
JOURNAL OF COMBINATORIAL THEORY, Series A 48, 174-188 (1988) 

On the Impossibility of Packing Space with 
Different Cubes 

ROBERT J. MAcG. DAWSON* 

Corpus Christi College, Cambridge, 
CB2 lRH, United Kingdom 

Communicated by Peter Cameron 

Received January 15, 1984 

It is impossible to pack 3-space with cubes in such a way that no two neigh- 
bouring cubes are the same size and that no ball contains infinitely many of the 
cubes. :i? 1988 Academic Press, Inc 

INTRODUCTION 

In 1964, Daykin [3] asked, “Can space be filled by disjoint integer 
cubes, no two cubes being the same size, and the lengths of the cubes being 
integers?” The two-dimensional version of this problem is easily solved by 
packing in a spiral around a “perfect squared rectangle.” This might 
suggest that the problem could hang on the number-theoretic properties of 
the integers, as a certain amount of what could be described as number 
theory is involved in the theory of squared rectangles. (See, for instance, 
Dehn [4], or Brooks, Smith, Stone, and Tutte [l].) 

However, a negative answer to Daykin’s question may be obtained [2] 
without using any property of the integers except that any strictly 
decreasing sequence of positive integers must be finite. This suggests that 
we may be able to get rid of the edge-length condition entirely, and still 
obtain a negative answer. In this paper, we will see that this is correct, 
although we must introduce the condition of “local finiteness” to prevent 
the trivial (and inelegant!) construction of a packing by a “greedy 
algorithm” in which we just put cubes into any gap that shows. 

As in [2], the method used will be based upon that used in [l] to prove 
the impossibility of packing a cube with different integer cubes. As a first 
step, we will prove, rather surprisingly, that there is essentially only one 
way to cover a unit cube with cubes of different sizes none of whose edges 
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PACKING SPACE WITH DIFFERENT CUBES 175 

are less than or equal to 4 and that, in this covering, all the neighbours are 
larger than the central cube. We will then continue and find, in a 
hypothetical packing of space with different cubes, a sequence of cubes 
whose centers converge-an obvious contradiction of local finiteness. 

While in outline this paper resembles [2], the construction must 
necessarily be more complicated, as we want to achieve a significantly 
faster decrease in the size of the cubes in the sequence constructed. This 
means a great increase in the number of cubes and parts of cubes involved. 
Therefore, while in [2] I remarked that an arithmetization of this sort of 
problem was “impractical and unclear,” I have here been forced to 
arithmetize! 

1. DEFINITIONS 

By a cube, we will mean a set A of points in R3 of the form 

A= ((x,Y,z): A,<x<A,, A,<y<A,, A,dz<A,,), 

where (A,- Ad)=(A,-A,)= (Ab-Ar)=l(A)>O. A,, A,, A,, A,, A,, 
and A, are thus the coordinates defining the planes containing the upper, 
downmost, right, left, back, and front faces, respectively, of the cube A; 
l(A) is the edge length of A. We shall also use these subscripted letters to 
refer to the faces themselves; in this usage, they will not be boldface. 
Squares in R* will be defined analogously, using only the tirst four sub- 
scripts. 

Two cubes (resp. squares) will be said to be neighbours if their faces 
(edges) have an intersection of nonzero area (length); and weak neighbours 
if they intersect. A collection of cubes is a packing of space if their union is 
all of R3 and any two cubes in the collection intersect at most in their 
boundaries. 

Given a cube A in a collection %?, the set of elements of V that are 
neighbours of A is called its star, written St(A). A collection will be called 
locally fir&e if every ball in R3 intersects at most finitely many members of 
the collection. If no two neighbouring cubes in a collection have the same 
edge length, we wiil call the collection Zocaily heterogeneous. A cube whose 
boundary is contained in the union of the boundaries of its neighbours will 
be said to be covered. 

Any cube in a locally finite collection has a neighbour of minimal size; 
for each cube A in the collection, select a cube A’ E St(A) such that 

I@‘) = xyjt& l(X). 

(Note that this may not be uniquely defined.) 
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If a cube is covered and smaller than all of its neighbours, we say that it 
is the core of a singular star. If a cube A is covered and satisfies 

l(A) < 2 l(A’), 

we say that A is the core of a semisingular star. 
Edges and vertices of cubes (and vertices of squares) are intersections of 

faces (resp. edges). We may write them as follows: 

AinA,=Av, 

A,nA,nA,=Avk. 

