Effect of candesartan cilexetil (TCV-116) in rats with chronic renal failure

MASAKUNI NODA, TAKANORI MATSUO, RYO FUKUDA, MASAYUKI OHTA, HIROKO NAGANO, YUMIKO SHIBOUTA, TAKEHIKO NAKA, KOHEI NISHIKAWA, and YOSHIMI IMURA

Pharmaceutical Research Laboratories II, Drug Safety Research Laboratories, and Research Management Department, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., Osaka, Japan

Effect of candesartan cilexetil (TCV-116) in rats with chronic renal failure.

Background. Inhibition of the renin-angiotensin system by both angiotensin II type 1 receptor antagonists (AT1As) and angiotensin I-converting enzyme inhibitors (ACEIs) shows renoprotective effects in rats with chronic renal failure when treatment is started in the early phase of renal injury. In this study, we examined the renal protective effects of candesartan cilexetil (TCV-116), an AT1A, and enalapril, an ACEI, in the progressive phase of renal injury in 5/6 nephrectomized rats.

Methods. Candesartan cilexetil (1 mg/kg/day) and enalapril (10 mg/kg/day) were orally administered once a day for 4 weeks (the short-term experiment) or 16 weeks (the long-term experiment) to 5/6 nephrectomized rats beginning 15 weeks after the nephrectomy, that is, after they had already shown marked proteinuria.

Results. In vehicle-treated rats, proteinuria, glomerulosclerosis, and interstitial fibrosis developed. Moreover, enhanced expression of transforming growth factor-β (TGF-β) in the injured glomeruli was observed. These adverse changes progressed with time, and in the short-term experiment, both drugs inhibited them. In the long-term experiment, the progressive proteinuria and the elevation of blood pressure were similarly attenuated by both drugs. However, candesartan cilexetil significantly inhibited the progression of glomerulosclerosis, the expression of TGF-β, and interstitial fibrosis, whereas enalapril did not.

Conclusion. These results indicate that candesartan cilexetil shows potent and long-term preventive effects against the progression of previously developed renal injury.

Glomerular capillary hypertension is associated with progressive renal failure [1]. Angiotensin II (Ang II), the primary effector product of the renin-angiotensin system (RAS), is thought to be a crucial factor in progressive renal failure, as Ang II not only contributes to glomerular capillary hypertension, but also has a direct influence on some functions of the mesangial cells and the glomerular filtration barrier [2, 3]. In fact, inhibition of the RAS by Ang II type 1 receptor antagonists (AT1As) or Ang I-converting enzyme inhibitors (ACEIs) has been shown to have renoprotective effects in animal models with renal diseases and in patients with chronic renal failure or diabetic nephropathy [4–11].

Both AT1As and ACEIs ultimately block the RAS, but the mechanism of the RAS inhibition is different. Namely, AT1As selectively inhibit the binding of Ang II to AT1 receptors, resulting in increasing plasma Ang II and renin levels [12]. The increased Ang II may act on an Ang II type 2 (AT2) receptor, a counter receptor for AT1 receptors [13], and the activated AT2 receptor is thought to contribute to the effects of AT1As. In contrast, ACEIs inhibit Ang I-converting enzyme (ACE), which also degrades bradykinin (BK), resulting in elevating plasma renin levels and kinin activities, as well as decreasing plasma Ang II levels [14, 15]. BK is thought to contribute to the effects of ACEIs via nitric oxide, endothelium-derived hyperpolarizing factor, and eicosanoid production [16]. All of this evidence seems to indicate the existence of some differences between the pharmacological effects of AT1As and ACEIs; however, it remains unclear which kind of RAS blocker has more beneficial effects in various diseases, including renal diseases.

Recent studies have raised some doubts as to the long-term efficacy of ACEIs, especially in post-treatment studies [17, 18]. Perico et al reported that in streptozotocin-induced diabetic rats, moexipril, an ACEI, completely prevented the progression of glomerulosclerosis when it was administered in the early phase of pathogenesis but that the compound did not prevent it when treatment was started during the progressive phase with marked proteinuria [17]. Verseput et al reported that in spontaneously hypertensive fawn-hooded rats, which
develop proteinuria and renal damage, early stage treatment with the ACEI lisinopril completely protected against glomerulosclerosis, whereas the compound did not prevent further development of glomerulosclerosis when it was administered in the progressive phase of glomerulosclerosis, despite fine control of both the systemic blood pressure and glomerular capillary pressure [18].

