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Abstract—An optimal control problem is considered for a nonlinear stochastic system with an interrupted
observation mechanism that is characterized in terms of a jump Markov process taking on the values 0 or 1.
The state of the system is described by a diffusion process, but the observation has components modulated
by the jump process. The admissible control laws are smooth functions of the observation. Using the
calculus of variations, necessary conditions on optimal controls are derived. These conditions amount to
solving a set of four coupled nonlinear partial differential equations. A numerical procedure for solving
these equations is suggested and an example dealt with numerically.

1. INTRODUCTION

In this paper consideration is given to a stochastic optimal control problem for a nonlinear
stochastic system with an interrupted observation mechanism that is characterized in terms of a
jump Markov process taking on the values 0 or 1. The state of the system is described by a
diffusion process, but the observation has the component modulated by the jump process. Such
a problem arises in systems with observation devices where the signal process is subjected to
random attenuation or fading.

Let (), %, P) be a probability space. Consider the controlled dynamical system represented
by the stochastic differential equation

dx; = [fi(x)+ v(1dt + o(x) AW, t>0,i=1,...,m Y
and let the interrupted observation be given by
dy,-=zx,-dt+‘y,-(x)dB,-, t>0,i=1,...,m (2)

where fi: R"—R, o;: R">R, y: R">R, i=1,...,m are given functions. v;: R" >R,
i=1,...,m are the control functions and W ={W(t)=(W\(1),..., W,(8)), t=0} and B =
{B(t)=(B\(t),...,B,(1), t =0} are two R™- valued standard Wiener processes on ({}, %, P).
Z ={z(t), t = 0} is a homogeneous jump Markov process on ({}, , P) with state space S = {0, 1}
and transition probabilities

gA+o(d) if j#i

1-qA+o(d) if j=i @

PGt +8)= 0 =) = {
Lj=0,1
where 7, = P(z(0)=1i),i=0,1, and g > 0 are given. It is assumed that the processes W, B and
Z are mutually independent.
1t is further assumed that o; and ¥, i =1, ..., m are twice continuously differentiable for all

x € R"and that f;, i =1,..., m are continuously differentiable for all x € R™. In addition it is
assumed that

FOP +le@PR+|yxP<a+BxP, «>0, >0 @)

and
[fx) = FOP +]o(x) = o)+ y(x) — y(xWP < kolx — P, ko=0 0]

for all x, x' € R™, where |x]*= }'_5'] 3, fp = }T:l Fix), lo@)P = _‘_}31 o¥(x) and |y(x)t = }'51 Yi(x).

+This work was partially supported by a grant from Control Data.
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Denote by U the class of all the control functions v = v(y), v =(v;,..., vm): R =>R™ that
satisfy

]v(y)]2$a+ﬂly]2, a>0, B>0 (6)
and

o) = v <kly=yP k>0 M

forall y, y' € R™

Let v € U and ¥ =(x, y) € R*™ Then in the same manner as in[1] and [2] it can be shown
that equations (1) and (2) have a unique solution ¢%={Z%t) =(X,(8),..., X, (t),

1), ..., Yu(t), t =0} which is such that {3(0) = £;(0) = X. Also, in the same manner as in[1]

it can be shown that ({}, z) is a Markov process on (), %, P). Furthermore, by following the
same reasoning as in[3] (Section 5, Chap. 1) and using Theorem 3.10 of [4] it can be shown that
({%,2) is a strong Markov process. Note that the sample functions of {{%(¢),¢t=0} are
continuous with probability 1.

Let

Dy={%=(x,y):|x|<land |y|<l i=1,...,m} ®)
D =Dy~ D, )

where D, is a closed domain in R*", and D, C D,. Define

inf {t:  (LUt),z2(t) € aDx S when (&(0),z(0) =(%,i) € Dx S}
&) 240 if 0O=i€D and z(0)=.i
x if (e D forall t=0 when (£(0),z(0)=(x,i) € DxS

(10)
i=0,1 where 3D denotes the boundary of D.
In the sequel the following notations will be used:
Py i) = P(|(£(0), 2(00) = (%, i), i =0, 1, (D
and
Ez i = E[ |(&(0), 2(0) = (%, i), i =0, 1. (12)
where E denotes the expectation operator.
Define the following functionals
V(% i) 2Peagian(ei o) € D= Bu [ 3 MO de
vEeEVU, i=0,1 (13)
and
V(X;v) éiz_]:,) P(z(0) = )V(X,i; V) = .—i mV(X,i;v) (14)

where Y* =(Y1,..., Yo). A(), j=1,..., m, are given functions satisfying A;(0)= A(1) >0, =
1,...,m.