Thus, e.g., A,f will be the left front edge of cube A. Note that not all 
combinations are meaningful; a cube has no vertex ArIb! 

If a cube A is covered, there is, for every pair (Aj, Alik) exactly one cube 
that has an intersection of nonzero area with A i and contains A,. We shall 
call this cube N(AiC,kj). 

A neighbour B of a cube (square) A will be said to overhang the edge 
(resp. vertex) A, if the interior of some face (edge) of B intersects A,. 

Given any cube A, c(A) is the center 
A,+A, A,+A, A,+Ar 
2, -, ____ 

2 2 

2. CONFIGURATIONS OF SEMISINGULAR STARS 

In this section, we will demonstrate that there is essentially only one 
semisingular star configuration. This configuration is in fact singular; its 
uniqueness as a singular star configuration is very easy to see and has the 
status of folklore. It is rather less obvious that the relaxation of conditions 
to semisingularity does not in fact allow any new (locally heterogeneous) 
configurations. 

2.1. LEMMA. If a square A in a locally heterogeneous collection is the 
core of a semisingular star, the neighbour(s) on any edge of A extend beyond 
exactly one end of that edge. 

Proof. The neighbour(s) on one edge of A cannot be flush with both 
adjacent edges, for if there were one neighbour, it would be the same size as 
A (Fig. la), whereas if there were two or more, one of them would have an 
edge length less than + l(A) (Fig. lb). 

Furthermore, at most one neighbour can extend beyond A at any vertex, 
or an overlap (Fig. lc) would result. So, by the pigeonhole principle, the 
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b 
a 

FIGURE 1 

neighbours on any one side of A extend beyond exactly one adjacent 
edge. 1 

2.1.1. COROLLARY. Let X,, Xj be adjacent faces of the core X of a 
semisingular star in a locally heterogeneous collection of cubes; for precisely 
one of the two X, adjacent to both Xi and Xi, 

Proof Consider a plane cutting X parallel and very close to Xi, 
containing no face of a neighbour of X. Its intersections with the various 
cubes of the collection form a locally heterogeneous collection of squares; 
applying the lemma, we get the desired result (Fig. 2). 1 

2.2. THEOREM. In a locally heterogeneous collection of cubes, let X be the 
core of a semisingular star. Then X is the core of a singular star; and the 
configuration of St(X) is, up to rotation, reflection, and variation in the sizes 
of the cubes, shown in Fig. 3. 

Proof We first show that the set of neighbours on any face of X must 
contain a cube with two adjacent faces flush with the corresponding faces 
of X; then we show that this cube must be larger than X. The configuration 
for the entire star follows. 

Consider any face of X, without loss of generality X,. We show that 
some N(X,,,,) must overhang neither X, nor X, (and hence have 

582a/48/2-3 
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FIGURE 2 

FIGURE 3 
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FIGURE 4 

corresponding faces flush with both X, and X,). For suppose this not to be 
the case; by Corollary 2.1.1 and the pigeonhole principle, each N(Xrcq,) 
must overhang exactly one of X,, X,. Let B be the largest N(X,,,), and X, 
the edge that it overhangs; without loss of generality, we will assume these 
to be N(X,,,,,) and XUf, so B,=X,, B, > X,. Let C be N(X,,,,); by 
Corollary 2.1.1, C, = X,. Then, by our hypothesis; C, <X, = B,. But 

c, = c, + l(C) 
<B, + l(B) 

=B, 

(from the definition of a cube) 

(Fig. 4a). 

Now consider the cube D that touches B,, C,, and X,. Applying 
Lemma 2.1 to the cross section ZZ in Fig. 4b, we see that D,=X,, and 
thus that 

l(D) = B, -X, 

= l(C), 

contradicting our assumption of local heterogeneity. 
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FIGURE 5 

Therefore there must exist a cube A touching X,, with two adjacent faces 
(without loss of generality A, and A,) flush with the corresponding faces of 
X. We will show that l(A) > l(X); for suppose this not to be the case. Either 

or 

N4,,,,)), = 41, 

because if they both overhung A,, they would intersect (Fig. 5). Assume the 
former (the two cases are equivalent by symmetry). Either N(A,(,,,) is 
larger than A, or it is smaller. In the first case, 

NA~J)I = N&w,J)r -UN&d 
<AI-l(A) 

= A, 

=X1, 

and hence N(A,(,,,) = N(X,,,,,) (Fig. 6a). In the second case, 

UWtmJh > XI> 

and so N(A,(,,,) and N(XfCd,)) are different cubes (Fig. 6b). Then 

a 

FIGURE 6 
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W(Xw,,)h = A, - WWb~,~J) - l(NX,,,,)) 
<A,-41(X)-41(X) (semisingularity) 

<AI-l(A) (hypothesis, l(A) <l(X)) 

=A,. 

