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Abstract

We study the anapole moment of the lightest neutralino in the constrained Minimal Supersymmetric 
Standard Model (cMSSM). The electromagnetic anapole is the only allowed electromagnetic form factor 
for Majorana fermions, such as the neutralino. Since the neutralino is the LSP in many versions of the 
MSSM and therefore a candidate for dark matter, its characterization through its electromagnetic properties 
is important both for particle physics and for cosmology. We perform a scan in the parameter space of 
the cMSSM and find that the anapole moment is different from zero albeit very small (<10−3 GeV−2). 
Combined with experimental constraints like the Higgs mass and the DM relic density, the allowed region 
of parameter space lies within the reach of future direct DM searches. Thus, the anapole moment could be 
used as a complementary constraint when studying the parameter space of the cMSSM and other similar 
models.
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1. Introduction

One of the best motivated extensions of the Standard Model (SM) is the Minimal Supersym-
metric Standard Model (MSSM), since, besides giving a solution to the hierarchy problem, it 
provides us with a good candidate for cold dark matter (CDM), namely, the lightest neutralino.

A number of different experiments are working (or will be soon) in the search for a direct or an 
indirect signal of dark matter (DM) (for recent reviews on dark matter detection see [1,2]). If DM 
is detected, there will be a need to differentiate between the candidates, characterizing them as 
much as possible. In the last few years, there has been intense work on the electroweak properties 
of dark matter since they might be relevant for the calculation of DM decays and annihilations, 
[3–15], which have consequences in astrophysical processes [16,17] and are important in indirect 
astrophysical searches for DM, as in the calculation of the annihilation cross section of the DM 
itself.

Motivated by this, since 2009 we have been studying the toroidal dipole moment (TDM) of 
Majorana particles, which is related to the anapole moment, one of the least studied electro-
magnetic properties of a particle [18–21]. Lately, there has been a surge of interest in the study 
of anapole moments from the astrophysical as well as the particle physics points of view (e.g. 
[22–25]).

Since first discussed in 1957, the anapole moment, introduced by Zel’dovich [26], has been 
investigated in different fields of science and technology. The anapole moment corresponds to a 
T invariant interaction, which is C and P non-invariant [26]. Within the Standard Model it has 
been calculated in neutrino and hadron physics [27–30]. In nuclear physics it has been studied in 
atomic nuclei [31–33]. In relation to the DM problem, there are different proposals to observe this 
“physical observable”, extracting its value from direct measurements between DM and atomic 
nuclei [23,24,34,35]. Finally, in engineering various applications have been studied, in areas such 
as “Ferrite resonators” [36], electromagnetic properties in dielectric nanoparticles [37], and in the 
study of electromagnetic radiation in antennae with a helicoidal toroidal geometric distribution 
[38–42], among others.

Recently, Ho and Scherrer have proposed that dark matter interacts with ordinary matter ex-
clusively through the anapole moment [22]. They calculate the anapole moment needed to obtain 
the right amount of DM relic abundance, and the anapole DM signatures that could be observed 
in the LHC [43]. Haish and Kahlhoefer have shown the importance of loop contributions to the 
scattering cross section of dark matter, in particular those induced by the anapole interaction 
[44]. More recently, del Nobile et al. made a halo-independent analysis of direct DM detection 
data considering that it has only anapole and magnetic moment dipole interactions [24]. Also, an 
analysis on the loop corrections for leptophilic DM and internal bremsstrahlung was presented 
in [23], where the authors calculate the DM anapole and dipole moments in a toy model using 
direct detection data.

In this paper we calculate the anapole moment of the neutralino at the one-loop level within 
the constrained Minimal Supersymmetric Standard Model (cMSSM). In the MSSM the anapole 
contributions of the neutralino arise exclusively through radiative corrections to the vertex χχ̄γ . 
We do a scan in the five parameter space of the cMSSM and compare the results for the anapole 
moment with the above mentioned experimental limit. In our analysis we take into account also 
other experimental constraints, namely the Higgs boson mass and the decays b → sγ and B →
μ+μ− in order to find the viable regions of parameter space. We find that although the anapole 
moment is very small throughout the regions studied, it is possible to distinguish between the 
different regions of parameter space through it, which makes it indeed an important property 
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when characterising dark matter. Our results agree qualitatively with those found by Ho and 
Scherrer [22].

