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Abstract-An optimal control problem is considered for a nonlinear stochastic system with an interrupted 
observation mechanism that is characterized in terms of a jump Markov process taking on the values 0 or 1. 
The state of the system is described by a diffusion process, but the observation has components modulated 
by the jump process. The admissible control laws are smooth functions of the observation. Using the 
calculus of variations, necessary conditions on optimal controls are derived. These conditions amount to 
solving a set of four coupled nonlinear partial differential equations. A numerical procedure for solving 
these equations is suggested and an example dealt with numerically. 

I. INTRODUCTION 

In this paper consideration is given to .a stochastic optimal control problem for a nonlinear 
stochastic system with an interrupted observation mechanism that is characterized in terms of a 
jump Markov process taking on the values 0 or 1. The state of the system is described by a 
diffusion process, but the observation has the component modulated by the jump process. Such 
a problem arises in systems with observation devices where the signal process is subjected to 
random attenuation or fading. 

Let (a, 9, P) be a probability space. Consider the controlled dynamical system represented 
by the stochastic differential equation 

dx; = Lfi(X) + Vi(y)] dt + oi(X) d Wi, t > 0, i = 1,. . . , ~TI (1) 

and let the interrupted observation be given by 

dyi=ZXidt+yi(x)dBi, t>O,i=l,...,m (2) 

where fi: R”+R, oi: Rm+R, yi: Rm+R, i=l,..., m are given functions. ai: R” +R, 
i=l,..., m are the control functions and W = { W(t) = (W,(t), D o., W,,,(t)), t 2 0) and B = 

{B(t) = (B,(t), *. . , B,(t)), t 3 0) are two R”- valued standard Wiener processes on (Q 9, P). 
2 = {z(t), t 2 0) is a homogeneous jump Markov process on (a, 9, P) with state space S = {0, 1) 
and transition probabilities 

i, j = 0,l 

P(z(t+A)=jldO=O= 
qA+ o(A) if j# i 

l_qA+o(A) ifj=i (3 

where ri = P(z(0) = i), i = 0, 1, and q > 0 are given. It is assumed that the processes W, B and 
2 are mutually independent. 

It is further assumed that Ui and yi, i = 1,. . . , m are twice continuously differentiable for all 
x ERmandthatfi,i=l,..., m are continuously differentiable for all x E R”. In addition it is 
assumed that 

If( + lo(x)I2 + IYWIZ c Q + BlxlZ, a > 0, B > 0 (4) 

and 

V(x) -f(X’)/2 + (o(x) - o(x’)/2 + /y(x) - y(x’)(2 S b/x - x’12, k0 3 0 (9 

for all x, x’ E R”, where lx/* = 5 ~2, IBx)I’ = 2 f:(x), (o(x)/* = if, (r!(x) and /y(x)]* = if, y:(x). 
i=l i=l 
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Denote by U the class of all the control functions u = v(y), u = (II,, . . . , II,,,): R” +R” that 
satisfy 

b(Y)12~~fPM a>o, p>o (6) 

and 

J4Y) - U(Y’)12 s koly - Y’J2, ko> 0 (7) 

for all y, y’ E R”. 
Let u E U and 2 = (x, y) E R2”. Then in the same manner as in[l] and [2] it can be shown 

that equations (1) and (2) have a unique solution 5: ={l;(t) = (X,“(t), . . . ,X,,,“(t), 
Y;(t), . . . 9 Y;(t)), t 2 0) which is such that I:(O) = t(O) = f Also, in the same manner as in[l] 
it can be shown that (& z) is a Markov process on (0, 9, P). Furthermore, by following the 
same reasoning as in]31 (Section 5, Chap. 1) and using Theorem 3.10 of [4] it can be shown that 
(&z) is a strong Markov process. Note that the sample functions of {l:(t), t 20) are 
continuous with probability 1. 

Let 

Do = {2 = (x, y): [xii < 1 and lyj] < f, i = 1,. . . , RI} (8) 

D= Do-DC (9) 

where DC is a closed domain in R*“‘, and DC C D,,. Define 

(G(t), z(t)) E aD x S when (&(O), z(O)) = (Z, i) E D x S} 
if &(O)=x’E D and z(0) = i. 

x if G(t) E D for all t 20 when (&(O),z(O))= (2, i) E Dx S 
(10) 

i = 0,l where aD denotes the boundary of D. 
In the sequel the following notations will be used: 

pi. it*) = P(-I(MOh Z(O)) = (i, i)), i = 0, 1, 

and 

Ei,i = E[ * I(&(O), Z(O)) = (Is, i), i = 0,l. 