The 5/6 nephrectomized (5/6 NX) rat has commonly been used as a model to investigate the effects of drugs on pathophysiological events in the progression of glomerulosclerosis. These rats also show renal functional and structural changes similar to those observed in patients with end-stage kidney disease. This evidence prompted us to compare the renal protective effects of long-term treatment with candesartan cilexetil (TCV-116) [19–21], an AT1A, and enalapril, an ACEI, in the progressive phase of renal injury in 5/6 NX rats. To evaluate the effect of post-treatment, these drugs were administered to the rats 15 weeks after the nephrectomy, that is, after they had already developed renal damage.

METHODS

Experimental design

Male five-week-old Sprague-Dawley rats, purchased from Japan Clea Laboratory (Tokyo, Japan), were subjected to a 5/6 renal NX, consisting of the surgical excision of approximately 2/3 of the renal cortex of the right kidney. One week later, the left kidney was removed. As shown in Figure 1, drugs were administered once a day in the morning beginning 15 weeks after the nephrectomy, and the effects of drugs on the 4-week administration (the short-term experiment) and the 16-week administration (the long-term experiment) were evaluated. The short-term experiment consisted of the following four groups: vehicle-treated (N = 5), candesartan cilexetil-treated (1 mg/kg, p.o., N = 5), and enalapril-treated (10 mg/kg, p.o., N = 5) 5/6 NX rats, as well as sham-operated normal two-kidney rats (N = 3). The long-term experiment consisted of following four groups: vehicle-treated (N = 7), candesartan cilexetil-treated (1 mg/kg, p.o., N = 7), and enalapril-treated (10 mg/kg, p.o., N = 7) 5/6 NX rats, as well as sham-operated normal two-kidney rats (N = 5). At the onset of the both experiments, NX rats were divided into three groups with equivalence of the values of urinary albumin excretion, urinary protein excretion, creatinine clearance (CCr), and glomerulosclerosis, despite fine control of both the systemic blood pressure and glomerular capillary pressure to ensure equal severity of lesions in the remnant kidney. A one-way analysis of variance was used to confirm the equal initial values of the previously mentioned four parameters in the both experiments. At the onset of intervention in the short-term experiment, urinary total protein was 86.6 ± 9.8, 89.4 ± 11.1, and 88.6 ± 9.4 mg/day (P = 0.981). Urinary albumin was 38.3 ± 8.3, 39.0 ± 9.1, and 38.4 ± 8.2 mg/day (P = 0.998). CCr was 0.25 ± 0.02, 0.24 ± 0.02, and 0.26 ± 0.03 ml/min/100 g body wt (P = 0.803). Blood pressure was 145.4 ± 4.5, 143.6 ± 3.5, and 144.2 ± 6.0 mm Hg (P = 0.964) in vehicle-treated, candesartan cilexetil-treated, and enalapril-treated groups, respectively. At the onset of the intervention in the long-term experiment, urinary total protein was 89.3 ± 9.7, 85.9 ± 11.6, and 89.8 ± 15.5 mg/day (P = 0.971). Urinary albumin was 39.0 ± 8.1, 39.3 ± 7.1, and 39.0 ± 9.5 mg/day (P = 0.999). CCr was 0.23 ± 0.01, 0.24 ± 0.02, and 0.23 ± 0.01 ml/min/100 g body wt (P = 0.998). Blood pressure was 149.9 ± 2.7, 145.0 ± 4.1, and 143.0 ± 4.4 mm Hg (P = 0.444) in vehicle-treated, candesartan cilexetil-treated, and enalapril-treated group, respectively. The doses of candesartan cilexetil and enalapril (1 and 10 mg/kg, respectively) used in the experiments were chosen because they have been shown to provide equivalent hypertensive effects in spontaneously hypertensive rats [22]. At the end of both experiments, rats were anesthetized with sodium pentobarbital (50 mg/kg, intraperitoneally), and a terminal blood sample was collected from the abdominal aorta. Then remnant kidneys of the 5/6 NX rats and the right kidneys of the sham-operated rats were removed and fixed in 10% neutral-buffered formalin for routine histological studies or were frozen for immunohistochemical studies. All animal experiments were performed according to the guidelines of the Takeda Experimental Animal Care and Use Committee.
Measurement of blood pressure