The article is organised as follows: in section 2 we present a very brief summary of some 
aspects of the constrained MSSM relevant to our calculation. In section 3 we review the general 
form for the electromagnetic vertex of a particle, and in particular for a Majorana particle. We 
introduce the anapole moment and its relation to the toroidal dipole moment. In section 4 we 
explain the methodology used to calculate the anapole moment of the neutralino in the cMSSM 
and evaluate it for different values of the parameters. Section 2 presents the obtained results and 
our conclusions.

2. The MSSM and the neutralino as candidate for dark matter

According to the latest results of WMAP, the CDM density is [45]

�DMh2 ∼ 0.1109 , (1)

where h is the Hubble constant in units of 100 km s−1 Mpc−1. The thermally averaged effective 
cross section times the relative speed of the dark matter particle, needed to get this relic density 
is [46–48]

< σv >∝ g4
weak/16π2m2

x (2)

consistent with the assumption of a weakly interacting dark matter particle (WIMP) with a mass 
between 10 GeV and (few) TeV.

The minimal supersymmetric extension of the Standard Model (MSSM) provides us with one 
of the best WIMP candidates for dark matter: the lightest neutralino (for reviews on SUSY see 
for instance [49,50]). The MSSM requires two complex Higgs electroweak doublets to give mass 
to the up and down type quarks in order to avoid chiral anomalies. The MSSM has also a new 
discrete symmetry, R parity, defined as R = (−1)3B+2S+L, where B and L are the baryonic and 
leptonic numbers respectively. This symmetry assigns a charge +1 to the SM particles and −1
to the supersymmetric partners, making the lightest supersymmetric particle (LSP) stable.

However, supersymmetry has to be broken or it would have already been observed. To break 
it explicitly without the reappearance of quadratic divergences, a set of super-renormalizable 
terms are added to the Lagrangian, the so-called soft breaking terms. The Lagrangian for the soft 
breaking terms is given by

Lsoft = −1

2
Maλ

aλa − 1

6
Aijkφi	jφk − 1

2
Bijφiφj + c.c. − (m2)ij φ

j∗φi , (3)

where Ma are the gaugino masses, Aijk and Bij are trilinear and bilinear couplings respectively, 
and (m2)ij are scalar squared-mass terms. It is assumed that supersymmetry breaking happens in a 
hidden sector, which communicates to the observable one only through gravitational interactions, 
and that the gauge interactions unify. This means that at the GUT scale the soft breaking terms 
are “universal”, i.e., the gauginos Ma have a common mass, as well as the scalars (m2)ij and 

the trilinear couplings, Aijk . Requiring electroweak symmetry breaking fixes the value of Bij

and the absolute value of the Higgsino mixing parameter |μ|. This is known as the constrained 
MSSM (cMSSM) which is described by five parameters: the unified gaugino mass m1/2, the 
universal scalar mass m0, the value of the universal trilinear coupling A0, the sign of Higgsino 
mass parameter μ, and the ratio of the vacuum expectation values of the two Higgses, tanβ .
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After the electroweak symmetry breaking the neutral and charged states in the MSSM can 
mix. In the case of the neutral ones they give rise to a set of four mass eigenstates, the neutrali-
nos. It is the lightest one of these that is the LSP and a good candidate to dark matter in many 
SUSY models. The lightest neutralino, in the gauge eigenstate basis, is a function of the neutral 
higgsinos and the neutral gauginos (wino and bino) and its properties will depend on the mixing, 
which in turn depends on the soft breaking parameters.

Before WMAP, the cMSSM was compatible with the limit �DM,0h
2 ∼ 0.1–0.3 and other 

direct and indirect low energy and collider data in a huge parameter space region called the 
“bulk”. However, after the constraint by WMAP to �DM,0h

2, and with the recent limits to the 
sparticles masses from the LHC, which excludes light masses, the bulk region in m0 −m1/2 is no 
longer viable. Moreover, in the cMSSM the LSP neutralino is, practically for all cases, an almost 
pure bino state which annihilates itself more efficiently into leptons through right hand sleptons 
due to their higher hypercharge. However, with the newest data from WMAP, this mechanism is 
not sufficiently efficient. There are still three favoured scenarios that require some very specific 
accidental relations between some parameters at the electroweak scale.