In either case, (N(X,,,,,)), < X,; and so, by Corollary 2.1.1, 
(N(X,,,,,)), = X,. But this requires that 

UN&,d,,)) + l(A) G l(X)> 

impossible under our assumption of semisingularity and local 
heterogeneity. Thus we conclude that l(A) > l(X). 

This argument applies to each face of X; so X must meet each of its 
neighbours as shown in Fig. 3a. Let one neighbour be positioned as shown; 
then either the neighbour on X, or the neighbour on X, must overhang 
Xrb, and each succeeding stage of the construction is “forced” at points 
where seven octants have already been filled. 1 

2.2.1. COROLLARY. If X is a covered element of a locally heterogeneous 
collection of cubes, and St(X) does not have the singular star configuration 
shown in Fig. 3, then 1(X’) < + l(X). 

Note. While it is not necessary to do so for the purpose of this paper, 
we can in fact make the inequality in the corollary above strict; however, 
we cannot reduce the constant. In fact, for any E>O, we can cover a unit 
cube with cubes of edge length greater than (f-E) in a locally 
heterogeneous manner. 

3. CONFIGURATIONS NEAR A SINGULAR STAR 

In this section, we will examine the possible conligurations of some of 
the cubes near a singular star and prove the existence of a cube with 
certain useful properties. 

3.1. THEOREM. Let A be the smallest neighbour of the core X of a 
singular star in a locally heterogeneous collection of cubes; then there exists a 
cube Y(A) in the collection with the following properties: 

(a) Y(A) is a weak neighbour of A 

(b) l(W))<il(A) 
(c) Y(A) is not the core of a singular star. 

Proof. Assume, without loss of generality, that the star is oriented 
as in Fig. 3, with A the smallest neighbour of X; and let G = N(ArCdbj), 
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H = N(Arcdfj). Then Gb = C,= A,; H, d A,. One of the following must hold: 

(i) GZH, l(G)+l(H)<l(A) 

= l(H)<$l(A) or l(G)<il(A) (Fig. 7a). 

(ii) G #H, l(G) + l(H) > l(A) 

* H,dG,-l(G)-l(H) 

< G,, - l(A) 

=A,-l(A)=A, (Fig. 7b). 

(iii) G=H 

=a H, = A,, H,< A,; by local heterogeneity, Hf < A, (Fig. 7~). 

In case (i), one of the cubes {G, H} must have properties (a) and (b); 
fact, it must also have property (c). For H, this is easily seen; in order 
meet A in the fashion shown in Fig. 3, it must have H,= A,; but then, 

a 

in 
to 
as 

FIGURE 7 
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FIGURE 8 

l(D) >l(A), D,<H,, and D, must extend before and behind H, in a way 
not compatible with the singular star configuration (Fig. 7a). 

In the case of G, the argument is a little less direct. The singular star 
configuration requires G, = C,, G, = C,; but then (Fig. 3): 

A, = C,, A, = G, G,=C, 

l(A) + l(G) = l(C). 
But also (Fig. 8) 

x, = Cd, X,=A,=D,=G,, G,=C, 

=a l(G) + l(X) = l(C) 
=a 1(X) = w  h 

which contradicts our assumption of local heterogeneity. Thus, G must also 
have property (c). 

In cases (ii) and (iii), H, extends forward beyond A,. Letting I= 
NAf,dr,), J= NAf(d,,)> we repeat the previous argument to show that either 
one of {I, .Z} satisfies (a) and (b), or J,, extends to the left beyond A,. If 
one of (I, J} does satisfy (a) and (b), it also satisfies (c) by the same 
argument as that used for H. 

If J, extends to the left beyond A, (Fig. 9), then let K=N(A,,,,,), L be 
the cube that touches E,, B,, and A,, and M=N(K,,,,,). One of the 
following must hold: 

(i) K#L (Fig. 9), 
=a l(K) + l(L) d B,- Jb 

= (Ab -l(X)) - A, 

= l(A) - l(X) 

< l(A). 
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FIGURE 9 FIGURE 9 

Hence K or L satisfies (a) and (b). E, extends in front of and behind K, A 
extends in front of and behind L, so both K and L must satisfy (c). 

(ii) K= L, M#J, l(M) -t l(J) d l(A) (Fig. lOa), 

=> l(M) d IV I- l(J) 

<$1(A). 