In this paper the following optimal control problem is treated. Find a control law v* € U
such that

V(x;v¥)= V(x;v)forany v € U and all ¥ € D. (15)
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A control law v* € U for which equation (15) is satisfied will here be called an optimal
control.

An optimal control ¢* € U, whenever it exists, is supposed, rougly speaking, to steer the
state {3(¢) in such a manner as to maximize the probability that the state reaches the set D,
before reaching dD, and subject to ‘soft’ constraints on the control function given by the
second term in equation (13).

Optimal control problems for systems with jump Markov disturbances were considered by
several authors during the last two decades (see for example[5-8]. and the references cited
there). In these references the process ({}, z) is completely observable and the admissible
control iaws are of the form v, = v({¥t), z(t)). These make it possible to find dynamic
programming type of conditions on optimal control laws. In the case dealt with here the
admissible control laws are of the form z, = v(Y?(¢)), where Y is given by (2). This excludes
the possibility of deriving implementable conditions of dynamic programming type for the
problem considered here. Even in the case of linear systems the problem of estimating %(¢) from
{Y*(s), 0=< s <t} results in an infinite-dimensional filter[9]. This excludes the possibility of
applying control laws of the form v, = v(£Ut), 5(1)), where £(1) = E[2un|Y*(s),0<s<t]and
)= E[z(1)|Y°(s), 0= s <1{].

In the present paper the problem is formulated in terms of a pair of coupled partial
differential equations, the coefficients of which involve the control function v. By varying v we
vary the coefficients of the infinitesimal generator of ({3(t), z(¢)), and this makes it possible to
deduce necessary conditions for an optimal control (Section 3, Theorem 1). These necessary
conditions amount to solving a set of four coupled nonlinear partial differential equations.

2. THE GOVERNING EQUATIONS

Let & denote the class of all pairs (V(x,0), V(X, 1)) such that V(x, i), i =0, 1, are continuous
on D (D denotes the closure of D), twice continuously differentiable on D, and such that
IV(X, k)| ox;, aV(X, k) dy, 9*V(X, k)/ox? and 3*V(F, k)/ay? are in Ly(D) for i=1,...,m and
k=0,1.

By using the same method as in[3] (Chap. 1, Section 5) for deriving the weak infinitesimal
operator of ({3, z) (see also[5]) and using the fact that ({}, z) is a strong Markov process, the
following equations are obtained

T v)
E; ;V(H(7(x; ), 2(m(X; 0)) = V(X i) + Ex‘.iJ’o Lin(0)V(E(D), 2(2)) dt

(16)
i=0,1
where
LOVED) = S i)+ n(aV(E, 0o
=
+(3) 2 @05 Vi 0ax + 420 VG O)los?
i=1
—gV(Z.0)+qV(Z 1) (17)
and
LUVE D) = 2 .00+ 508 V(E Dfax, + 2"",1 XAV(E 1) oy,
+ (%) i (gA(x)?V(E, 1)) ax? + yH(x) 8> V(% 1) ay?) (18)
=t

-qV(5, 1)+ qV(x,0), (V(£0),V(E1) €

We introduce the notation Vi(X; v)= V(%,i;v), i =0, |. In the sequel the following lemma will
be used, the proof of which is based on equations (16)-(18) and is given in the Appendix.
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LeEMMA 1
Given v € U. Let (V,, V) € 9 satisfy

o) Vil#) = 2 AOwiy) FED

L)V = 2. MUoHy) FED
£
V@)= Vi(®) =15 € D,; Vy®=V,(H=0 %€ oD,
then
V(%) = Vi(%; v) = P ({{Y 7(%; ) € D}

(% v) m
-E;, f > MO Y (1) dt

0 j=1

i=0,1.

3. NECESSARY CONDITIONS ON OPTIMAL CONTROLS
Let v € U. Define

J(v)=f V(£ v)df (dx=dx,...dx,dy...dy.).
Dy

(19

(20

@n

(22)

(23)

Suppose that v*, v® € U are control laws such that V(%; v*)= V(&; v) for any v € U and
all £ € D and J(»*)=J(v) for any v € U. Then it can be shown that J(»°)=J(v*) and
consequently that V(£; v%) = V(X; v*) a.e. in D,. Hence a control law v* € U that maximizes
J(v) on U, whenever it exists, can be interpreted as an optimal control in some weak sense. In

this section conditions are derived for the maximization of J(v) on U.