In the cMSSM at low m0, there is a region with almost degenerate τ̃ − χ̃0
1 . In this case the pop-

ulations of these two particles are almost the same, making the NLSP τ̃ thermally accessible. The 
mass difference between the scalar tau and the lightest neutralino, �M = mτ̃ −mχ̃0

1
, controls the 

population ratio of these two species through the Boltzmann factor exp(−�M/Tf ). Therefore, it 
is a very sensitive parameter which enters into the calculation of the relic density. Whenever the 
coannihilation takes place, through the participation of τ̃ in processes like τ̃1χ̃

0
1 −→ τγ or even 

τ̃1τ̃1 −→ τ τ̃ , the relic density can be reduced in comparison to the case of the bulk scenario. In 
this region, the LSP neutralino is mainly bino with a mass essentially established by M1 up to 
corrections of order M2

Z/μ (μ is high). The approximate formulae for the mass of the neutralino 
and the mass of τ̃1 suggest that degeneration happens for m0 ∼ 0.145 m1/2.

A sudden increase in the usual mechanism of coannihilation to reduce the relic density can oc-
cur if mχ̃0

1
is close to a pole. Faster and more efficient annihilation can take place through Higgs 

resonance. Given the Majorana nature of the neutralino, the resonant enhancement is obtained 
only via the pseudo-scalar Higgs boson. The colliders constrains to the LSP in the cMSSM allow 
the heavy “Higgs funnel”, where χ̃0

1 χ̃0
1 −→ A −→ bb̄/τ τ̄ , which happens for high tanβ . There-

fore, the quantities that establish this scenario are the quantity 2mχ̃0
1
− mA and the amplitude of 

the pseudo-scalar, since they define the resonance profile of A.
In most of the cMSSM, μ is very high. However, you can exceptionally have that 

μ ∼ M1, which allows much more efficient coannihilation through reactions as χ̃0
1 χ̃0

1 −→
WW/ZZ/Zh/t t̄ . This happens in the so-called focus point region where m0 is very high. The 
focus point region corresponds to high values of m0 close to the border of viable electroweak 
symmetry breaking, where the value of μ decreases rapidly. When μ ∼ M1, M2, the LSP has a 
significant fraction of higgsino, and the next lightest sparticles (χ̃0

2 o χ̃±
1 ) have also a significant 

component of higgsino and are not much heavier than the LSP. Thus, the coannihilation chan-
nels are favoured. However, coannihilation cannot be very efficient, otherwise the relic density 
would be less than what is actually measured. In this scenario, all the sfermions are very heavy 
(more than 4 TeV) to be accessible to one of the proposed colliders. The LSP mass goes from 
close to 150 to 350 GeV, with higgsino-type neutralinos being 100 to 50 GeV heavier. From the 
perspective of a linear collider, an energy of more than 800 GeV is needed to reveal some of 
the properties of this scenario. The pseudo-scalar has a mass higher than 1 TeV and very likely 
would not be found directly in the LHC.
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There have been several scans of the cMSSM and other MSSM type models using different 
criteria to check its viability. Many of these are either Bayesian (e.g. [51–55]) or frequentist (e.g. 
[56–58]), or both ([59,60]), but there are also many studies using other techniques or constraints 
to perform the analysis (e.g. [61–65]). In the cMSSM it is assumed that DM is composed by only 
one type of particles, the LSP, which is usually assumed to be the neutralino. Most of the studies 
then look for regions of likelihood with different boundary conditions at the GUT scale, i.e. 
values for m0, m1/2, tanβ, μ and A0, and phenomenological constraints at low energies, which 
usually include a combination of the following: the branching ratios b → sγ , B → μ+μ−, the 
dark matter relic density, the requirement of radiative electroweak symmetry breaking, the Higgs 
mass, and a solution to the g−2 problem (although not all of these constraints may be considered 
together in every analysis), and constraints coming from direct and indirect searches for dark 
matter. From these various scans it is clear that the cMSSM is highly challenged, although there 
are still regions of parameter space allowed, depending on which low energy constraints are 
used. In general, to satisfy most of the above constraints, a heavy supersymmetric spectrum is 
expected, with A0 �= 0 and large tanβ (for a recent overview on constraints on the cMSSM and 
other SUSY models see for instance [56,58,66,67]).

