of M1 to M2, which accommodates the deviation
of the solar mixing based on the experimental results for the neutrino oscillation. From the numerical results, we can also predict
the magnitude of the effective Majorana neutrino mass mee , which is the neutrino-exchange amplitude for the neutrinoless double
beta decay.

For our purpose, let us define two parameters κ and ω as follows:

(11)κ ≡ y

x
, ω ≡ M1

M2
.

Then, the expressions for θ and mνi
are given as follows,

(12)tan 2θ = 2κ(1 − ω)

(1 − κ2)(1 + ω)
,

mν1 = x2 [(
c2 + s2κ2)(1 + ω) + 2csκ(ω − 1)

]
,

2M1
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mν2 = x2

2M1

[(
s2 + c2κ2)(1 + ω) − 2csκ(ω − 1)

]
,

(13)mν3 = z2

M2
.

In addition, the effective Majorana neutrino mass mee is presented by

(14)mee = x2

4M1

[
(1 + κ)2 + ω(1 − κ)2].

As shown in Eq. (12), the non-vanishing value of the mixing angle θ can arise when ω is deviated from one, which indicates the
splitting between M1 and M2. In fact, the present experimental results are not enough to determine all the parameters introduced.
But, if we fix one neutrino mass eigenvalue by hand, we can determine several independent parameters as well as the magnitude of
mee from Eqs. (12)–(14). For our numerical calculation, we set the parameter θ,�m2

21 and �m2
32 to be 13◦, 8 × 10−5 eV2, 2.5 ×

10−3 eV2, respectively. Those numbers correspond to the best fit values for the measurements of the deviation of the solar mixing
angle from the maximal mixing, the mass-squared differences of the solar and atmospheric neutrino oscillations, respectively. By

fixing mν1 as an input parameter, we can determine the parameter set (κ,ω, x2

M1
, z2

M2
) for normal hierarchy mν1 < mν2 < mν3 through

the relations (11)–(13).
In Table 1, we present our numerical results for normal hierarchy. From the Table 1, we can see that the values of κ and ω

approach to one as mν1 increases up to of order 0.1 eV, and one needs fine-tuning to obtain the parameter set satisfying the relations
above for the case of such a large mν1 ∼ 0.1 eV. As mν1 goes down, the value of κ rapidly increases whereas that of ω decreases.
We can also predict the size of the amplitude of the neutrinoless double beta decay mee as a function of mν1 , which is presented in
the last column of Table 1. If the neutrinoless double beta decay will be measured in near future, we will be able to determine three
neutrino mass eigenvalues and the parameters introduced in Eqs. (12)–(14). For inverted hierarchy mν3 < mν1 < mν2 , the numerical
results are presented in Table 2. In this case, contrary to the normal hierarchical case, we take mν3 as an input.

Next, to generate non-vanishing Ue3, on top of the above scenario, we consider an interesting possibility that the break-
ing of the degeneracy between the second and the third generation masses in the heavy Majorana neutrino sector, i.e., MR =
diag(M1,M2,M3), can be an origin of the generation of non-vanishing Ue3. We remark that the value of Ue3 goes to zero in the
limit of M2 = M3 in this scenario. The effective light Majorana neutrino mass matrix is given by

(15)Mν = Ubimax
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Assuming that the mass splitting between M2 and M3 is small enough to accommodate the tiny Ue3, the mixing matrix, which
diagonalizes the neutrino mass matrix Mν , can be approximately given by

(17)U � U23

(
π

4

)
U12

(
π

4

)⎛
⎝ cosσ sinσ δ

− sinσ cosσ η

−δ −η 1

⎞
⎠ ,

where the mixing angle σ corresponds to the (1,2) rotation of 2 × 2 submatrix of M ′
ν . The mixing angle σ is presented by

(18)tanσ � 2κ(1 − ω − ε)

(1 − κ2)(1 + ω + ε)
,

where ε = M1/M3, and ω,κ are given earlier. This mixing angle σ is responsible for the deviation of the solar mixing angle
from the maximal mixing. We note that non-vanishing value of σ is possible even when ω = 1, i.e., (M1 = M2), but this case is
undesirable because it leads to negative σ which positively contributes to θ12. The mixing angle σ is zero when ω + ε = 1, but it
corresponds to the large hierarchy among three heavy Majorana masses, which is far beyond our purpose. The mixing elements δ

Table 1
All numbers corresponding to the mass parameters are given in the unit eV for normal hierarchy

mν1 (input) κ ω x2

M1
z2

M2
mee

0.005 1.298 0.772 0.003 0.051 0.009
0.01 1.118 0.897 0.006 0.052 0.013
0.05 1.006 0.994 0.025 0.071 0.051
0.1 1.002 0.998 0.050 0.112 0.101
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Table 2
All numbers corresponding to the mass parameters are given in the unit eV for inverted hierarchy

mν3 (input) κ ω x2

M1
z2

M2
mee

0.005 1.672 0.585 0.011 0.010 0.041
0.01 1.569 0.630 0.013 0.013 0.042
0.05 1.137 0.881 0.029 0.051 0.066
0.1 1.044 0.959 0.052 0.100 0.109

Table 3
The numerical results for the ratio M2/M3 and the prediction for the bound on |Ue3| for the normal hierarchical case and the inverted hierarchical case

mν1(3)
(input) M2/M3 |Ue3| M2/M3 |Ue3|

0.005 0.55–1.29 (< 0.015) 0.44–1.36 (< 0.025)

0.01 0.72–1.16 (< 0.0007) 0.59–1.27 (< 0.015)

0.05 0.94–1.04 (< 0.086) 0.93–1.04 (< 0.083)

0.1 0.98–1.01 0.98–1.01

and η are given by

(19)δ = c1

(
− 1

M2
+ 1

M3

)
, η = c2

(
− 1

M2
+ 1

M3

)
,

where c1 and c2 are presented in terms of three light neutrino mass eigenvalues and the parameters κ,ω, ε. Then, the mixing element
Ue3 and the deviation of the atmospheric mixing from the maximal mixing are simply presented in terms of σ and η as follows,

(20)|Ue3| � 1

2
|δ − η|,

(21)δ sin θ23 � 1

2
(δ + η).