(11) 

(12) 

where E denotes the expectation operator. 
Define the following functionals 

V(X, i; U) ‘P~-,i({~~(Ti(i; u)) E D,-})-Ef,i I, ‘“‘“‘,~ Aj(z(t))v$ Y”(t)) dt 

LIEU, i=O,l (13) 

and 

V(x; V) ni P(Z(0) = i)V(n, i; v) = i n,V(a, i; v) 

. m, given satisfying 3 hj(1) > 0, j = 
1 . . ? m. 
’ ’ In paper Find a control 

such 

u*) 2 V(,I?; u) for any u E U and all i E D. (15) 
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A control law v* E U for which equation (15) is satisfied will here be called an optimal 
control. 

An optimal control u* E U, whenever it exists, is supposed, rougly speaking, to steer the 
state l:(t) in such a manner as to maximize the probability that the state reaches the set DC 
before reaching dDO and subject to ‘soft’ constraints on the control function given by the 
second term in equation (13). 

Optimal control problems for systems with jump Markov disturbances were considered by 
several authors during the last two decades (see for example[5-81. and the references cited 
there). In these references the process ([i, z) is completely observable and the admissible 
control laws are of the form v, = o(&i(t), z(t)). These make it possible to find dynamic 
programming type of conditions on optimal control laws. In the case dealt with here the 
admissible control laws are of the form v, = v( Y”(t)), where Y” is given by (2). This excludes 
the possibility of deriving implementable conditions of dynamic programming type for the 
problem considered here. Even in the case of linear systems the problem of estimating [i(t) from 
{Y”(s), 04 s < t} results in an infinite-dimensional filter[9]. This excludes the possibility of 
applying control laws of the form u, = v(&t), f(t)), where [i(t) = E[l;(t)( Y”(s), 0 s s s t] and 
f(t) = E[z(t)l Y”(s), 0 6 s d t]. 

In the present paper the problem is formulated in terms of a pair of coupled partial 
differential equations, the coefficients of which involve the control function v. By varying u we 
vary the coefficients of the infinitesimal generator of ([P(t), z(t)), and this makes it possible to 
deduce necessary conditions for an optimal control (Section 3, Theorem 1). These necessary 
conditions amount to solving a set of four coupled nonlinear partial differential equations. 

2. THE GOVERNING EQUATIONS 

Let Ed denote the class of all pairs ( V(_f, 0), V(f, 1)) such that V($ i), i = 0, 1, are continuous 
on fi (fi denotes the closure of D), twice continuously differentiable on D, and such that 
dV(f, k)/dXi, dV(Z, k)/ay, a*V(?, k)/dxf and d*V(.?, k)/ayf are in L*(D) for i = 1,. . . , M and 
k=O,l. 

By using the same method as in[3] (Chap. 1, Section 5) for deriving the weak infinitesimal 
operator of (l;, z) (see also[5]) and using the fact that (f;, z) is a strong Markov process, the 
following equations are obtained 

I 

+; 0) 
Ef, iV(gi(Ti(f; V)), Z(Ti(f; V))) = V(-f, i) + Ef,; -Q(u) W’PW, z(t)) dt 

0 

where 

.Yo(v) V(_f, 0) = 

(17) 

(16) 

i=O,l 

g Vi(x) + Ui(Y)lJV(Q O)lJxj 

+ ; 
0 

$ (af(x)a* V(X, O)/dx’ + $(x)a* V(i, O)/dyf 
1 I 

-qV(f,O)+qV(f, 1) 

and 

yI(u) v(f7 l) = 2 vi(X) + Vi(y)]dV(fT 1)/8X, + 2 XiaV(~, l)/ayi 
i=I i=l 

+ ; 2 biTxPV(L 1)/8x? + rf(x)a* V(Z, l)/ayf) 
0 (18) 

- qV(f, 1) + 4V(Z, O), (V(rs, 01, V(.f, 1)) E 9. 

We introduce the notation Vi(f; v) = V(.f, i; u), i = 0,l. In the sequel the following lemma will 
be used, the proof of which is based on equations (16 j(18) and is given in the Appendix. 
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LEMMA 1 
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Given u E U. Let (V,, VI) E 9 satisfy 

~o(v)VoG) = $, ~jtwJj?Y) .TED 

=%(v)V,W = 2 fql)UjTY) ,fED 

V(x)= V,(x)- 1 x E j;’ 0- 
-- - 

* C? V,(f) = V,(3) = 0 I E aDo 

then 

Vi(f) = Vi(i; V) = Pf.i({J~( Ti(f; v)) E DC}) 

- &, i 
I 

o’i’i’“’ 2 hj(z(t))vf( Y”(t)) dt 
j=l 

i=O,l. 

(19) 

(20) 

(21) 

(22) 

3. NECESSARY CONDITIONS ON OPTIMAL CONTROLS 

Let v E U. Define 

J(v)=/DOV(f;v)di (di=dx,...dx,dy,...dy,). (23) 

Suppose that v*, u” E U are control laws such that V(i; v*) 3 V(.f; v) for any v E U and 
all f E D and J(v”) B J(v) for any v E U. Then it can be shown that J( 0’) = J( v*) and 
consequently that V(_f; 0’) = V(_f; v*) a.e. in Do. Hence a control law v* E U that maximizes 
J(v) on U, whenever it exists, can be interpreted as an optimal control in some weak sense. In 
this section conditions are derived for the maximization of J(v) on U. 