3. Anapole moment

For 1/2-spin particles the most general expression for the electromagnetic vertex function, 
which characterizes the interaction between the particle and the electromagnetic field, is:

μ(q) = fQ(q2)γμ + fμ(q2)iσμνq
νγ5 − fE(q2)σμνq

ν + fA(q2)(q2γμ − /qqμ)γ5, (4)

where fQ(q2), fμ(q2), fE(q2) and fA(q2) are the so-called charge, magnetic dipole, electric 
dipole and anapole form factors, respectively; here qμ = p′

μ −pμ is the transferred 4-momentum 
and σμν = (i/2) 

[
γμ, γν

]
[29,68]. These form factors are physical observables when q2 → 0, 

and their combinations define the well known electric charge (Q), magnetic dipole (μ), electric 
dipole (d) and anapole (a) moments.

However, the electromagnetic properties of the neutralino (which is a Majorana particle) are 
described by a unique form factor, the anapole, fA(q2). This is a consequence of CPT-invariance 
and the C, P, T properties of μ(q2) and the interaction Hamiltonian. Thus, the electromagnetic 
vertex function of the neutralino can be written just as

μ(q2) = fA(q2)(q2γμ − /qqμ)γ5. (5)

The anapole moment was introduced by Zel’dovich to describe a T-invariant interaction that 
does not conserve P and C parity [26]. In contrast to the electric and magnetic dipole moments, 
the anapole moment interacts only with external electromagnetic currents Jμ = ∂νFμν . In the 
non-relativistic limit, the interaction energy with an external electromagnetic field takes the form

Hint ∝ −μ(σ · B) − d (σ · E) − a (σ · � × B) , (6)

where B and E are the strength of the magnetic and electric fields, and 	σ are the Pauli spin 
matrices.

The anapole moment does not have a simple classical analogue, since fA(q2) does not cor-
respond to a multipolar distribution. A more convenient quantity to describe this interaction 
was proposed by V.M. Dubovik and A.A. Cheshkov [27]: the toroidal dipole moment (TDM), 
T (q2). For a comprehensive review on complete electromagnetic multipole expansions, includ-
ing toroidal ones, see [69]. The TDM and the anapole moment coincide in the case of mi = mf , 
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Fig. 1. Current configuration with a toroidal dipole moment. The arrows on the torus indicate the direction of the current, 
and the TDM is directed towards the axis of symmetry of the torus.

i.e. the incoming and outgoing particle are the same. This type of static multipole moments does 
not produce any external fields in vacuum but generate a free-field (gauge invariant) potential 
[29], which is responsible for topological effects like the Aharonov–Bohm one.

The simplest TDM model (anapole) was given by Zel’dovich as a conventional solenoid rolled 
up in a torus and with only one poloidal current, see Fig. 1. For such stationary solenoid, without 
azimuthal components for the current or the electric field, there is only one magnetic azimuthal 
field different from zero inside the torus.

As mentioned in the introduction, the anapole moment is a very useful quantity in nuclear 
physics, where it has been widely studied, as well as in astrophysics and engineering. In particle 
physics it is important in DM detection, since the DM candidates can have couplings to nuclear 
spins. There are also limits to detection of anapole dark matter in the LHC [43], which exclude 
it for masses � 100 GeV.

To measure the anapole moment of DM, direct detection is needed, where the resulting cross 
section from the scattering of the DM particle with a nucleus is measured, and from there the 
anapole moment or bounds to its value can be extracted. The first such upper bound was cal-
culated in Ref. [70], using data from the DAMA/LIBRA Collaboration [71] and from the Ge 
detector of the CDMS Collaboration [72]

∼ 4 × 10−2 fm (7)

for a WIMP mass of 100 GeV (3 for the Ge detector and 4 for the NaI one).
There are currently several experiments exploring direct DM detection (for a recent review on 

indirect and direct DM searches see [73]). The best exclusion bounds for DM at present come 
from XENON100 [74] and LUX [75]. Although the anapole moment is a very small quantity, it 
is expected that the improvement in the sensitivity of future direct DM detection experiments will 
allow to put more stringent bounds on its value. In this respect, knowing precisely the neutron 
and proton spin contents of relevant nuclei is important for the correct interpretation of the data 
(see for instance [33–35], and references therein). It is expected that both XENON1T [76] and 
LUX-ZEPLIN (LZ)[77] will improve by ∼ 100 times their measurement of the WIMP-nucleon 
cross section. In the case of XENON1T the sensitivity is expected to be 2 × 10−47 cm2 at a 
WIMP mass of 40∼50 GeV [76,78], whereas LZ has a projected sensitivity of 10−48 cm2 for its 
full 1000 day exposure [77,79].
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Fig. 2. One-loop vertex corrections to the process γ −→ χ0
1 χ0

1 .