Suppose that v* € U is a control law for which J(v%)= J(v) for any » € U. Let v*(y) =
v°(y) + ag(y), where ¢ € U and a € [0, ao] for some ay> 0. Assume that for each a € [0, ao]

there exists a solution (V,%, V,*) € 9 to equations (24)
L0V () =21 A7 () f€D
FEIViE) = 5 400 feD
V(B =Vi*(®)=1 € D;  V@®=V(®=0 i€ aDy
Define, for v € U and (V,, V) € 2
Lo(0) Vo =%o(0) Vo qV,
L{o)Vy L)V, qVy
and

5(0)Qu(%) 2 —2 [3(£00) QoW % + v:(y) IQu() 3]

m

+ (%) D [0 (x) Qo X)) ax? + v (x)3* Qo £)/ 3y?]

= qQo(X)

24

25)

(26)

27)
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L¥(v)Qy(%) é—g [B(f(x)Qi(X )] ax; + v:(y) IQ\(F) ox; + x:0Q(X)] 9y;]

() 3 (AN QN33 + VP QD oy @8)
—4qQ\(x),

for any (Qq, Q) such that L*(0)Q; € LDy, i =0, 1.
From equations (24) it follows that

«%(UO)( Voo - Voo) +(Lo(v®) - L)Y V* —i] AE(O)[(vin)z - (vio)zlld =0ae.inD, (29

gl(vo)( V- Vlo) +(&£(v7) - 21(00)) Vie- 2‘ )‘i(l)[(via)z - (vio)z]ID =0ae.in Dy, (30)

where In=1if f € Dand I, =0if £ & D.
Let @, and Q, be weak solutions of the following equations:

L¥(1)QuX)=-1 X € Dy (31)
L¥0)Qx)=-1 x € Dy (32
Qu(X)=Qy(x)=0 X € aD,. (33)

Multiplying equation (29) by 7,Q, and equation (30) by =,Q,, adding the two expressions,
integrating their sum over Dy, and then using equations (17)-(18), (25}-(26) and (31)}-(33), the
following equation is obtained:

J(o*)~J()=q JD {mQuRNV,*(0) = V%(%) + m QuEN Vo™ (R) - V((D)} dx

ra 3 [ v [ m0unave@lax+ mQDav:elas 35
i=1 Dy D,

— 2030 mo Qo) + A(D)m Q2N Ip(R)} dx dy

- azg {moA 0D+ mAD QDN d,

where
D, ={x:|x|<! i=1,...,m}D,={y:|y|]<! i=1,...,m}. (35)

THEOREM 1
Suppose there exists a control law v® € U such that

JY)=J(w)forallv € U (36)
and assume that (i) equations (31)-(33) have weak solutions Qy and Q,; (ii) for each @ € [0, ay),
(Vo%, Vi®) € @ satisfy equations (24), where v® ="+ ay, and ¢ € U; (i) (V* - Ve,
i=0, 1, converge weakly (in Ly(Dy)) as a | 0 too; (iv) aV?/ax, j=1,...,m, i=0,1 converge

weakly (in Ly(Dy)), as a | 0to aV¥/éx, j=1,...,m, i=0,1, respectively.
Then

vi(y) = (%) fDX {moQo(X)a Vo' (%) ox;

+ mQu(x)aV,(x)/ ax;} dx/ fu [4:(0)moQo(X) + Ai(1) 7, Qy(X)] Ip(X) dx (37
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Proof. From assumptions (i(iv) and equations (34) it follows that

8J(0%; ) =lim (J(v*) = J(v*))/a
a=0
-3 [ wo{] m@uaveion + mo@avieraias 09

=1

X

208y fD A0/ QuD) + 4D QRN () dx | dy,

where 8J(v%; ¢) is the Gateaux differential of J at v° with increment , [10]. From Theorem 1
(p. 178) of [10] it follows that if equation (36) is satisfied then 8J(¢° ¥)=0 for all ¥ € U.
Hence ¢° has to satisfy equation (37).