Systolic blood pressure was measured five hours after the morning dose. Rats were maintained in individual chambers warmed at 37°C, and systolic blood pressure was measured using a tail-cuff (PS-8000; Riken Kaihatsu, Tokyo, Japan).

Measurements of serum and urine parameters

Twenty-four-hour urine samples were collected with the aid of metabolic cages. Blood was collected from conscious rats via a tail vein using ethylenediaminetetraacetic acid (EDTA) as an anticoagulant, and the plasma was stored below −20°C. Urinary total protein, urinary albumin, urinary and plasma creatinine, and blood urea nitrogen (BUN) were measured by conventional methods, using commercially available kits (Wako Pure Chemicals, Osaka, Japan). Plasma renin activity (PRA) was estimated as the activity of Ang I production from endogenous angiotensinogen using a radioimmunoassay kit (SRL, Tokyo, Japan). Urinary prostaglandin E2 (PGE2) was extracted from 24-hour urine samples according to the method of Powell [23]. In brief, the urine was acidified to pH 3 with 1 N HCl and was passed through Sep-pak light C18 cartridges (Millipore, Bedford, MA, USA), and PGE2 was eluted with ethanol/water (15:85). The amount of the extracted PGE2 was measured using an enzyme immunoassay kit (Amer-Sham, Tokyo, Japan). In the long-term experiment, hematocrit values were measured at the end of the 16-week administration period.

Histological studies

The kidneys were fixed in 10% neutral-buffered formalin and were embedded in paraffin. Sections of 4 μm in thickness were stained with hematoxylin and eosin (H&E), periodic acid-methenamine silver (PAM), and Azan for the evaluation of glomerulosclerosis and tubulointerstitial lesions. For each rat, all glomerular cross-sections present in a specimen were evaluated, and the percentage of glomeruli exhibiting focal or global glomerulosclerosis was determined. Glomerulosclerosis was evidenced by segmental increases in the glomerular matrix, segmental collapse of capillary lumina, and/or adhesion to Bowman’s capsule. Tubulointerstitial lesions were defined as mononuclear cell infiltration and interstitial fibrosis. Lesions were assessed using the following scale: 0 = normal, 1 = small focal lesion, 2 = multifocal lesion, 3 = diffuse lesion, and 4 = extensive lesion involving the entire cortex. To examine the expression of transforming growth factor-β1 (TGF-β1) in glomeruli, an immunohistochemical study was performed. Sections of fresh frozen tissue (12 μm thick) were incubated with a mouse monoclonal antibody against human TGF-β1 (Antigenix America Inc., New York, NY, USA) and were processed by the indirect immunoperoxidase technique. The number of glomeruli showing positive staining was expressed as a percentage of the total number of glomeruli present in a specimen. A negative control value was obtained by replacing the primary antibody with phosphate-buffered saline.

Drugs

Candesartan cilexetil (TCV-116), (±)-1-(cyclohexyl-2-ethoxy-4-oxo) ethyl 2-ethoxy-1-[[2’-(1H-tetrazol-5-yl) biphenyl-4-yl] methyl]-1H-benzimidazole-7-carboxylate, and enalapril maleate were synthesized by Takeda Chemical Industries, Ltd. (Osaka, Japan).

Statistical analysis

Data are expressed as mean ± se. Differences between the vehicle-treated group and the sham-operated group in values of urinary albumin excretion, total protein excretion, systolic blood pressure, Ccr, plasma creatinine, BUN, hematocrit, body weight, and kidney wet weight were analyzed by Student’s t-test. Differences between the vehicle-treated group and the drug-treated groups for all parameters were analyzed by Dunnett’s test. Because the variance homogeneity criterion of the parametric test was not fulfilled in all data, the logarithm scale transformation was applied to homogenize variances where necessary, and the transformed data were used in the analysis. A P < 0.05 was considered to indicate a significant difference.