Imposing the bound on |Ue3| of CHOOZ experiment, |Ue3| < 0.2, and the result of sin2 θ23 from atmospheric neutrino data,
sin2 θ23 = 0.44(1+0.41

−0.22) at 2σ [12], we can determine the allowed regions of the ratio M2/M3.
In Table 3, we present the numerical results for the ratio M2/M3 and the prediction for the bound on |Ue3|. The second and

third columns correspond to the normal hierarchical case, whereas the fourth and fifth columns to the inverted hierarchy. We find
that the result for δ sin2 θ23 constrains M2/M3 more severely than the bound on |Ue3| for mν1(3)

< 0.05 eV. But for mν1(3)
∼ 0.1 eV,

both δ sin2 θ23 and |Ue3| from neutrino data severely constrain the allowed region of M2/M3. The values in the columns for |Ue3|
indicate the predictions for the upper bound. As shown in Table 3, the allowed region for M2/M3 gets narrowed as mν1(3)

increases,
and it becomes nearly one for mν1(3)

� 0.1 eV. This implies that such large values of mν1(3)
lead to moderately degenerate light

neutrino spectrum realized by almost degenerate heavy Majorana neutrinos.
It is very instructive to see how the breaking of the three-fold degeneracy of the heavy Majorana neutrinos responsible for the

deviation of maximal mixing of solar neutrinos and non-zero Ue3 can arise. In this Letter, we propose that the origin of the breaking
is the effective dimension-five operators whose structures are governed by A4 ⊗ Z2 flavor symmetry, and show that the desirable
mass splitting is related with the vacuum structures of some scalar fields in the dimension-five operators: Introducing SU(2)L singlet
scalar field ϕi (i = 1,2,3) transforming as (3,+) under A4 ⊗ Z2, we consider the following dimension-five operators

(22)M−1
S (Nϕ)(Nϕ) = M−1

S

[
(N1ϕ2)(N1ϕ2) + (N2ϕ3)(N2ϕ3) + (N3ϕ1)(N3ϕ1)

]
,

where MS is a large effective mass and (Nϕ) forms a triplet under A4. In fact, these effective dimension-five operators can be
generated by integrating out heavy singlet fermion Si ∼ (3,+) in the Yukawa sector given by NiϕjSk at a high energy scale MS .
As ϕi acquires non-zero vacuum expectation values (VEVs), we obtain additional contributions to the heavy Majorana neutrino
masses. The VEVs of ϕi are developed from the scalar potential given by the same form of Eq. (4), but replacing σi with ϕi .
Then, the desired vacuum alignment 〈ϕi〉 = (Vϕ,0,Vϕ) generated from the scalar potential leads to the contributions to the heavy
Majorana masses, δM(N2N2 +N3N3) with δM ∼ V 2

ϕ /MS . This additional contribution δM gives rise to the mass splitting between
N1 and N2(3), which is responsible for the deviation of θsol from the maximal mixing. The breaking of the degeneracy between
N2 and N3 can also be achieved by considering a dimension-five operator M−1

S′ (Niξi)(Nj ξj ) composed of Ni and another Higgs
singlet ξi transforming as (3,+), whose VEV is developed as 〈ξ 〉 = (0,0, b) after transforming into the 3rd position. Then, an extra
contribution to the heavy Majorana mass term ∼ (b2/MS′)N3N3 can be generated, which is responsible for the possible generation
of the non-vanishing Ue3.

Finally we note that there could be radiative corrections to neutrino mass matrix which can lead to some modification of our
results. However, non-negligible renormalization effects can be expected only in the case of degenerate light neutrino spectrum.
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The numerical results for mν1(3) = 0.1 eV in the tables may be significantly modified due to possible renormalization effects, but
the detailed investigation on the renormalization effects is not our main interest in this work and we will leave it for the future work.

In summary, we have proposed a scenario that the mass splitting between the first generation of the heavy Majorana neutrino and
the other two degenerate ones in the seesaw framework is responsible for the deviation of the solar mixing angle from the maximal
mixing, while keeping the maximal mixing between the tau and muon neutrinos as it is. Our scheme is based on the assumption
that nature presumably started with “bi-maximal” neutrino mixing and then it has been deviated somehow. We have considered
the case that the “bi-maximal” mixing is achieved only from the neutrino Dirac Yukawa matrix by taking a diagonal form of three
degenerate heavy Majorana neutrinos in a basis where the charged lepton mass matrix is real and diagonal. Allowing the mass
splitting between the first and the other two generations of the heavy Majorana neutrinos, we could obtain the deviation of the solar
mixing angle from the maximal. In addition, we have shown that the tiny breaking of the degeneracy of the two heavy Majorana
neutrinos leads to the small mixing angle θe3 in the PMNS matrix and the very small deviation of the atmospheric neutrino mixing
angle from the maximal mixing. We have also considered the effective dimension-five operators as the origin of the mass splitting
among the heavy Majorana neutrinos.
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