Suppose that v” E U is a control law for which J(v’) 2 J(v) for any v E U. Let v”(y) = 
v”(y) + a+(y), where tj E U and a E [0, ao] for some a0 > 0. Assume that for each a E [O, ao] 
there exists a solution ( Voa, V,a) E 9 to equations (24) 

~Otva)vOut~) = 8, Aj(O)(U~ty))' .fED 

~1(u”)Vl”(f) = 2 hj(l)(V~(Y))2 iED (24) j=l 

V,=(f) = V,=(a) = 1 f E DC; VoU(,f) = v,a(n) = 0 i E aDo. 

Define, for v E U and ( Vo, V,) E 9 

A 

~o(v)Vo =~otv)vo-qv, 

Mu)V, h(u) VI - qvo 

(25) 

(26) 

and 

Lt(v)QOta) ’ -2 [~C.fii(X)QOtf))/dXi + Vi(Y)dQO(R)/JXi] 
i=l 

+ ; 2 t~*~diZ(x)Qotm/ax~ + ~~(x)a*Ql.J(f)/ay:] 0 I I 

- qQoW 

(27) 
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LT(v)Ql(j) ‘-z, [aCfi(x)Qt(9)/JXi + Ui(_Y)aQt(a)/aXi +XiaQt(Z)/a_Yi] 

+ ; $ [&-?(x)Q,(~))/a + $(x)a2Q,($/ay~] 
0 

(28) 
I I 

- 4Q,W, 

for any (Qo, QI) such that LT(U)Qi E L,(D& i = 0,l. 
From equations (24) it follows that 

Y&UO)( Vou - Voo) + (.teo(oa) - To(uo)) Voa - 2 Ai(0)[(Up)2 - (0iO)2]Zd = 0 a.e. in DO (2% 
i=l 

~,(U”)(V,a-V,O)+(~,(U”)-T,(UO))V,LI- ~Ai(l)[(U~)2-(U~)2]Z~=Oa.e.inDo, (30) 
i=l 

where ZD = 1 if f E D and ZD = 0 if 2 e D. 
Let Q. and Q, be weak solutions of the following equations: 

L8(u0)Qo(f) = - 1 i E Do (31) 

LT(uO)Q,(f) = - 1 f E Do (32) 

QOG) = Q,(f) = 0 f E a& (33) 

Multiplying equation (29) by ?roQo and equation (30) by r,Q,, adding the two expressions, 
integrating their sum over Do, and then using equations (17)-(18), (2%(26) and (31~(33), the 
following equation is obtained: 

J(u”) - J(u’) = q {7~~Qo(i)( V,a(.f) - V,‘(a)) + ?r,Q,(.f)( VoQ(f) - V:(a))} df 

+4I,, ’ I, d'.(Y) {~~Qd~)aV,"(Z)/axi + ~1Q1(3)aV,a(f)/axi 

-2uO(y)(Ai(O)~~,Qdf) + Ai(l)r,Ql(f))ZD(f)} dx dy 

- a2 2 {7iOAi(O)Qd-f) + ~lA;(l)Ql(a)}rLiZ(y)l,(n) di 
i=l 

(35) 

where 

D,={X:(XiJ<I i=l,... ,m}Dy={y:(yiJ<I i=l,.**,m}* (35) 

THEOREM 1 
Suppose there exists a control law u” E U such that 

J(u”) 2 J(u) for all u E U (36) 

and assume that (i) equations (31~(33) have weak solutions Q. and Q,; (ii) for each a E [0, (uO], 
(Voa, Vie) E 9 satisfy equations (24), where vu = u”+ cu$, and II, E U; (iii) (Vr - &‘)/a, 

i = 0, 1, converge weakly (in L,(Do)) as (Y 4 0 too; (iv) dV/‘/ax,, j = I,. _ . , m, i = 0, 1 converge 
weakly (in L2(Do)), as (Y 4 0 to aVl/axj, j = 1,. . . , m, i = 0, 1, respectively. 

Then 

u:(y)= ; Of D {nQoWVo0G)laxi 
i 

+ 7r,Q,(-WV,0(.WaxJ dx/ 
.f 

[Ai(O)roQo(n) + Ai(1)7r,Q,($]Zn(f) dx (37) D 
1 

i=l,...,m. 
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Proof. From assumptions (i)-(iv) and equations (34) it follows that 

where SJ(u’; (L) is the Gateaux differential of J at u” with increment 4, [lo]. From Theorem 1 
(p. 178) of [lo] it follows that if equation (36) is satisfied then SJ(u’: 4) = 0 for all 4 E U. 
Hence tie has to satisfy equation (37). 