Thus if it is assumed that an optimal control law exists and that all the conditions stated in
Theorem 1 are satisfied, then in order to determine an optimal control law the following system
of equations has to be solved:

LIViD = 3 4O T €D (39)
=

Li(n)Vi(x) = il A(Dvi(y)y €D (40)
=

L¥(0)Qo(x)=—1 i€ D, (41)

LY(0)Qu(x)=—1 £ € D, (42)

VoB)=Vi(X)=1 X € D.; Vy(X)=V(X)=Qu(X)= Qi) =0

X € aDy 43)

where
v(y)= (“;‘) LX {moQu(%)d Vo(f)(axi

+ mQuDIVIE) axi} daf jD MOmQD + AN QDI dr  (44)
i=1,...,m (dx=dx,...,dx,).

Equations (39)~(44) are a set of nonlinear partial differential equations. Since these con-
stitute necessary conditions for optimality, it appears that the problem of the existence and
uniqueness of solutions to these equations is crucial to the optimal control problem. Owing to
the state of the art of the theory of nonlinear partial differential equations no efforts are made
here to establish such conditions. Instead, a finite difference scheme for the solution of this set
of equations is suggested, and a numerical example will be solved for various cases.

4. THE FINITE DIFFERENCE SCHEME

Let R,*™ be a finite difference grid on R*™, with a constant mesh size & along all axes. Define
A

Do 2R*™ 0 Dy, Doy 2R32™ N D,, Dy =R2™ N D and 3D, =R, N 9D, Denote by e the

2m )
unit vector along the ith axis, ¥ = X X' (G=x,i=1,....mand §; =y, p, i=m+1,...,2m).

Let £ be an internal point of D,,. Using the approximations

gX)F(x+eh)—F(ENh if g(¥)=0

gENF(R) - F(i~eh)lh if g(£)<0 @3

g(R)IF (D)%, > {
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and

*F(x) o5} > (F(X+ e'h)+ F(X — e'h) = 2F(x)/h*  i=1,...,2m

equations (39)-(43) are replaced by
V(%) = ’22'"’ (Poi(X) V(X + e'h) + Py _i(X) Vo(X — €'h))
+ GhVIRIRR) - 2 O RIR(E) % € D,
Vi) = 22"'1 (PLRIV\(E+ eh)+ P, (D) V\(% - e'h))
+ @R VADIR(D - 3 ADEORIRE), 7 € D,
Qu®) = 22"'] (Sos(FYQulE +€'h) + Sy _(£)Qu(E — e'h) + KYSo(®), % € Do

2m
Q%)= 21 ($,(D)Q(X + e'h)+ 8, _(X)Qy(E — e'h)) + h*[S\(X), % € Dy,

Vo(X)=Vi(x)=1 X € Du; Vo(X)= Vi(x)= Q(X) = Qi(x) =0,  x € 3Dy,

m

R0 =3 (02x) + 700 + b 3 (o) + o)) + gh°

i=1 i

R() = 3 ()4 7200+ h 3 (5001 + o)l + i + ah?

(LR + R+ 0TODYRE), i=1,...,m

Poi(®)= {y%_,,,(x)/(zRO(f) i=m+1,...,2m

{ [e7(0)2+ h(f7() + v3(WR(E), i=1,....m

Ym(OIQR(E), i=m+1,...,2m

) ={ [P R VIR, i=L,...m

Yn®R2+ hxiJIR(E), i=m+1,....2m
[07(0)2+ (7 (x) + v;ONVR(E), i=1,...,m
[Ym(D2+ hxi_ W )IR(E), i=m+1,...,2m

Py (%)

P_(f)= {

SuF) = 3 (0200 + ¥23) + Kex) = a0/
+h 3+ )] + 5, + gh?

SiR) = 3 (60)+ ¥3)+ Kex) = a1

1 3 U0+ ) + 00 + e + g

a(x) 2o x)axts bi(x) 2acx)ax: olx) Safx)ox i=1,....m

(a2 ()2 + h(F3(x)+ 70 + b5 So(E), i=1,....,m
S ={ e

Yiem(XQ8(X)), i=m+1,..., 2m
S0 ()= {[aﬁ(x)/2+h(f?(x)+zﬁ(y)+b;(x))]/so(f), i=1,....m
o VimOIQSHE), i=m+1,...,2m

515

(46)

(47)

(48)

(49)

(50)
(1)
(52

(53)

(54)

(55)

(56)

57

(58)

(59)

(60)

(61)

(62)



516 Y. Yavin and A. VENTER

o[ @02+ R+ 03+ BIS (B, i=1,....m
$utn={ [Von(O2+ B ISR, i=m+1,...,2m (63)