4. One-loop calculation

A neutralino is a Majorana particle, and it is necessarily electrically neutral. This fact does 
not allow for a tree level electromagnetic coupling. Therefore the electromagnetic properties of 
the Majorana particle–the anapole–arise only via loop contributions. The anapole moment of 
the neutralino may be defined in the one-loop approximation in the MSSM by the Feynman 
diagrams shown in Figs. 2 and 3, where f represents the charged fermions of the SM. Taking 
each fermionic family separately we obtain 96 Feynman diagrams in total, corresponding to 
self-energies and vertex corrections.

We use FeynCalc [80] to calculate the amplitude of these diagrams. Since we are only in-
terested in the terms that contribute to the anapole form factor, we isolate the ones that have the 
Lorentz structure γμγ5. One of the first results we obtain is that the self-energies γH 0, γ h0, γA0
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Fig. 3. One-loop corrections to the self-energy for the process γ −→ χ0
1 χ0

1 .

and γG0 do not contribute to the calculation at all. If we call �i the coefficient that multiplies 
γμγ5 for the ith diagram, then we have that∑

i

�i = fA(q2)q2. (8)

To obtain the anapole moment a = fA(0) we use the l’Hopital rule and get

a = fA(0) = lim
q2→0

∑
i �i

q2
= ∂

∑
i �i

∂q2
|q2→0 . (9)

Two- and three-point Passarino–Veltman scalar functions arise in the calculation of each diagram. 
The two-point PV scalar function is defined as

B0(q
2;m2

1,m
2
2) ≡ (2πμ)4−D

iπ2

∫
dDk

[k2 − m2][(k + q)2 − m2] , (10)

1 2
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Fig. 4. Two of the four dominant Feynman diagrams for the calculation of the anapole moment of the neutralino. The 
other two are equal but with internal arrows directed counterclockwise.

and the three point PV scalar function is defined as

C0(A,B,C;m2
1,m

2
2,m

2
3) ≡

(2πμ)4−D

iπ2

∫
dDk

[k2 − m2
1][(k + p1)2 − m2

2][(k + p2)2 − m2
3]

,
(11)

where A = p2
1, B = (p1 − p2)

2 and C = p2
2. The self-energies contain two point Passarino–

Veltman scalar functions of the type B0
(
q2, x2, x2

)
and B0

(
0, x2, x2

)
. Likewise, the con-

tributions to the vertex corrections have two and three point scalar functions of the type 

B0
(
q2, x2, x2

)
, B0

(
m2

χ̃0
1
, y2, x2

)
and C0

(
q2,m2

χ̃0
1
,m2

χ̃0
1
, x2, x2, y2

)
. In both cases x and y

represent the masses of the particles in the loop.
When evaluating (5), derivatives of the Passarino–Veltman functions appear. To evaluate the 

B0s, as well as their derivatives, we use Loop Tools [81]. To evaluate the C0s and their derivatives 
we expand them in a power series around q2 = 0. In this way it is possible to find an analytic ap-
proximation which coincides with the full expression in the limit q2 = 0, simplifying enormously 
the calculation (see appendix).

In all regions of parameter space (except for m1/2 � m0, which is ruled out by cosmological 
constrains since the LSP is charged) it was observed that the four triangle diagrams involving τ̃
in the loop are almost completely dominant. (Fig. 4 shows two of these diagrams. The other two 
are equal, but with the flow arrows going counterclockwise due to the Majorana nature of the 
neutralino.) The approximate analytical expressions for the contributions of these diagrams are

�1 ≈ −k

q2 − 4m2
χ̃0

1

{
(q2 − 2m2

τ̃ + 2m2
χ̃0

1
)B0(q

2,m2
τ ,m

2
τ )

+ 2(3m2
χ̃0

1
− m2

τ̃ )B0(m
2
χ̃0

1
,m2

τ ,m
2
τ̃ )

+ 2
[
(m2

χ̃0
1

− m2
τ̃ )

2 − q2m2
χ̃0

1

]
C0(q

2,m2
χ̃0

1
,m2

χ̃0
1
,m2

τ ,m
2
τ ,m

2
τ̃ )