Thus if it is assumed that an optimal control law exists and that all the conditions stated in 
Theorem 1 are satisfied, then in order to determine an optimal control law the following system 
of equations has to be solved: 

~0~00 vow = $, J+(O)q?Y) iED 

~l(“)Vl(f) = $, Aj(l)uJ(Y) iED (40) 

L$( u)Q,,($ = - 1 i E D,, (41) 

L’f(u)Q,(i) = - 1 i E Do (42) 

V,,(f) = V,(f) = 1 2 E DC ; V&f) = V,(i) = Q,(a) = Q,(Z) = 0 

f E aD, (43) 

where 

ui(Y) = i OI D {~oQo(~)~VO(~)/~X~ 
I 

+ ~1Q,(-f)aV,(f)/dxi} dx/ 
I 

[hi(0)7iOQO(~)+~i(l)~~Q~(~)l~~(~) dx (4) 
4 

i=l,..., m, (dx=dx ,,..., dx,). 

Equations (39)-(44) are a set of nonlinear partial differential equations. Since these con- 
stitute necessary conditions for optimality, it appears that the problem of the existence and 
uniqueness of solutions to these equations is crucial to the optimal control problem. Owing to 
the state of the art of the theory of nonlinear partial differential equations no efforts are made 
here to establish such conditions. Instead, a finite difference scheme for the solution of this set 
of equations is suggested, and a numerical example will be solved for various cases. 

4. THE FINITE DIFFERENCE SCHEME 

Let Rzm be a finite difference grid on RZm, with a constant mesh size h along all axes. Define 

Doh eRh2’” n Do, Dch ARh2m n D,, Dh iR,,*‘” n D and aD,, AR,,“” n aD,. Denote by ei the 

unit vector along the ith axis, i = *C &e’ (fi = Xi, i = 1, . . . , ~TI and $i = Y;-~, i = m t 1,. . . ,2m). 
i=l 

Let Z be an internal point of Do,,. Using the approximations 

g(vf)dF(f)/a.fi 3 ( g(f)(F(x + e’h) - F(a))/h if g(f) 2 0 
g(i)(F(ff) - F(x - e’h))/h if g(Z) < 0 (45) 

i=1,...,2m 
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a*F(x)/~Sf +(F(f + e’h) + F(i - e’h) - 2F(X))/h* i=l , . . . ,2m 

equations (39~(43) are replaced by 

V&Z) = 2 (P&) V&f + e’h) + P,.+(3) V,(? - e’h)) 
i=l 

+ qh2 Vl(f)/Rdf) - 2 Ai(O)Uf(y)h*/Ro(X,) i E D,, 
i=l 

V,(f) = ff (P,.;(f) Vf(.f t e'h) t Pl._i(X) VI(E - e’h)) 
i=I 

+ 4h2vdf)/Rl(x)-~ Ai(l)Vf(y)h*/Rl(i), _f E D,, 
i=l 

Qd-f) = 2 (SCl,i(f)Qdf •t e’h) + So,-i(f)Q&f - e’h)) + h*/S~(f), f E DO,, 

Q](f) = 2 (Sl,i(i)Ql(f + e'h)+ Sl,-i(f)Ql(f - e’h))+ h*/Sj(f), i E Doh 

V,(f) = V,(f) = 1 i E DC,,; vow = v,(n) = Q&) = Q,(,f) = 0, x E aD,,, 

RCl(f) = g, tgiTx) + YiYx)) + h 2 (lfi(X)J + IDi(Y + qh* 

RI(x) = 8 (a?(x) + YiTx)) + h 2 (jfj(X)l + /vi(Y)/ + IX;/) + qh* 

POJi) = ( 
[aiTX)D + hK(x) + u:(Y))]/&(i), i = 1,. . . , m 

-yf_m(x)/(2RO(_f) i = m + 1, . . . ,2m 

Po,_i(f) = 
( 

[a?(x)/2t hCf;(x)tv;(y))]/Ro(n), i= l,..., m 

d,(x)/(2Rdf)L i = m t 1,. . . ,2m 

pl.i(i) = 
t 

[d(X)/2 + hK(X) + UXy))]/Rl(X), i = 1,. . . , m 

[YL(x)I2 + hxLJ/R~(.f), i = m t 1,. . . ,2m 

Pl,_i(f) = 
l 

[d(x)/2 + hO”Ax) + v;(y))]/R,(f), i = 1,. . . , m 

[-~-Ax)/2 + hxi-JR,(i), i = m t 1,. . . ,2m 

SO(f)=g (fff(X)+~f(X)th*Ci(X)-fZ*Ui(X)/2) 

t h 2 (Ifi( + IS(y)1 t Jbi(x)l) t qh2 
i=l 

S,(a) = $, (a?(x) + r:(X) + h*Ci(X)- h*Ui(X)/2) 