G202+ h(fi(x) + 05 () + b3CISE), i=1,...,m
o 64
S1,-i(X) { yom(OR2+ hxt )81, i=m+1,...,2m 0

and for any real A, A" =max(0,1); A~ = —min(0, A). v is a control law given by (44).
Equations (47)-(51) are solved by an iterative procedure using the underrelaxation technique
with an acceleration factor wy, until the difference between two consecutive iterations does not
exceed a given tolerance .
Henceforward we assume that equations (47)-(51) have a unique solution (Vo", V", Qy",
thv vh)-
5. PROBABILISTIC INTERPRETATION

In this section we show that equations (47)-(48) and (51) (and under certain assumptions
equations (47)-(51)) have a probabilistic interpretation.

Let Co;, ={7’; € haml X € D()h}, 5C0;, = {‘ng € ham: X e 3D0h}’ Ch = {'ﬂf € ham: X e D;,}
and T, ={n; € R,’™: % € D,,} be such that (i) Cp, U dCo, and Dy, U 3D, are disjoint; (ii)
1’;# Nsts iff £ x-’, fteih @n;ieih, i= l,. .. ,2m, (lll) Tch c COh; C}, c Co;,; Ch = Co;, - Tch-
Define the function I'" as follows:

") =Vx) f€D, (65)
T(me)=Vi*(&) £ € D, (66)

M@ =1 ¥ € Dy;T"(me)=1 me € Ty THE) =0 £ E 9Dyy;
T(ne)=0 n; € 3Cy. (67)

In a similar manner to[11], we define, for every £ € R,*™:

pME E+eh) SP(R), i=1,...,2m, i€ D, (68)

ph(E, E—eh) 2P,_(%), i=1,...,2m, %€ D, (69)

P"(% ns) =gh*Ro(%), £ € D, (70)

PH(no me+€'h) SPL(E),  i=1,....2m, n; € C, (71)

pH(ne me—€'h) 2P, _i(5), i=1,...,2m, 73 € C, (72)

p*(ns, ©) 2qHIR(X), mz € G, (73)

PMEE) 20 if ¥ Z{fxeh i=1,....2m}U G, or>fE D, (74)
PP (e me) =0 if me £ {mteh, i=1,....2m}U D, or mn & Ch (s)

Then equations (47)-(48), for V; = V}* i =0, 1, can be written as
2m

T*"(%)= > (p"(%, &+ eMH(E + e'h) + p"(%, % — eh)[* (X — e'h))
i=1

+pME, nf)r"(nx-)é MOY(AE), % € D, (76)
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m . R
Fh('ﬂf) = 21 (Ph('ﬂi, 7+ eih)rh(ﬂi + eih) + Ph("lf, N — e'h)r"('q,; —e'h))
+ (e f)rh(f)—g MDA (), 75 € Gy )

where

AtH(F) ShYRy(E); Att(mg) =hYR(F). (78)

The set of functions {p*(% x), £, ¥ € R,*"} can be regarded as a family of transition
probabilities for a Markov chain {Z,%, n =0,1,2,...} defined on the discrete state space R,*™
Define

N*(%) =min {n: Z*€& D, U C, when Z)'=%, % € D, (79)
N*(ne) £min{n: Z" € D, U G, when Z*=ng, 7 € C, (80)

and assume that E;N*(%) < and E, N*(n;) <o for all ¥ € D,, and n; € C,.
Then it can be shown, in the same manner as in{11], that

Ih5) = E,®(Zhng) ~ E; Ng' S MBRYOACEY, REDUG 6D

where
uB={0) e o ®
R o ®)

(E=(X, ¥)=(X1s. 20 s Xns Vis - - - » Ym))r@nd @: R*™ > R is a bounded and continuous function such
that: (D(X’): 1 X- S Dch U Tch; @(X’) =0 ,\7 & Do;, U COh'
In the same manner as in the Appendix it can be shown that
Nh(p)-1 m —
I'"(%) = Py{Zxn) € Doy U TP~ E; g Z] Ay (YAt (Z!), x € D, U G,
(84)

As in[11], define the time sequence {¢,"} and the interpolated continuous parameter process
{¢*(0), t=0}, by

n—1

' =0; th=3 A"ZM 0<sn<N(p)+1 (85)
k=0

=2z t ettt (86)

Then equation (84) can be written as

Nh(-) m
T*(®) = P,({*(N* (@) € Dy U T} - E fo "S ey g e UG,
®7)

where

A0 if £*(t) € D,

"‘(’)={A,~<1) it e C, (88)
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and
b [mn(®), . 03a(0) i LM(E) € Dy
Y { Grye s 9o) it {()=mn € G, ®9)

Note that T*(p) = Vi(¢; v%) if ¥ € Dy, and T* (%) = V(3; V) if ¥ € C,

The probabilistic interpretation of equations (47), (48) and (51), given here by means of the
Markov chain {Z,",n =0, 1,2,...} and equations (84) and (87), can be extended in the following
case.