− (q2 − 4m2
χ̃0

1
)
}

(12)

and

�2 ≈ k

q2 − 4m2
χ̃0

1

{
(q2 − 2m2

τ̃ − 2m2
χ̃0

1
)B0(q

2,m2
τ̃ ,m

2
τ̃ ) + 2(m2

χ̃0
1

− m2
τ̃ )B0(m

2
χ̃0

1
,m2

τ ,m
2
τ̃ )

− 2(m2
χ̃0

1
− m2

τ̃ )
2C0(q

2,m2
χ̃0

1
,m2

χ̃0
1
,m2

τ̃ ,m
2
τ̃ ,m

2
τ ) + (q2 − 4m2

χ̃0
1
)
}

,

(13)
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Fig. 5. Dependence of the anapole moment (per nuclear magneton) with the mτ̃ /m
χ̃0

1
(red) and m0/m1/2 (blue) ratios, 

for tanβ = 50. We show only the values where the LSP is the lightest neutralino, and not the stau. The dependence for 
tanβ = 10 is similar. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

where k is given by

k =
e3

[
Z1,1(Z2,1 + Z1,2) cos θW sin θW + Z2,1Z1,2 cos2 θW − 3Z2

1,1 sin2 θW

]
(cos2 θτ̃ − sin2 θτ̃ )

128π2 cos2 θW sin2 θW (q2 − 4m2
χ̃0

1
)

.

(14)

These expressions depend on the masses of the particles involved; Zi,j , the elements of the 
neutralino mixing matrix; θτ̃ , the τ̃ mixing angle; as well as the electroweak angle θW .

We evaluate the anapole moment within the cMSSM using Suspect [82], by fixing the value of 
A0, tanβ and signμ, and scanning over the other two parameters, m0 and m1/2. We then vary A0, 
tanβ , and signμ, and repeat the procedure. These values we then input into our own code to cal-
culate the anapole moment. This code includes all diagrams contributing to the anapole moment, 
evaluated using the approximation given in the appendix for the Passarino–Veltman C0 functions 
in the limit q2 → 0. The expressions for each diagram are not shown explicitly in this paper.

We have not considered in our analysis the region where m
χ̃0

1
and mτ̃ are degenerate or quasi-

degenerate, since this corresponds to a pole in the anapole moment function. Other methods than 
the one we used here should be employed to analyse this region. Despite the fact that signμ > 0
may solve the problem of the discrepancy between the measured value of g − 2 of the muon 
and the one predicted by the SM, this does not mean negative signμ is ruled out since this prob-
lem might be solved through other mechanisms, therefore signμ < 0 should be also taken into 
consideration.

Although the full expression for the anapole moment is a complicated function of the various 
parameters, it depends mainly on the relative values of m

χ̃0
1

and mτ̃ , which in turn depend on the 

ratio of m0/m1/2, as can be seen in Fig. 5. No dependence on A0 or signμ was found, however, 
the anapole moment does depend slightly on tanβ as can be seen in Fig. 6.
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Fig. 6. Anapole moment as a function of m0 and m1/2 (A0 = 0 and signμ > 0 for tanβ = 50 (blue) and tanβ = 10
(green). The left panel shows the m0–a plane projection while the right panel shows the m1/2–a one. The solid line gives 
the maximum value of a for that particular tanβ . (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)

Cosmological and experimental constrains have highly reduced the allowed regions of param-
eter space of the cMSSM. The most recent of these constrains is the one from the CMS and AT-
LAS Collaborations on the mass of the lightest Higgs boson mh = 125.8 ±0.6 GeV [83–86]. This 
constraint is derived from a combination of 5.1 fb−1√s = 7 TeV data and 12.2 fb−1√s = 8 TeV
data. In our calculation we take this constraint as mh = 126 ± 3, where the uncertainty comes 
from a combination of the experimental and theoretical determinations of the Higgs mass.