A4 satisfies (a) (although, as shown, it may be a weak neighbour of A) and 

FIGURE IO 
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(b); it also satisfies (c), as A, and Kr together extend to the left and right 
of M. 

(iii) K= L, M#J, l(M) + l(J) >l(A) (Fig. lob), 

=a M, = M, + I(M) 

= J, + l(J) + l(M) 

>A,+l(A) 

=A,. 
Hence M, extends above K,. 

(iv) K= L, M= J (Fig. 10~). 

This case requires that l(M) 3 l(K); local heterogeneity strengthens this 
to l(M) > l(K). Therefore, M, extends above K,,. In the first two cases, we 
have found a cube that satisfies the three conditions; in the second two, M, 
extends above K,. Furthermore, 

B, = B, + l(B) 

>B,+l(A) 

= B, + l(X) + l(K) 

= X, + l(X) + l(K) 

= X, + l(K) 

=K,+l(K)=K, (Fig. 11). 

Therefore, let P = N(K,,,,) and Q = N(K,,,,,); local heterogeneity forces 
these to be different cubes (Fig. 12). But 

l(P)+l(Q)=l(K)<l(A); 

so either P or Q must satisfy conditions (a) and (b). 

FIGURE 11 
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FIGURE 12 

A, extends behind and in front of Q; so Q satisfies condition (c). Suppose 
that P did not satisfy (c); then the singular star configuration would 
require that M, = P, = A,. But in case (iii), M, > A,, while in case (iv) 

M,=J, 

= Jd + l(J) 

= A, + l(J) 

#&+1(A) (by local heterogeneity) 

=A,. 

Therefore P satisfies (c), concluding the proof, as we can always find a cube 
Y(A) that satisfies all three conditions. 0 

4. NONEXISTENCE OF LOCALLY FINITE, LOCALLY 
HETEROGENEOUS PACKINGS OF SPACE WITH CUBES 

In this section, we show that any locally finite, locally heterogeneous 
collection of cubes fails to Ii11 space, and obtain a limit on the distance 
within which this failure will occur. (This limit is generally an improvement 
on the limit obtained in [ 11.) 

4.1. THEOREM. Let %? be a Locally heterogeneous collection of cubes such 
that each element of V is covered; then there exists a sequence of cubes 
{Zi} c V such that the sequence {c(Z,)} of their centers converges. 

Proof: Define Zj inductively as follows: 

(0) Z, is not the core of a singular star. 
(i) If Zl is not the core of a singular star, Zj+ i = Zi. 

(ii) If Zi is the core of a singular star, Zj+ 1 = Y((Zl)‘). 
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Under our hypotheses, we can always find such a sequence; Theorem 3.1 
and the inductive definition guarantee that no Zi is the core of a singular 
star. 

If Zi is not the core of a singular star, Corollary 2.2.1 proves that 
l(Zi+ 1) < + l(Z). If Zi is the core of a singular star, Theorem 3.1 proves the 
same inequality. 

If Zj is not the core of a singular star, 

d(c(Zi), c(Zi+ i)) < radius(Zj) + radius(Z,+ 1) 

b fi 
< y l(ZJ +--j- l(ZJ 

3$ = 4 l(Zi). 

If Zl is the core of a singular star, 

d(c(Z,), c(Z,+, )) < radius(ZJ + diam(Z;) + diam((Zi)‘) + radius(Zi+ i) 

d 3 d < 2 l(zj) + 2 l(Zi) + 3 l(zi) + 4 l(zj) 

93 = 4 l(ZJ. 

In either case, a bound on the distance between the centers of successive 
cubes is given by 

93 

93 1 i 
6- - 

0 4 2 
WI); 

the sequence is therefore convergent, with 

4c(-W lim c(ZJ) < 2 WI). I i-tee 

By closer inspection of the geometry, it is possible to improve this limit 
to the extent of reducing the constant; for the purposes of this paper, that 
obtained here is sufficient. 

4.2. THEOREM. There is no locally finite, locally heterogeneous packing of 
space with cubes. 
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Proof: If a collection of cubes fills space, every element must be 
covered. But if such a collection were to be locally heterogeneous, it would 
fail to be locally finite at the limit point of the sequence of centers described 
above. 1 

4.2.1. COROLLARY. Let A be a cube not the core of a singular star in a 
locally finite, locally heterogeneous collection of cubes. Then the distance 
from the center of A to the complement of the union of the collection is less 
than (9 ,,,6/2) l(A). 
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