Consider the system given by (1) where 4;(x)=¢;(x)=0,i=1,...,m, x € R™ (equations
(60)). In this case equations (47)-(51) have a probabilistic interpretation by means of three
Markov chains. These are {Z,*,n=0,1,2,...}, described above the two additional Markov
chains {X,(n),n =0,1,2,...}, i =0, 1, described below.

Let n@, n® € R,2™ be such that '@, n® & Dy, U 9Dy, define the values of Q" and Q,”
on 7 and n" respectively by

Q' =0, i=0,1 (50)

We define, for every ¥ € R,2™ and each i € {0, 1}

g (E £+ e'h) =S,,(%) j=1,....,2m i € Dy o1)
g*(E £-elh) 2S5, j=1....2m i€ Dy 92)
al(E 1) =qhYSi(®), % € Dy, 93)

g% m) =0 if n & {fxehj=1,...,2m} U (¥} or £ & Dy, (94)

Then equations (49)~(51), for Q, = Q i =0, 1, can be written as

Q)= 22”' (g"(%, %+ elh)QM (X + elh) + gt (%, £ - eh)Q (X — e'h))
=

+ qih(x_a n(i))Ql'h(n(n) + Aﬂh(f)v x- € D0h9 i = 0, 1 (95)
Q'®=Q (=0 £ € Dy, (96)

where
ATHE) =RS(F),  i=0,L 97)

Again, for each i € {0, 1}, the set of functions {g/*(, n), X, n € R"} can be regarded as a
family of transition probabilities for a corresponding Markov chain {X,/(n), n=0,1,2,...}
defined on the discrete state space R,2™.

Define

M%) Zmin{n: X,%(n) & Dy, when X,00)=%}, i=0,1 (98)

and assume that E;M,(X) <= for all £ € Dy, i =0, 1. Then, as before, it can be shown that
QX)) = EM(B), i=0,1. 99

Hence in the case where a;(\)=c¢;()=0, i=1,...,m (equations (60)) the control law
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v° € U, given by equation (37), is represented by
1 1
0=(3) [ Z mEMO@@VA@Im) i [ 3 MOmEMO@DIE) dx
i=1...,m y ER" N D, (100)
where the operation fp_dx here represents an appropriate numerical integration operation.
The results described in the next section are to be interpreted in the light of equations (87)

and (98)-(99), where I'*(¥) and I™(;) are approximations to V(x,0; v% and V(X, 1; v°%(eqns.
(13)) respectively.

6. EXAMPLE
Consider the dynamical system given by

dx=o(y)dt+o,dW,, t>0,x €R (101)
with the observation

dy=zxdt+o0,dW,, t>0,y €R (102)
where W ={W(t) = (W,(t), Wyt)), t =0} is an R*valued standard Wiener process and Z =
{z(1), t 20} is a homogeneous jump Markov process with state space S = {0, 1} as described in
Section 1. We assume that W and Z are mutually independent. Let U, D,, and D be as defined

in Section 1 (but with m = 1) and let
D ={f=(x,y): |x|<p and l|y|<i-¢} (103)

where € is a given number, /> ¢ > 0.
Assuming that there exists a control law v° € U such that V(; v%) = V(%;v)forallv € U
and ¥ € D (and consequently J(v°) = J(v) for any v € U), and that all the conditions stated in

Theorem 1 are satisfied, it follows from equations (39)-(44) and (101)~(102) that the following
set of equations has to be solved:

o(y) V(@) ax + (%)(0‘202 Vo)l ax? + 020 Vo)l 3y) = qVel(E) + qVy(B)
=A00y) €D (104)
v(y)a V(%) dx + xdV (%) ay + (%)(0'1262 Vi(X)] ax* + 029* V(%)] 8y?)
—qVi®) +qVe® = A(Xy)  EFE D (105)
— 0(1)aQuR)ax + (3 ) (022 Qu(D 357+ 022 Qu D] 3y) - 4QoD) = - 1
£ € Dy (106)
~ o(y)AQu(E)ax ~ x3Q(D)/dy + (%)(0,2520.(f)/ax2 + 020 QyF) 3y