+ h 2 (Ifi( + Iui(y)l + Jbi(x)l + Ixil) + qh* 
i=l 

U;(X) 'd'~~(X)/dX~: b{(x) '&Tt(X)/dXi; Ci(X) ~afi(X)/aXi i= I, 

so’i(‘)= f 

[~f(x)/2thCfT(x)t c;(y)+ bf(x))]/S&), i= 1, . . ..m 

yj_,(x)/(2So(i)), i = m t 1,. . . ,2m 

SO,_i(f) = 
I 

[a?(X)/2+hCf:(x)trf(y)+ b;(x))]ISO(f), i= l,..., m 

?L(x)l(2So(f)), i = m + 1,. . . ,2m 

m 

515 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 
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sl,i(fl = 
i 

[d(X)/2 + h&(x) + u;(y) + 6Xx))l/S,(f), i = I,. . . , m 

I-&Ax)/2 + hx~_,]/Sl(f), i = m + 1,. . . ,2m 

Sl+_i(.f) = ( [d(X)/2 + W(x) + u:(y) + b;(x))]/S,(ff), i = 1,. . . , m 

[IL(x)/2 + hxLl/Sdf), i = m + 1,. . . ,2m 

(63) 

(64) 

and for any real A, A+ = max(O, A); h- = - min(0, h). u is a control law given by (44). 
Equations (47)-(51) are solved by an iterative procedure using the underrelaxation technique 

with an acceleration factor wo, until the difference between two consecutive iterations does not 
exceed a given tolerance eo. 

Henceforward we assume that equations (47)-(51) have a unique solution ( Voh, V,“, Qoh, 

Qlh, uh). 

5. PROBABILISTIC INTERPRETATION 

In this section we show that equations (47)-(48) and (51) (and under certain assumptions 
equations (47)-(51)) have a probabilistic interpretation. 

Let Co, ={rl,- E R:m: ff E DO,,}, aC,,, ={‘Q E RhZm: i E a&,,}, C, ={Q E RhZm: x E Dh} 
and T,, = {qf E Rhim : f E &,} be such that (i) COh U K’o,, and Do,, U a& are disjoint; (ii) 
ni # 7)i’, iff f# f’; f 2 e’h e & ? e’h, i = 1, . . . , 2m; (iii) Tch c co,; ch c CO,,; ch = co, - Tch. 
Define the function Ih as follows: 

rh(i) = V,h(T) f E D,, 

I-h(Q) = Vlh(Z) f E Dh 

rh(z) = i f E Dch; rh(‘llf) = i qi E Tch; rh(f) = o f E moh; 

rhtqf) = o qf E x0,. 

In a similar manner to[ll], we define, for every .? E Rzm: 

ph(% ff + e’h) ‘PO,(X), i=l ,...,zf?l, ff E Dh 

ph(en-eih) ‘p&-i(x), i= 1,. . . ,h, i E Dh 

ph(f, Q) +Z*/&(.f), rf E 4 

Ph(% Tf + e’h) ‘plj(-f), i= I,... ,2m, viECh 

ph(Tf9 73 - e’h) ‘Pl,_i(.f), i = 1,. . . , i?m, qi E Ch 

phh,3) +*/R,(f), qi E C, 

ph(.f,f’) A0 if ff’ $Z {ZC e’h, i = 1,. . . ,2m} U c), or f g Dh 

ph(~f,?ks) ‘0 if ni’ e {Tk?e’h, i=l,...,?m} U Dh Or 77,-e C,,. 

Then equations (47)-W), for vi = V/‘, i = 0, 1, can be written as 

rw = 5 (ph(f, i + eih)Th(i + e’h) + ph(if, 2 - eih)rh(f - e’h)) 
i=l 

+  ph(& ll,_)rhh) - 2 Ai(0)u~(y)Ath(Z), f E Dh 
i=l 

(65) 

(66) 

(67) 

(68) 

(6% 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 
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I-h(?j,) = 9 (Ph(Q, Tjj + eih)rh(Q t e’h) + ph(?j3, qi - eih)rh(qi - e’h)) 
i=l 

(77) 

where 

Ath(z) %I~/&(~); Ath(nJ %r’/R,(f). (78) 

The set of functions {ph(i,f), f, ,f E Rh2m} can be regarded as a family of transition 
probabilities for a Markov chain {Znh, n = 0, 1,2,. . .} defined on the discrete state space Rtm. 

Define 

Nh(f) Lmin {n: ZnhtE Dh U c, when Zoh = a}, f E 4 

Nh(vi) :min {n: Znh E Dh U ch when Zoh = 73, nf E C, 

and assume that &Nh(f) < cQ and I&hTh(nj) < m for all f E 4, and nz E Ch. 
Then it can be shown, in the same manner as in[l I], that 

Nh -)-I m 

rh(,f) = Ei@(zh,h(i)) - Ei 52 Ar(/?)V?(Ykh)Afh(Zkh), i E Dh U ch 
&=O i=l 

where 

A(O) if Z,h E 4 
&(‘= (n:(l) if Zf E Ch9 

Y; = (;k;f:.,.; ,,z2,2d if fkh f r>, 

m if Z, = ni E Ch 

(79) 

(80) 

(81) 

(82) 

(83) 

(2 = 0, Y) = h,. . . ,x,, yI,. . . , y,h.pd @: R 2m +R is a bounded and continuous function such 
that: a(j) = 1 ,f E Dch U Tch ; @(j) = 0 j E DOh U Co,. 