RESULTS

Proteinuria

Figure 2 shows urinary total protein excretion (Fig. 2A) and urinary albumin excretion (Fig. 2B) in both the short- and long-term experiments. Urinary total protein and urinary albumin excretion in the vehicle-treated rats increased with time, and the severity of the proteinuria began to increase sharply eight weeks after the first dose in the long-term experiment. Candesartan cilexetil and enalapril significantly prevented the progression of proteinuria in both experiments, and the effects of the two compounds were comparable.

Blood pressure

The 5/6 nephrectomy resulted in the development of systemic hypertension (Fig. 3). In the short-term experiment, candesartan cilexetil tended to show a hypotensive effect, and enalapril significantly decreased the systolic blood pressure (124.3 ± 2.2, 149.4 ± 4.0, 140.4 ± 4.7, and 129.0 ± 4.8 mm Hg for sham operated, vehicle, candesartan cilexetil, and enalapril, respectively). In the long-term experiment, both candesartan cilexetil and enalapril showed significant and comparable antihypertensive effects at the end of the 16-week administration...
period (137.0 ± 2.3, 151.9 ± 2.6, 127.7 ± 5.9, and 121.6 ± 5.1 mm Hg for sham operated, vehicle, candesartan cilexetil and enalapril, respectively).

Histological findings

Table 1 shows the histological findings in the short-term experiment. In the vehicle-treated rats, the number of glomeruli with sclerotic lesions markedly increased, and interstitial fibrosis and mononuclear cell infiltration were also observed. Both candesartan cilexetil and enalapril inhibited the progression of glomerulosclerosis and tended to prevent the interstitial fibrosis and mononuclear cell infiltration.

Figures 4 and 5 show representative histological sec-
Fig. 4. Effects of candesartan cilexetil and enalapril on the glomerulosclerosis in 5/6 nephrectomized rats in the long-term experiment. Photomicrographs of periodic acid-methenamine silver-stained preparations (magnification ×105) show glomeruli from a sham-operated rat (A), a vehicle-treated rat (B), a candesartan cilexetil (1 mg/kg/day, p.o.)-treated rat (C), and an enalapril (10 mg/kg/day, p.o.)-treated rat (D).
Fig. 5. Effects of candesartan cilexetil and enalapril on the interstitial fibrosis in 5/6 nephrectomized rats in the long-term experiment. Microphotographs of AZAN-stained preparations (magnification ×21) show glomerular and tubulointerstitial regions from a sham-operated rat (A), a vehicle-treated rat (B), a candesartan cilexetil (1 mg/kg/day, p.o.)-treated rat (C), and an enalapril (10 mg/kg/day, p.o.)-treated rat (D).
tions of glomeruli and interstitial areas, respectively, in the long-term experiment. Prominent glomerulosclerosis (Fig. 4) and severe interstitial fibrosis (Fig. 5) were observed in the vehicle-treated rats. ED1-positive inflammatory cells (macrophages) were also observed in both the glomeruli and interstitial areas (data not shown). Figure 6 shows the quantitative analysis of these histological findings. Candesartan cilexetil significantly inhibited the progression of the glomerulosclerosis (1.0 ± 0.4, 25.9 ± 4.4, 9.7 ± 3.2, and 15.2 ± 4.6% for sham operated, vehicle, candesartan cilexetil, and enalapril-treated groups, respectively; Fig. 6A) and interstitial fibrosis (0.0 ± 0.0, 3.3 ± 0.2, 1.9 ± 0.3, and 2.6 ± 0.2 score for sham operated, vehicle, candesartan cilexetil, and enalapril-treated groups, respectively; Fig. 6B), whereas enalapril did not show significant preventive effects. Both drugs inhibited the mononuclear cell infiltration comparatively (0.0 ± 0.0, 3.6 ± 0.2, 2.1 ± 0.3, and 2.1 ± 0.3 score for sham operated, vehicle-treated, candesartan cilexetil-treated, and enalapril-treated groups, respectively; Fig. 7). Immunoreactive TGF-β1 was expressed in the glomeruli of the vehicle-treated rats, and the area of expression was comparable to the location of sclerotic lesions (Fig. 8). TGF-β1 expression could not be detected in the interstitium. Figure 9 shows the quantitative analysis of the glomerular TGF-β1 expression in both short- and long-term experiments. The number of glomeruli showing TGF-β1 expression in the vehicle-treated rats increased with time. Candesartan cilexetil and enalapril significantly inhibited the expression of TGF-β1 in the glomeruli in the short-term experiment (0.0 ± 0.0, 25.3 ± 5.0, 7.9 ± 4.2, and 2.2 ± 0.6% for sham operated, vehicle-treated, candesartan cilexetil-treated, and enalapril-treated groups, respectively). In the long-term experiment, candesartan cilexetil markedly prevented the increase in the expression of TGF-β1, whereas the preventive effect of enalapril decreased as compared with that in the short-term experiment, and a significant effect was not observed in the enalapril-treated rats (3.9 ± 1.9, 37.4 ± 6.4, 10.4 ± 2.1, and 23.7 ± 8.7% for sham operated, vehicle-treated, candesartan cilexetil-treated, and enalapril-treated groups, respectively).