_qQ](.f)::_l X e Do (107)
V)= Vilr)=1 % € D.; Vo(£)= Vi(X)= Q)= Qi(X)=0 * € 8D, (108)

w0 =(3) [ imauaviceyan

]
+ mQURVE 3343 [ [AO)moQuE) + AT QD) d. (109
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Note that in this example a(x)=3*c\*(x)/dx?=0, b(x)=do(x)dx=0 and c(x)=
af(x)ox =0.

Let (Vo", V', Q0" Q% v*) be the solution to equations (47)-(51) for a given set of
parameters. Using the values of v" in (52)-(57), and solving equations (47)-(48) and (51), for the
same set of parameters but with A,(0)=A;(1)=0,i=1,..., m, equations (47)-(48) and (51) yieid
a solution (Py*, P;*) with following probabilistic interpretation:

P*(&) = P:({¢"(N*(%)) € D, U T., and the control law v* is being applied})  (110)
P*x) =P, ({{"(N*(n;) € D,y U T, and the control law »* is being applied}). (111)

Once the values of (Py", P;*) have been computed, it is possible to compute the values of P*
P’l =170P0h+17'lplh. (112)

Using the finite difference scheme described in Section 4, equations (104)-(109) were solved
and the values of (Vy", V%, Qp*, Q" v* Py", P\", P*) computed for the following set of
parameters: [=1,e=10"%,p=0.1,02=5-10%,5-10"< 0, <0.5, mp= 7, =0.5,05<A(0) <
A(1)<8,0.5< g <16, ¢,=10"* (¢ is the tolerance between two consecutive iterations, see the
end of Section 4), and h = 0.05.

Table 1. The vaiues of [n, VA (£)d¥, fp, QX (D) d%, fp, PA(F)d%, i=0,1, for various values of h, where:
=510 A0 =A(D=land g =1

n é vhax| [ Vi(x)ax| [ of(x)ax é (%) di é P (X)dx é Pl (%) d%
o] DO DO ] [« [¢}
0.1 .3164 .3084 .8806 | .6997 | .3238 .3144
0.05 .3143 .3080 9258 | .7352 | .3224 .3147
0.025 | .3133 .3083 9863 | .7527 | .3213 .3149

Table 2. The values of fp, V*(#)d%, fp, Q*(F) A%, fp, PA(X)dX, i=0,1, for various values of h, where:
o2=5 107 A0 =A()=8 and g = |

| DGaaR| [ vk | [ oR(R)d l Q[‘(;)d;j [P (R)dk | [ PP (%) d
DO DO DO o DO DO
0.1 .1879 1858 8959 | .6931 | .1892 1864
0.05 1780 1757 9401 | L7277 | 1792 1767
0.025 | .1734 1713 9589 | .7a46 | .1747 1724

Table 3. The values of [p, VA(2)d3, [, QX () d%, Jp, PM(E) X, i=0,1 for various values of 0%, where:
AO=A(1)=1,g=1and h=0.05

o2 Evg(i)di LJ)’ W(x)ax [j) og(;)d; é Q?(})ﬂé Ph (%) d é PM(%)dx
o) o Q 0 o )
5-10710 3156 .3091 9299 | L7359 | 3237 3157
5108 | L3156 .3091 9299 | L7389 | 3237 3157
5108 | 3156 .3091 9298 | .7359 | .3237 3157
5107|3143 3080 9258 | 7352 | 3024 3147
5.10°2| L2208 2289 8062 | .6823 | .231C 2299
5107l 1387 1385 5009 | .4643 | 1387 { 1385
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In order to assess the accuracy of the numerical method, the values of (Vo*, V%, Qpf, Q%
v*, Py", P,*) were computed for h =0, 1, 0.05, 0.025; the results are given in Tables 1 and 2.

The resuits given in these tables, and other results as well suggest that V* >V, i=0,1;
Pt—>P,i=0,1as h|0 where

PA%) 2Pai({{2(x(%; %) € DY), i=0,1. (113)

The sensitivity of (Vo*, Vi*, Qs*, Q\%, Pi", P\") to variations in the value of o,% the noise
factor in the observation, demonstrated in Table 3.