In the same manner as in the Appendix it can be shown that 

rhw = w{zhi) E Dch U T,h})- Ef “%-’ 2 Ai(l)tlf( Ykh)Ath(Zkh), X E Dh U ch. 
k=O i=l 

(84) 

As in[ll], define the time sequence {f”“} and the interpolated continuous parameter process 

{5h(0, t 2 01, by 

n-1 

toh = 0; tnh = x Ath(zkh) 0 g It S Nh(j) t 1 (85) 
k=O 

lb(l) = Z”” t E [hh9 C+d. (86) 

Then equation (84) can be written as 

rh(X) = Pi({lh(Nh(j)) E &t, U T’d) - Ef lNh*’ 8 Ai(t)uf(Yt”) dt, j E Dh u cj,. 
(87) 

where 

Ai(t) = 
hi(O) if lb(t) E Dh 
A,(l) if lb(t) E Ch 

(88) 
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Note that rh(i) = V&; 0’) if X E Dh, and Ih(X) 3 V,(,f; u”) if X E C,,. 
The probabilistic interpretation of equations (47), (48) and (51), given here by means of the 

Markov chain {Znh, n = 0, 1,2 , . . .} and equations (84) and (87), can be extended in the following 
case. 

Consider the system given by (1) where ai = ci(X) = 0, i = 1,. . . , m, x E R” (equations 
(60)). In this case equations (47)-(51) have a probabilistic interpretation by means of three 
Markov chains. These are {Z,,h, n = 0, 1,2,. . .}, described above the two additional Markov 
chains Ix,,%), n = 0, 1,2 , . . .}, i = 0, 1, described below. 

Let n(O), n(i) E Rzm be such that n(O), no’ & Doh U aDoh, define the values of Qoh and Q,” 
on T(O) and q”’ respectively by 

Q~($‘) = 0, i = 0, 1. (90) 

We define, for every f E Rh2m and each i E (0, 1) 

qh(.f, f + e’h) ‘Si,j(f) j=l ,...,2m .? E Doj, (91) 

j=1,...,2m i E Da/, (92) 

qF(fv qci’) 'qh'/Si(i), f E Doh (93) 

qF(Z,n) 90 if n$ {i4eih,j=1,...,2m} U {$‘}orR$?G DOh (94) 

Then equations (49HSl), for Qi = Q” i = 0, 1, can be written as 

Q:(i) = ff (q?(_f, _f + ejh)@(f + ejh) + qF(.f, 3 - ejh)QF(f - ejh)) 
j=l 

where 

+ q/‘(_f, ?fi’)@‘(+‘) + AK”(Z), f E DOh, i = 0,l (95) 

Qoh(R) = Q,“(Z) = 0 i E aDo,, (96) 

AKh(a) %h2/Si(a), i=O,l. (97) 

Again, for each i E (0, l}, the set of functions {qih(L n), f, n E Rh2m} can be regarded as a 
family of transition probabilities for a corresponding Markov chain {J?,+%), n = 0, 1,2,, . .} 
defined on the discrete state space Rzm. 

Define 

.uk(i)($ imin {n: *ii’(n) !z? Doh when J?;‘)(O) = a}, j = 0, 1’ (98) 

and assume that E,M,,W < Q) for all Z E DOh, i = 0,l. Then, as before, it can be shown that 

Q;(f) = E&f,,(')(i), i = 0, 1. (99) 

Hence in the case where Ui(*) = c;(m) = 0, i = 1,. . . , m (equations (60)) the control law 
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u” E U, given by equation (37), is represented by 
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ww 

i=l,...,m y E Rhm n 0, (100) 

where the operation SD, dx here represents an appropriate numerical integration operation. 
The results described in the next section are to be interpreted in the light of equations (87) 

and (98)-(99), where r”(a) and rh(7J are approximations to V(_f, 0; u”) and V(f, 1; u’)(eqns. 
(13)) respectively. 

6. EXAMPLE 

Consider the dynamical system given by 

with the observation 

dx=v(y)dt+a,dW,, t>O,x E R 

dy=zxdt+crzdWWz, t>O,y E R (102) 

where W = { W(t) = (W,(t), W,(t)), f 2 0) is an R2-valued standard Wiener process and 2 = 
{z(l), t > 0) is a homogeneous jump Markov process with state space S = (0, 1) as described in 
Section 1. We assume that W and 2 are mutually independent. Let U, Do, and D be as defined 
in Section 1 (but with m = 1) and let 

D,={f=(x,y): Ixjsp and ly(~l-cj 

where c is a given number, 1 B E > 0. 