Urinary prostaglandin E2 excretion

As shown in Figure 10, urinary PGE2 excretion in the enalapril-treated 5/6 NX rats was markedly increased at the end of the 16-week administration period.

Renal physiological parameters

Creatinine clearance, plasma creatinine, BUN, kidney weight, and body weight at the end of the short-term experiment, and hematocrit in addition to these parameters at the end of the long-term experiment were shown in Table 2. In vehicle-treated groups, a significant increase in plasma creatinine and BUN levels were observed in the short-term experiment. Both drugs had no effect on these renal physiological parameters. At the end of the long-term experiment, a significant decrease in Ccr and an increase in plasma creatinine and BUN in the vehicle-treated group were observed. Neither drug inhibited these adverse changes significantly. The hematocrit value in the vehicle-treated rats decreased as compared with that in the sham-operated rats and was not affected by either drug at the end of long-term experiment. The wet weight of the remnant kidney in the vehicle-treated rats was higher than that of the normal right kidney in the sham-operated rats. Neither drug had any effect on kidney weight in both of the experiments. Figure 11 shows PRA in the short-term experiments. PRA in the vehicle-treated rats showed a significant decrease as compared with the value in the sham-operated rats. PRA in the candesartan cilexetil- and enalapril-treated rats was increased significantly as compared with that in the vehicle-treated rats.

DISCUSSION

The aim of this study was to compare the renal protective effects of candesartan cilexetil, an AT1/A, and enalapril, an ACEI, on 4-week (short-term) and 16-week (long-term) administration during the progressive phase of renal injury in 5/6 NX rats. Drugs were administered to 5/6 NX rats starting 15 weeks after the nephrectomy. In the short-term experiment, candesartan cilexetil and enalapril showed marked renal protective effects. Both drugs suppressed proteinuria and glomerulosclerosis (Fig. 2 and Table 1). These results coincided with the
Fig. 6. Quantitative analysis of the effects of candesartan cilexetil and enalapril on the glomerulosclerosis (A) and the interstitial fibrosis (B) in 5/6 nephrectomized rats in the long-term experiment. \#P < 0.05; ##P < 0.01 vs. vehicle-treated rats (vehicle) with Dunnett’s test. Data are presented as mean ± se.

Fig. 7. Effects of candesartan cilexetil and enalapril on the interstitial mononuclear cell infiltration in 5/6 nephrectomized rats in the long term experiment. ##P < 0.01 vs. vehicle-treated rats (vehicle) with Dunnett’s test. Data are presented as mean ± se.

results of many previous studies designed to examine the renoprotective effects of earlier treatment with AT1As and ACEIs in 5/6 NX rats [4–9, 24]. In the long-term experiment, candesartan cilexetil significantly ameliorated the progression of glomerulosclerosis, the glomerular expression of immunoreactive TGF-β1, and interstitial fibrosis, but enalapril did not, although both drugs showed the same hypotensive and antiproteinuric effects. The differences between candesartan cilexetil and enalapril with regard to renal protective effects may be explained as follows.