In Fig. 1 four samples of the control law »* = v*(y) are given. These are the cases where: (i)
07=5-10" A(0)=1, A(1)=0.1, g=1 and h=0.05 (i) 0,>=5-10" A(0)=A(1)=0.8,
g=1and h=0.05. (i) 0>=5-10" A(0)=A(1)=1, g=1 and h =0.05. (v) 02=5-107%,
A0)=A(1)=1, g=8 and h =0.05.

Figures. 2(a) and 2(b) show [p, V(%) d%, [p, P/(¥)d%, i=0,1, as functions of A = A(0) =
A(1) for the cases where: o,°=5-107% g =1 and h =0.05. The plots show that Ip, VH(X) dx
and [p, P/(%)d%, i =0, 1, decrease when A increases. Figure 3 shows Jp, P*(X)dx as a function
of g for the case where: 0,2=5-10"% A(0)=A(1)=1 and h=0.05. The plot shows that
Jp, P*(%) dX decreases when q increases.

Figure 1 shows the typical form of the control law v*, and Figs. 2 and 3 shows the trend of
all the results obtained here, which is that V}* and P}, i =0, 1, decrease when A = A(0) = A(1) or
q increase.

-.20 -5
~1.00 T

OWN |

- 60

.00

0.20

040

0.60f

0.80

7
i~ .

100

-

Fig. 1. The control law " = v*(y) for four cases. (i) ,02=5-107%,A(0)=1,A(1)=0.1, g=1 and

h=005; (i) -A-A-A-A, 0,2=5-10", A0)=A(1)=08, ¢=1 and h=0.05; (iii) -O-0-0-0, o=

5:107% A@y=A()=1, g=1 and h=0.05 (iv) -X-X-x-X, g2=5-10"% A(0)=A()=1, g=8 and
h=0.05.
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From equations (13), (65)-(66), (87) and (110)—(111), it follows that

NRkZ) m (£ 9 m
P(R)~ V(D) = E; f Z At)E(Y ) dt_Exof 2 (A(YE(t)de (114)

Nhinz) m (%09 m
PHE) - VME) = E,,x_fo 2 A Yy de = E“f Z Az(NoAY (1) dt.
(115)

For the exampie solved here, the results given in Tables 1-3 and in Figs. 2(a) and 2(b), and
other results as well, indicate that the numbers K/, i =0, 1, where

s b U e - (% 00 m ' 3y _ .
K; —Lé (PMX) - V(X)) dx J:)o (E,‘,J-o !_E:l Az vA(Y () dt) dx i=0,1
(116)

are very small in comparison with fp, V(%) dx or fp, P/(¥)dX, i =0, 1, respectively.
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000 706400 500 560 w6 A

Fig. 2(a). Jp, Vo"(£)d% and [p, Po*(¥)df as functions of A = A(0) = A(1), where 0.2=5-10"%, g=1 and
h=0.05.
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Fig. 2(b). Jp, V\"(¥)d% and [p, P;*(¥)d¥ as functions of A = A(0) = A(1), where 0*=5-10~, ¢=1 and

h =0,
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Tinmalle

Le values gz A AS F B 1 o Foommtom e ok o el
rinany, t the vaiue of I (Y d Al A

Nh s=1T s
§ 01 Jpy Wi \Xjax = JDo E givipg \Xjax, i = u, 1, as functions of q, in the case

where o2=5:10", A(@)=A(1)=1 and h=0.05, have been plotted in Fig. 4. Again, these
values decrease when g increases.
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APPENDIX

Proof of Lemma 1

Let » € U and assume that (V,, V,) € @ satisfy equations (19)~(20). Then equation (16) yields

Vi(®) = Eg;Vaaye: op({H(7lX; 0)))
Ti(& v) m
-E; jo ,zs. AzHY () dt, i=0,1. (1

Assume next that (V,, V) also satisfy equations (21). Then

E.. V. ll3n(E; 1)“\

Bt ARSIt H L F 4

Vz(n(i: v))({;(fl(f; v)))(w)Pi, H{dw)

j{u: & (ri(E: v))w) € D}

+ I Vatrtz: o HTHT 0 w) Py (dw) (118)
{w: £ (ri(E:5Mw) € 2D}
Peildw) = P ;({{¥(ri%; v) € DD,

J:o: L (il E: e))w) € Dc}

which completes the proof of Lemma 1.