(103) 

Assuming that there exists a control law v” E U such that V(R; v”) > V(_?; o) for all v E U 
and ff E D (and consequently J(v”) > J(v) for any v E U), and that all the conditions stated in 
Theorem 1 are satisfied, it follows from equations (39)-(44) and (101)-(102) that the following 
set of equations has to be solved: 

u(Y)aVo(f)/ax + 
0 
; (o,2a2vo(~)/axZ+ azZa*V&)/ayZ)- qV,(f) + qV,(Z) 

= JUO)v2(y) .fED 

v(y)aV,(a)/ax + xdV,(f)ldy + ; ((T,*a*v,(f)/dx2+ (T22a2v,(a)/ay*) 
0 

- 4vm-t qVo(~) = A(l)u2(y) .?ED 

- u(~)aQo(i)/8x + 
0 
; ((r,2~2Qo(~)/~x2 + crz2c?*Qo(x’)/ay2) - qQo(I) = - 1 

d E Do 

- dy)dQ,(a)/ax - xaQ,(f)/ay + 
0 
; (~~2a2Q,(a)lax2 + a;a2Q,(i)/ay2) 

- qQ,(a) = - 1 .i? E Do 

V,(Z) = V,(f) = 1 _f E DC ; V,(3) = V,(f) = Qo(f) = Ql(a) = 0 f E aDo 

V(Y) = ; _; InoQoG)aVo(n)/ax 
01 

+ ~IQI(~)JVI(~)/J~} dx/ [h(O)~oQo(f)+ A(~)TIQ~(Z)]ID(Z) dx. 

W) 

uw 

uw 

(107) 

(108) 

(10% 
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Note that in this example a(x) = ~*u,*(x)/~x* = 0, b(x) = &~,*(x)/dx = 0 and c(x) = 
af(x) = 0. 

Let (Voh, VI*, Qo”, Qlk, u*) be the solution to equations (47~(51) for a given set of 
parameters. Using the values of u* in (52 j(57), and solving equations (47)-(48) and (51), for the 
same set of parameters but with A;(O) = hi(l) = 0, i = 1,. . . , m, equations (47~(48) and (5 1) yield 
a solution (Pok, PI*) with following probabilistic interpretation: 

P:(B) = P,({l*(N*(Z)) E Dck U Tck and the control law uh is being applied}) (110) 

P,“(i) = P,,, ({[*(N”(v~) E Dck U Tck and the control law U* is being applied}). (111) 

Once the values of (P,,*, I’,*) have been computed, it is possible to compute the values of P” 

P” = ?r()P()k + 7r,P,k. (112) 

Using the finite difference scheme described in Section 4, equations (104)-(109) were solved 
and the values of (Vt, VI*, Q,,“, Q,“, u*, P,,“, PI*, P*) computed for the following set of 
parameters: I = 1, E = 10e4, p = 0.1, CT,* = 5 - 10e4, 5 * lo-” s u: < 0.5, go = al = 0.5,0.5 d A(0) C 
h(1) d 8, 0.5 d q s 16, e. = 10e4 (e. is the tolerance between two consecutive iterations, see the 
end of Section 4), and h = 0.05. 

Table 1. The values of .J& V/‘(i) df J&Q”(a) df, J&P/‘(i) di i = 0, 1, for various values of h, where: 
u2*=5*10-‘,A(O)=A(l)=landq=l 

0.1 .3164 .3084 .8806 .6997 .3238 .3144 

0.05 .3143 .3080 .9258 .7352 .3224 .3147 

0.025 .3133 .3083 .9463 .7527 ,321) .3149 

Table 2. The values of J& V/‘(i)dK JD, Q”(Z) di J&P!(f) df, i = 0, 1, for various values of h, where: 
~~2=5~10-4,h(0)=A(l)=8andq=l 

3.1 .1879 .I854 .8959 .6931 .1892 .1864 

3.05 .1780 .1757 .9401 .7277 .1792 .1767 

0.025 .I734 .1713 .9589 .7446 .I747 .1724 

-- 

Table 3. The values of Jao VF(l)d$ Jh Q”(i) dl ID, P”(2) d.f, i = 0,1 for various values of ~2, where: 
A(O)=A(l)=l,q=landh=0.05 

0; 1 V@dic 1 Vl;l(x)dic i Q;(;)di 

0 

1 Q;(:)di 1 P;(i)dj. 

0 

1 P;(i)di 

0 0 0 0 

5*10-10 .3156 .3091 .9299 .7359 .3237 .3157 

5.10-a .3156 .3091 .9299 .7359 .3237 .3157 

5.10-6 .3156 .3091 .9298 .7359 33237 .3157 

5*10-4 .3143 .3080 .925E .7352 .32?4 .3147 

5.10-2 .2298 .2289 .8062 .6823 .231C .2299 

5.10-l .1387 .1385 .5009 .4643 .1387 .1385 

/ 
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In order to assess the accuracy of the numerical method, the values of (Voh, Vlh, Qoh, Qlh, 
vh, Poh, Plh) were computed for h = 0, 1, 0.05, 0.025; the results are given in Tables 1 and 2. 