First, the inhibition of ACE, namely, kininase II, by an ACEI results in the accumulation of BK [15]. As BK stimulates the proliferation of cultured rat mesangial cells [25], and as the proliferation of mesangial cells plays an important role in the progression of glomerulosclerosis, this effect of BK might counteract the renal protective effects of ACEIs. BK also activates AP-1 [25], one of the major transcriptional factors of TGF-β1, which plays a pivotal role in the accumulation of extracellular matrix proteins in glomeruli [26]. Therefore, the accumulation of BK might induce the expression of TGF-β1 in mesangial cells. It has also been reported that Ang II directly induces the expression of TGF-β1 in cultured mesangial cells [2]. In this study, candesartan cilexetil markedly inhibited the enhanced expression of TGF-β1 in the injured glomeruli. However, the suppressive effect of enalapril on TGF-β1 expression decreased in the long-term experiment. These results suggest that the weakness of the inhibitory effect of enalapril on TGF-β1 expression is caused by the accumulation of BK. In this study, we did not measure the content of BK in the kidney, but urinary PGE2 excretion, which is induced by BK in the kidney [27], increased significantly in only the enalapril-treated 5/6 NX rats in the long-term experiment (Fig. 10), suggesting the accumulation of BK in the kidney. The level of urinary PGE2 excretion in vehicle-treated group was lower than that of the sham-operated group. It is conceivable that this reduction might be caused by the decrease in PGE2-producing cells of the remnant kidney because of both the initial renal ablation and the progression of injuries. Enalapril markedly increased the urinary PGE2 excretion compared with vehicle; therefore, the elevation of the PGE2 excretion by enalapril might be caused in part by the accumulation of BK. Because glomerular capillary hypertension induces glomerular dysfunction, the amelioration of glomerular capillary hypertension via a reduction of efferent arteriolar tone is thought to prevent the development of glomerular injury [4–7]. It has been reported that the antagonism of Ang II with an AT1A causes less reduction in the glomerular efferent arteriolar tone than the inhibition of ACE with an ACEI, because the accumulated BK causes efferent arteriole dilation [28, 29]. This suggests that BK contributes to the renoprotective effects of ACEIs; however, in our study, enalapril did not show any advantage over candesartan cilexetil.

Second, an AT1A can completely inhibit Ang II’s effects at the level of AT1 receptors, whereas enalapril cannot inhibit the effect of Ang II produced by proteases.
other than ACE. In some organs, ACE-independent Ang I conversion is predominant in the generation of Ang II [30, 31]. Urata, Strobel, and Ganten reported that chymase, an ACEI-insensitive Ang II-forming protease, exists in the human renal cortex [32]. In the rat kidney, some Ang II-forming pathways other than that involving ACE exist, and these may have contributed to the failure of the renoprotective effects of enalapril in the long-term experiment. For instance, cathepsin G contained in infiltrating monocytes can generate Ang II from angiotensinogen directly [33].

Third, AT1As are reported to activate AT2 receptors via the elevation of plasma Ang II [16]. As AT2 receptors mediate antiproliferative and antifibrotic effects, AT1 and AT2 receptors might mediate counterbalancing signals [13]. Because AT2 receptors exist in the kidney of adult rats [34], activation of AT2 receptors might have contributed to the beneficial renal protective effects of candesartan cilexetil, especially in the long-term experiment. According to a recent report, however, indirect AT2 receptor activation stimulates the glomerular infiltration of monocytes/macrophages via RANTES expression, resulting in the progression of renal injury [35]. However, in this study, AT2 receptor activation did not seem to be an important factor for the infiltration of inflammatory cells because candesartan cilexetil and enalapril caused comparable inhibition of interstitial mononuclear cell infiltration.