There is also a new measurement of

BR(B̃s → μ+μ−) = (3.2 ± 1.5) × 10−9 (15)

from the LHCb Collaboration, derived from 1 fb−1 of data at 
√

s = 7 TeV collision energy and 
1.1 fb−1 of data at 

√
s = 8 TeV collision energy [87]. The excluded region due to this constraint 

in the cMSSM has already been determined in [88]. We also impose the constraint coming from 
the branching ratio of b → sγ , whose value is given by the Heavy Flavour Averaging Group 
(HFAG) as [89]

BR(b → sγ ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) × 10−4. (16)

This result can be determined directly form Suspect. Moreover, if we assume that neutralinos 
make up all of the dark matter in the universe, the WMAP 7-year dark matter relic abundance 
value �χh2 = 0.1109 ± 0.0056 [45] puts even more strict constraints. We calculated this value 
using micrOMEGAs [90]. In general, the “surviving” regions have a very small value for the 
anapole moment of the lightest neutralino (10−6–10−7 GeV−2), which is consistent with the 
results of Ho and Scherrer [22].

In the upper plot of Fig. 7 we show the anapole moment values for different regions of pa-
rameter space in (m0, m1/2) planes in the cMSSM for tanβ = 10. On top and closely around the 
pink dot-dashed line the stau and neutralino masses are degenerate, and we do not calculate the 
anapole moment in this region. The plotting program extrapolates between the values on both 
sides of the line, but there is actually a gap in the data there.

The different phenomenological constraints are shown as follows: the region above the red 
dashed line is where the Higgs mass is mh = 126 ± 3 GeV, to the left of the pink dot-dashed line 
the LSP is charged, under the dotted blue line is the region excluded by the value of b → sγ , 
whereas the region under the dotted green line is excluded because it does not comply with 
the requirement of radiative electroweak symmetry breaking. The region where the relic LSP 
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Fig. 7. Value of the anapole moment in (m0, m1/2) planes in the cMSSM for tanβ = 10 (upper plot) and tanβ = 50
(lower plot), assuming A0 = 0 and μ > 0, see text. The region that complies with all the phenomenological constraints 
would be to the extreme right of the plots, between the white lines. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

density falls within the range allowed by WMAP is marked with a white line, while a more loose 
constraint, �χh2 < 0.12, assuming the LSP is not the only component of CDM, is delimited by 
a white line. The lower plot shows the same regions, but with tanβ = 50.

In the two graphs we can see that the anapole moment is �O(10−4) GeV−2 for every region 
of the space of parameters. That is the case for the bulk (low m0 and low m1/2), already excluded 
by other constraints. This is also true for the coannihilation region (low m0 and higher m1/2), 
where the masses of the χ̃0

1 and the τ̃ are almost degenerate. There seems to be a mechanism, 
which is a function of m2

χ̃0
1
− m2

τ̃
, suppressing the contributions from this region. As can be seen 

from the approximate analytical formulae, there is a dependence on the mass difference between 



L.G. Cabral-Rosetti et al. / Nuclear Physics B 907 (2016) 1–17 13
Fig. 8. The plots show the dependence on the anapole moment (per nuclear magneton) on the neutralino mass for tan β =
10 and 50. The regions above the solid lines correspond to the excluded regions by XENON and LUX, and the ones above 
the dashed lines correspond to the projected reach of XENON1T and LZ. (See text for an explanation of the different 
regions.) (For interpretation of the references to colour in this figure, the reader is referred to the web version of this 
article.)

the stau and the neutralino both in the numerator and the denominator. It has to be remembered 
though that the anapole moment depends on the derivatives of these expressions, which obscures 
the mechanism at hand. The anapole moment gets relatively large in the focus point region, which 
corresponds to high m0 and low m1/2, close to the border of viable EWSB (green dotted line). The 
same behaviour is seen for different tanβ , although the regions might differ in position and size.

In Fig. 8 we show the anapole moment dependence on the neutralino mass, and the exclu-
sion curves of XENON and LUX [23], plus the projected reach of XENON1T and LZ [25]. 
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The regions above the lines of LUX and XENON are the values already excluded by the non-
observation of dark matter. The orange points are all the ones where the lightest neutralino is 
the LSP, the brown ones are the ones that comply with the loose relic density constraint, and 
the green ones comply with the range of values we took for the Higgs mass. As can be seen 
from the graphs, the region in parameter space that complies with the Higgs mass constraint is 
at the border of the reach of LUX and XENON, but within the reach of LZ and XENON1T. For 
tanβ = 10 there is practically no region where there is an overlap between the loose relic abun-
dance and Higgs mass constraints, so this region is basically excluded by all three constraints 
(relic abundance, Higgs mass, and lack of observation of dark matter). For tanβ = 50 there is a 
small overlap region between the Higgs mass and relic density constraints. This region lies at the 
border of the exclusion region of LUX and XENON, but within the projected reach of LZ and 
XENON1T. If in the future it is possible to measure the anapole moment of a DM candidate, this 
would give us extra information on the allowed parameter space of the cMSSM.