The results given in these tables, and other results as well suggest that Vih + Vi, i = 0, 1; 
PF-)P;, i=O, 1 as hJ.Owhere 

P(X) ‘Pj,i({[P”(7i(Y; VO)) E DC}), i =O, 1. (1 l3) 

The sensitivity of ( Voh, Vlh, Qoh, Qlh, Poh, Plh) to variations in the value of ~7~‘; the noise 
factor in the observation, demonstrated in Table 3. 

In Fig. 1 four samples of the control law vh = v”(y) are given. These are the cases where: (i) 
u2’ = 5 * 10W4, A(0) = 1, A(1) = 0.1, q = 1 and h = 0.05. (ii) uz2 = 5 * 10m4, A(0) = A(1) = 0.8, 
q = 1 and h =0.05. (iii) ut=5 * 10e4, A(O)= A(l)= 1, q = 1 and h =0.05. (iv) crt=5 - 10e4, 
A(O)=A(l)=l,q=8andh=0.05. 

Figures. 2(a) and 2(b) show JDO V/‘(f) d& JD,, P:(X) d& i = 0, 1, as functions of A = A(0) = 
A(1) for the cases where: u22 = 5 * 10T4, q = 1 and h = 0.05. The plots show that J4 V/‘(f) dZ 
and ID,, Pi”(Z) d$ i = 0, 1, decrease when A increases. Figure 3 shows JDO Ph(Y) df as a function 
of q for the case where: u22 = 5 * 10W4, A(0) = A(l) = 1 and h =0.05. The plot shows that 
_fD,, Ph(~) dff decreases when q increases. 

Figure 1 shows the typical form of the control law vh, and Figs. 2 and 3 shows the trend of 
all the results obtained here, which is that V/’ and PI, i = 0, 1, decrease when A = A(0) = A(1) or 
q increase. 

-.20 -.I5 -JO -06 
%Oo ’ 1 I 1 

-.I30 - 

-.60 - 

-.40 - 

-20 - 

.oo - 

0.60 - 

Fig. 1. The control law v h = t?(y) for four cases. (i) 0~=5~10-‘,A(0)=1,A(1)=0.1.q=1and 
h = 0.05; (ii) -A-A-A-A, 022 =5. IO-‘, A(0) = ,t(l)=0.8,4 = 1 and h =0.05; (iii) -o-o-o_O, CT**= 
5 IO-‘. A(O)= A(l) = 1. q = 1 and h =0.05. (iv) -X-X-X-X, u; = 5. IO-‘, A(O)= 1(l) = 1, q =g and 

h = 0.05. 
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From equations (13), (65~(66), (87) and (110~( 11 l), it follows that 

(115) 

For the example solved here, the results given in Tables l-3 and in Figs. 2(a) and 2(b), and 
other results as well, indicate that the numbers &“, i = 0, 1, where 

Ki” : (P;(f) - V;(f)) dZ = 2 ,+(z(t))v;( Y’(t)) dt) dff i=O,l 
j=l 

(116) 

are very small in comparison with JD, V/‘(f) dj or JDo P/‘(Z) d?, i = 0, 1, respectively. 

0.60- 

0.55- 

0.50 - 

0.45- 

0.05 - 

000 I I I I I 
200 4.00 6.00 600 10.00 

) 
x 

Fig. 2(a). J& Voh(.f) df and Jti Po”(i)df as functions of A = A(O) = A(I), where (~2~ = 5 10m4, q = I and 
h = 0.05. 
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0.3c 

0.2! 
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0.55 - 

0.60 - 

0.45- 

0.40 - 

0.35 - 

)-\ 

5- 

I- 

5- 

)- 

5- 

>- 

0.60 - 

t I I I I L 

2.00 4.00 6.00 6.00 10.00 
x 

Fig. 2(b). J& Vlh(i) df and J&P,*(a) df as functions of A = A(O) = A(l), where uz2 = 5. lo-‘, q = 1 and 
!I = 0.05. 
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Finally, the values of J& Q/‘(Z) dR = .I&, E,M,“‘(f) df i = 0, 1, as functions of 9, in the case 
where uz2 = 5 - 10W4, h(0) = A(1) = 1 and h = 0.05, have been plotted in Fig. 4. Again, these 
values decrease when 9 increases. 
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Proof of Lemma 1 

APPENDIX 

Let u E U and assume that (V,, V,) E 9 satisfy equations (19x20). Then equation (16) yields 

vi(a) = Ei.iVzc+: .)r(G(ri(a; u))) 
rio;“) In 

- E5.i 
I 2 

A,(r(t))uf(Y”(t))dt, i=O, 1. 
0 1-i 

Assume next that (V,, V,) also satisfy equations (21). Then 

(117) 

which completes the proof of Lemma 1. 