It has been established that the augmented production of TGF-β1 is important in the progression of interstitial
fibrosis as well as glomerulosclerosis [24, 36–39]. In this study, the expression of TGF-β1 in the interstitium was not observed. Wu et al reported that the expression of TGF-β1 mRNA was detected in sclerotic glomeruli, areas of tubulointerstitial injury, and sites of mononuclear cell infiltration by in situ hybridization for TGF-β1 mRNA [24]. Muchaneta-Kubara, Sayed-Ahmed, and Nahas also reported that immunoreactive TGF-β1 expression in the interstitium was observed in the remnant kidney of 5/6 NX rats [40]. On the other hand, it has been reported that positive staining of TGF-β1 was seen in the injured glomeruli but not in the interstitium [41]. The reason for these differences remains unclear.

The inhibition of the RAS by AT1As and ACEIs elevates PRA [42]. As renin is produced in juxtaglomerular cells and secretion is regulated by the blockade of the AT1 receptors, which are expressed in the same cells [42], PRA seems to be an indicator of the extent of RAS inhibition. After the four-week administration of both drugs in the short-term experiment, PRA increased to the same level, indicating that the extent of RAS inhibition by the two drugs was the same.

Despite marked improvements of proteinuria and histopathological changes, candesartan cilexetil did not show a significant effect on renal function, demonstrated by Ccr, plasma creatinine, and BUN. It was reported that the progression rate of decrease in renal function was slower than the changes of proteinuria and histopathology [43]. In our study, the marked decrease in renal function was not observed during the intervention, even in the long-term experiment. As candesartan cilexetil significantly inhibited both proteinuria and histopathological changes, the beneficial effects of candesartan on renal function may be related to the suppression of RAS activity.
logical changes and tended to improve the adverse changes of Ccr, plasma creatinine, and BUN, the more prolonged follow-up may be helpful to clarify the preferential benefits of candesartan cilexetil on renal function.

One of the aims of this study was to investigate whether the AT1 antagonists and ACE inhibitors would show differential renal protective effects. Very recently, Taal and Brenner reported that a 24-week treatment of candesartan cilexetil and enalapril equally reduced the progression of previously developed renal injury in 5/6 NX Munich Wistar rats [44]. In our study, significant differences were not documented between the beneficial effects of candesartan cilexetil and enalapril, although enalapril did not show significant effects on glomerulosclerosis and tubular interstitial fibrosis in the long-term experiments. A more prolonged follow-up study may be necessary to clarify this puzzle.

In conclusion, the renal protective effects of candesartan cilexetil and enalapril were examined during the progressive phase of renal injury in 5/6 NX rats. Four-week treatment with the two drugs showed renal protective effects. The 16-week treatment with candesartan cilexetil inhibited proteinuria and progressive histopathological changes such as glomerulosclerosis and interstitial fibrosis. Enalapril inhibited proteinuria but did not significantly inhibit glomerulosclerosis or interstitial fibrosis. Thus, the AT1 receptor antagonist candesartan cilexetil may be very useful for long-term treatment of patients with chronic renal failure.

ACKNOWLEDGMENTS

We thank Mrs. Hitomi Hamajyo for her excellent technical assistance. A portion of this study was presented at the satellite symposium of the 14th International Society of Nephrology, Coolum, Australia, June 1–3, 1997.

Reprint requests to Masakuni Noda, Ph.D., Pharmaceutical Research Laboratories II, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., 2-17-85 Juso-Honmachi, Yodogawa-ku, Osaka 532-8686, Japan. E-mail: Noda_Masakuni@takeda.co.jp

APPENDIX

Abbreviations in this article are: ACEIs, angiotensin I-converting enzyme inhibitors; Ang II, angiotensin II; AT1, angiotensin II type 1 receptor antagonist; BK, bradykinin; Ccr, creatinine clearance; BUN, blood urea nitrogen; EDTA, ethylenediaminetetraacetic acid; H&E, hematoxylin and eosin; 5/6 NX rats, 5/6 nephrectomized rats; PAM, periodic acid-methenamine silver; PGF2α, prostaglandin E2; PRA, plasma renin activity; RAS, renin-angiotensin system.

REFERENCES

17. Perico N, Amuchastegui SC, Colosio V, Sonzogni G, Bertani T, Remuzzi G: Evidence that an angiotensin-converting enzyme inhibitor has different effect on glomerular injury according to the different phase of the disease at which the treatment is started. J Am Soc Nephrol 5:1139–1146, 1994