The cMSSM may be too constrained to be realistic, however, using it as a test model, we can 
see that the anapole moment is indeed different for different regions of parameter space, and is 
within the reach of the future experiments. Thus, anapole analysis can be used as another criteria 
to study the parameter space. Although the anapole moment is insensitive to A0 and signμ, other 
observables, like the Higgs mass and some decays, are not [51,54,56,58,66,91]. This will give 
different exclusion regions for different values of the cMSSM parameters.

5. Conclusions

We calculated the anapole moment of the lightest neutralino in the framework of the cMSSM. 
Even though this is perhaps an unrealistically constrained model, it is one of the most studied 
SUSY models, and therefore it is important to pass it through all possible tests.

We found that the anapole moment of the neutralino is sensitive to m0, m1/2 and tanβ , but 
non-dependent on A0 and signμ. The parameter space we scanned gives rise to an anapole mo-
ment consistent with the upper limit obtained by Pospelov and ter Veldhuis [70] for WIMPs 
interacting with heavy nuclei using data from the CDMS and DAMA experiments. The ex-
perimental constraints (Higgs mass, CDM relic density) favour scenarios with large tanβ . For 
tanβ = 50 we found that the anapole moment of the lightest neutralino of the cMSSM has a 
value O(10−5–10−4) fm μN , which lies at the border of sensitivity of the current experimental 
searches and within the reach of the future experiments like XENON1T and LZ.

The same kind of calculation can be performed in the context of other more complex mod-
els. This could be extremely valuable for discriminating not only between different interesting 
regions of the cMSSM, but also among different models.

Thus, the anapole analysis could be useful to study the allowed parameter space of the cMSSM 
and other SUSY models.
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Fig. 9. Comparison between numerical (red line) and approximate (blue line) scalar three-point function 
C0(q2, x2, x2, z2, z2, y2), with x = 97.7 GeV, y = 415.4 GeV and z = 80.43 GeV. The analytical approximation (blue 
line) is only valid for q2 → 0. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

Appendix. Scalar three-point function

In this appendix, we analyse the Passarino–Veltman scalar three-point function C0(q
2, x2, x2,

z2, z2, y2) [92,93] which appears in the TDM calculation. Here q2 denotes the photon transfered 
4-momentum, x is the neutralino mass, and y and z are the masses of the particles running in the 
loop.

The corresponding plot for this C0 function can be seen in Fig. 9. The red line shows the 
numerical solution, the blue line represents the approximate solution, i.e., the Taylor expansion 
around q2 = 0, which can be written as follows:

C0

(
q2, x2, x2, z2, z2, y2

)
= α0 + α1q

2 +O(q4). (17)

The coefficients αi are functions of the masses:

α0 =
log

(
y2

z2

)
2x2

+ a logω, (18)

α1 = x4 − y2x2 − 2z2x2 + z4 − y2z2

6x2z2(−x + y − z)(x + y − z)(−x + y + z)(x + y + z)
+

log
(

y2

z2

)
12x4

+ b logω,

(19)

where

ω =
(
ix2 + iy2 − iz2 +

√
−y4 + 2(x2 + z2)y2 − (z2 − x2)

)(
ix2 − iy2 + iz2 +

√
−y4 + 2(x2 + z2)y2 − (z2 − x2)

)
(
−ix2 + iy2 − iz2 +

√
−y4 + 2(x2 + z2)y2 − (z2 − x2)

)(
−ix2 − iy2 + iz2 +

√
−y4 + 2(x2 + z2)y2 − (z2 − x2)

) ,

(20)

a = i(x2 + y2 − z2)

2
√

4 2 2 2 2 4 4 2 2
(21)
2x −x + 2y x + 2z x − y − z + 2y z
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and

b = i(x2 + y2 − z2)(x4 − 4y2x2 − 2z2x2 + y4 + ź4 − 2y2z2)

12x4(−x + y − z)(x + y − z)(−x + y + z)(x + y + z)
√

−x4 + 2y2x2 + 2z2x2 − y4 − z4 + 2y2z2
.

(22)
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